Skip to main content

Numerical and Experimental Investigations of Reinforced Masonry Structures Across Multiple Scales

  • Chapter
  • First Online:
  • 1187 Accesses

Part of the book series: Intelligent Systems, Control and Automation: Science and Engineering ((ISCA,volume 92))

Abstract

This review chapter outlines the outcomes of a combined experimental-numerical investigation on the retrofitting of masonry structures by means of polymeric textile reinforcement. Masonry systems comprise a significant portion of cultural heritage structures, particularly within European borders. Several of these systems are faced with progressive ageing effects and are exposed to extreme events, as for instance intense seismicity levels for structures in the center of Italy. As a result, the attention of the engineering community and infrastructure operators has turned to the development, testing, and eventual implementation of effective strengthening and protection solutions. This work overviews such a candidate, identified as a full-coverage reinforcement in the form of a polymeric multi-axial textile. This investigation is motivated by the EU-funded projects Polytect and Polymast, in the context of which this protection solution was developed. This chapter is primarily concerned with the adequate simulation and verification of the retrofitted system, in ways that are computationally affordable yet robust in terms of simulation accuracy. To this end, finite element-based mesoscopic and multiscale representations are overviewed and discussed within the context of characterization, identification and performance assessment.

This is a preview of subscription content, log in via an institution.

References

  1. Thomas K (1996) Masonry walls: specification and design. Butterworth Heinemann, Ofxord

    Google Scholar 

  2. Salonikios T, Karakostas C, Lekidis V, Anthoine A (2003) Comparative inelastic pushover analysis of masonry frames. Eng Struct 25(12):1515–1523

    Article  Google Scholar 

  3. Massart TJ, Peerlings RHJ, Geers MGD (2007) An enhanced multi-scale approach for masonry wall computations with localization of damage. Int J Numer Meth Eng 69(5):1022–1059

    Article  MATH  Google Scholar 

  4. Oliveira DV, Lourenço PB, Roca P (2006) Cyclic behaviour of stone and brick masonry under uniaxial compressive loading. Mater Struct 39(2):247–257

    Article  Google Scholar 

  5. Oliveira DV, Silva RA, Garbin E, Lourenço PB (2012) Strengthening of three-leaf stone masonry walls: an experimental research. Mater Struct 45(8):1259–1276

    Article  Google Scholar 

  6. Mojsilović N (2011) Strength of masonry subjected to in-plane loading: a contribution. Int J Solids Struct 48(6):865–873

    Article  MATH  Google Scholar 

  7. FEMA306 (1999) Evaluation of earthquake damaged concrete and masonry wall buildings-basic procedures, Technical Report, Federal Emergency Management Agency (FEMA), FEMA 306, Prepared by Applied Technology Council

    Google Scholar 

  8. Paulay T, Priestly MJN (2009) Seismic design of reinforced concrete and masonry buildings. Wiley

    Google Scholar 

  9. Triantafillou TC, Fardis MN (1997) Strengthening of historic masonry structures with composite materials. Materials and Structures 30(8):486–496

    Article  Google Scholar 

  10. Krevaikas TD, Triantafillou TC (2005) Masonry confinement with fiber-reinforced polymers. J Compos Construct 9(2):128–135

    Article  Google Scholar 

  11. Li T, Galati N, Tumialan J, Nanni A (2005) Analysis of unreinforced masonry concrete walls strengthened with glass fiber-reinforced polymer bars. ACI Struct J 102(4), 569–577, cited by 14

    Google Scholar 

  12. Triantafillou T (2011) Textile-Reinforced mortars (TRM). Springer: London, London, pp 113–127

    Google Scholar 

  13. Faella C, Martinelli E, Nigro E, Paciello S (2004) Tuff masonry walls strengthened with a new kind of c-frp sheet: experimental tests and analysis. In: Proceedings of the 13th world conference on earthquake engineering, Paper no. 923

    Google Scholar 

  14. Nurchi A, Valdes M (2005) Strengthening of stone masonry columns by means of cement-based composite wrapping. In: CCC 2005: 3rd International conference on composites in construction. Lyon, France, July 2005 (H. P, ed.), pp 1189–1196

    Google Scholar 

  15. Bischof P, Suter R, Chatzi E, Lestuzzi P (2014) On the use of cfrp sheets for the seismic retrofitting of masonry walls and the influence of mechanical anchorage. Polymers 6(7):1972

    Google Scholar 

  16. Messervey T, Zangani D, Fuggini C (2010) Sensor-embedded textiles for the reinforce-ment, dynamic characterisation, and structural health monitoring of masonry structures. In: Proceedings of the 5th EWSHM 2010, June 28 July 2, Sorrento, Italy, pp 1075–1282

