Process Analysis of Cable-Driven Parallel Robots for Automated Construction

  • Tobias Bruckmann
  • Arnim J. Spengler
  • Christian K. Karl
  • Christopher Reichert
  • Markus König
Chapter
Part of the Intelligent Systems, Control and Automation: Science and Engineering book series (ISCA, volume 92)

Abstract

This contribution presents an introduction to cable robots, their properties and their mechatronic design for application in automated construction. Today, most steps involved in the construction process are performed manually. Thus, the integration of automated functions demands a closer look at the production and logistic paradigms, these are the main focus of this paper. Based on case studies, the authors discuss upcoming transformations in shell production by comparing the conventional construction process with proposed processes involving cable-driven parallel robots. The focus is on bricklaying and working methods for the installation of prefabricated elements. Adaptations to site logistics and changes in work organization are also considered. A case study and sensitivity analysis based on system dynamics modeling are introduced, and the conceptual design of an experimental prototype is presented. The results of the investigations show that the use of a cable-driven robot is feasible for onsite construction, enabling automation of processes to save time and cost. The study investigates crucial parameters and the potential for cable robots in the field of construction.

References

  1. 1.
    Epstein E (2012) Implementing successful building information modeling. Artech House, Norwood, BritainGoogle Scholar
  2. 2.
    Bruckmann TH, Mattern H Spengler A, Malkwitz A, König M (2016). Automated construction of masonry buildings using cable-driven parallel robots. In: Proceedings of the ISARC 2016Google Scholar
  3. 3.
    Willmann J (2014) Gramazio F, Kohler M, Roboter und Megastrukturen: Neue Maßstäbe in der digitalen Fabrikation. in Technik in Bayern 04Google Scholar
  4. 4.
    Willmann J, Gramazio F, Kohler M (2015) If robots conquer airspace: the architecture of the vertical city. In: Springer optimization and its applications, pp 1–11, SwitzerlandGoogle Scholar
  5. 5.
    Landsberger SE, Sheridan TB (1985). A new design for parallel link manipulator. In: Proceedings systems man and cybernetics conference, pp 812–814Google Scholar
  6. 6.
    Mattern H, Bruckmann T, Spengler A, König M (2016). Simulation of automated construction using wire robots. In: Proceedings of the 2016 winter simulation conferenceGoogle Scholar
  7. 7.
    Reichert C et al (2015) Dynamische Rekonfiguration eines seilbasierten Manipulators zur Verbesserung der mechanischen Steifigkeit. Tagung VDI Mechatronik, Dortmund, DeutschlandGoogle Scholar
  8. 8.
    Bruckmann T et al (2008) Wire robots part I—kinematics, analysis & design. Parallel manipulators, New Developments. Ryu J-H Vienna, Austria, I-Tech Education pp 109–132Google Scholar
  9. 9.
    Gouttefarde M et al (2015). A versatile tension distribution algorithm for n-DOF parallel robots driven by n + 2 cables. Robotics 31(6): 1444–1457Google Scholar
  10. 10.
    Müller K et al (2015) Analysis of a real-time capable cable force computation method. Cable-driven parallel robots. Ed. Pott A, Bruckmann T Springer International Publishing pp 227–238Google Scholar
  11. 11.
    Karl CK, Ibbs W (2016) Developing modular-oriented simulation models using system dynamics libraries. Springer International Publishing, ChamGoogle Scholar
  12. 12.
    Meik M (2016) Entwurf eines Endeffektors und Implementierung einer Regelung für einen Seilroboter, Master Thesis, University of Duisburg-EssenGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Tobias Bruckmann
    • 1
  • Arnim J. Spengler
    • 2
  • Christian K. Karl
    • 3
  • Christopher Reichert
    • 1
  • Markus König
    • 4
  1. 1.University of Duisburg-EssenDuisburgGermany
  2. 2.Institute of Construction ManagementUniversity of Duisburg-EssenDuisburgGermany
  3. 3.Specialized Didactics in Construction TechnologyUniversity of Duisburg-EssenDuisburgGermany
  4. 4.Ruhr University BochumDuisburgGermany

Personalised recommendations