    Google Scholar 

  17. Stempniewski L (2011) Polyfunctional technical textiles for the protectionand monitoring of masonry structures against earthquakes. Technical Report, Seventh Framework Programme, Capacities Specific Programme, Research Infrastructures, Project No.: 227887

    Google Scholar 

  18. Fuggini C, Chatzi E, Zangani D (2013) Combining genetic algorithms with a meso-scale approach for system identification of a smart polymeric textile. Comput-Aided Civil Infrastruct Eng 28(3):227–245

    Article  Google Scholar 

  19. Soares C, de Freitas M, Arajo A, Pedersen P (1993) Identification of material properties of composite plate specimens. Compos Struct 25(14):277–285

    Article  Google Scholar 

  20. Frederiksen P (1997) Experimental procedure and results for the identification of elastic constants of thick orthotropic plates. J Compos Mater 31:360–382

    Article  Google Scholar 

  21. Rikards R, Chate A, Steinchen W, Kessler A, Bledzki A (1999) Method for identification of elastic properties of laminates based on experiment design. Compos Part B Eng 30(3):279–289

    Article  Google Scholar 

  22. Morton J, Haig G (2011) Designers’ guide to eurocode 6: design of masonry structures: EN 1996-1-1: General rules for reinforced and unreinforced masonry. ICE Publishing, London

    Book  Google Scholar 

  23. Binda L, Pina-Henriques J, Anzani A, Fontana A, Loureno P (2006) A contribution for the understanding of load-transfer mechanisms in multi-leaf masonry walls: testing and modelling. Eng Struct 28(8):1132–1148

    Article  Google Scholar 

  24. Anthoine A (1992) In-plane behaviour of masonry: a literature review. Report Eur 13840 En, commission of the european communities. Tech Report, JRC–Institute for Safety Technology, Ispra, Italy

    Google Scholar 

  25. Lourenco P (1996) Computational strategies for masonry structures. PhD Thesis, Delft University of Technology, Delft, The Netherlands

    Google Scholar 

  26. Tomazevic M, Lutman M (1996) Seismic behavior of masonry walls: Modeling of hysteretic rules. Journal of Structural Engineering 122(9):1048–1054

    Article  Google Scholar 

  27. Chen S-Y, Moon F, Yi T (2008) A macroelement for the nonlinear analysis of in-plane unreinforced masonry piers. Eng Struct, 30(8), 2242–2252, Seismic reliability, analysis, and protection of historic buildings and heritage sites

    Google Scholar 

  28. Ferreira MAR, Lee HKH (2007) Multi-scale modeling: a bayesian perspective. Springer, Springer Series in Statistics, New York

    Google Scholar 

  29. Babuška I (1975) Homogenization approach in engineering. Technical Report ORO–3443-58; TN-BN–828 United States; NSA-33-022692

    Google Scholar 

  30. Nicot F, Darve F (2005) Hazards GNV of Structures A multi-scale approach to granular materials Mechanic Mater 37(9), 980–1006

    Google Scholar 

  31. Elsayed MS, Pasini D (2010) Multiscale structural design of columns made of regular octet-truss lattice material. Int J Solids Struct 47(1415):1764–1774

    Article  MATH  Google Scholar 

  32. Mangipudi K, Onck P (2011) Multiscale modelling of damage and failure in two-dimensional metallic foams. J Mechanic Phys Solids 59(7):1437–1461

    Article  MATH  Google Scholar 

  33. McDowell DL (2010) A perspective on trends in multiscale plasticity. Int J Plastic 26(9), 1280–1309. Special Issue In Honor of David L. McDowell

    Google Scholar 

  34. Hughes TJ, Scovazzi G, Bochev PB, Buffa A (2006) A multiscale discontinuous galerkin method with the computational structure of a continuous galerkin method. Comput Methods Appl Mech Eng 195(1922):2761–2787

    Article  MathSciNet  MATH  Google Scholar 

  35. Song J-H, Belytschko T (2009) Multiscale aggregating discontinuities method for micromacro failure of composites. Compos Part B Eng 40(6), 417–426. Blast/Impact on engineered (nano)composite materials

    Google Scholar 

  36. Kanouté P, Boso DP, Chaboche JL, Schrefler BA (2009) Multiscale methods for composites: a review. Arch Comput Methods Eng 16(1):31–75

    Article  MATH  Google Scholar 

  37. Belytschko T, de Borst R (2010) Multiscale methods in computational mechanics. Int J Numer Methods Eng 83(8–9):939–939

    Article  Google Scholar 

  38. Xu X, Graham-Brady L (2005) A stochastic computational method for evaluation of global and local behavior of random elastic media. Comput Methods Appl Mech Eng 194(4244):4362–4385

    Article  MATH  Google Scholar 

  39. Tootkaboni M, Graham-Brady L (2010) A multi-scale spectral stochastic method for homogenization of multi-phase periodic composites with random material properties. Int J Numer Methods Eng 83(1):59–90

    MathSciNet  MATH  Google Scholar 

  40. Xu XF, Hu K, Beyerlein IJ, Deodatis G (2011) Statistical strength of hierarchical carbon nanotube composites. Int J Uncertain Quant 1(4):279–295

    Article  MathSciNet  Google Scholar 

  41. Massart T, Peerlings R, Geers M (2004) Mesoscopic modeling of failure and damage-induced anisotropy in brick masonry. Eur J Mech A/Solids 23(5):719–735

    Article  MATH  Google Scholar 

  42. Massart T, Peerlings R, Geers M, Gottcheiner S (2005) Mesoscopic modeling of failure in brick masonry accounting for three-dimensional effects. Eng Fract Mech 72(8):1238–1253

    Article  Google Scholar 

  43. Efendiev Y, Hou TY (2009) Multiscale finite element methods vol 4 of surveys and tutorials in the applied mathematical sciences. Springer

    Google Scholar 

  44. Zhang HW, Wu JK, Lv J (2012) A new multiscale computational method for elasto-plastic analysis of heterogeneous materials. Comput Mech 49(2):149–169

    Article  MathSciNet  MATH  Google Scholar 

  45. Karapitta L, Mouzakis H, Carydis P (2011) Explicit finite-element analysis for the in-plane cyclic behavior of unreinforced masonry structures. Earthquake Eng Struct Dynam 40(2):175–193

    Article  Google Scholar 

  46. Wen Y (1976) Method of random vibration of hysteretic systems. J Eng Mech Div 102:249–263

    Google Scholar 

  47. Mayergoyz I (1998) Generalized preisach model of hysteresis. IEEE Trans Magnet 24(1):212–217

    Article  Google Scholar 

  48. Erlicher S, Bursi OS (2008) Boucwen-type models with stiffness degradation: thermodynamic analysis and applications. J Eng Mech 134(10):843–855

    Article  Google Scholar 

  49. Sivaselvan MV, Reinhorn AM (2000) Hysteretic models for deteriorating inelastic structures. J Eng Mech 126(6):633–640

    Article  Google Scholar 

  50. Visintin A (1994) Differential models of hysteresis. In: Applied mathematical sciences, vol. 111, Springer

    Google Scholar 

  51. Ikhouane F, Rodellar J (2007) Systems with hysteresis: Analysis, identification and control using the Bouc-Wen model. Wiley, New York

    Book  MATH  Google Scholar 

  52. Spanos PD, Kougioumtzoglou IA (2011) Harmonic wavelet-based statistical linearization of the Bouc-Wen hysteretic model. Taylor and Francis Group, pp 2649–2656

    Google Scholar 

  53. Triantafyllou SP, Koumousis VK (2012) A hysteretic quadrilateral plane stress element. vol. 82, 10–, pp 1675–1687

    Google Scholar 

  54. Triantafyllou S, Chatzi E (2014) A hysteretic multiscale formulation for nonlinear dynamic analysis of composite materials. Comput Mech 54(3):763–787

    Article  MathSciNet  MATH  Google Scholar 

  55. Zienkiewicz OC, Taylor RL, Zhu J (2005) The finite element method: its basis and fundamentals, 6th edn. Elsevier, Amsterdam

    MATH  Google Scholar 

  56. Triantafyllou S, Chatzi E (2014) Risk analysis of composite structures by subset estimation using the hysteretic multiscale finite element method, 157, pp 1564–1573

    Google Scholar 

  57. Triantafyllou SP, Chatzi EN (2015) Towards a multiscale scheme for nonlinear dynamic analysis of masonry structures with damage, Cham: Springer International Publishing pp 165–198

    Google Scholar 

  58. Nemat-Naser S (1982) On finite deformation elasto-plasticity. Int J Solids Struct 18(10):857–872

    Article  MATH  Google Scholar 

  59. Washizu K (1983) Var Methods Elasticity Plastic. Pergamon Press, Oxford

    Google Scholar 

  60. Triantafyllou SP, Chatzi EN (2015) A hysteretic multiscale formulation for validating computational models of heterogeneous structures. J Strain Anal Eng Design

    Google Scholar 

  61. Iwan WD (1967) On a class of models for the yielding behavior of continuous and composite systems. J Appl Mech 34(3):612–617

    Article  Google Scholar 

  62. Erlicher S (2003) Hysteretic degrading models for the low-cycle fatigue behaviour of structural elements: theory, numerical aspects and applications. PhD thesis, Department of Mechanical and Structural Engineering, University of Trento, Italy

    Google Scholar 

  63. Triantafyllou S, Koumousis V (2014) Hysteretic finite elements for the nonlinear static and dynamic analysis of structures. J Eng Mech 140(6), 04014025–1– 04014025–17

    Google Scholar 

  64. Lubliner J (2008) Plasticity theory. Dover Publications, New York

    MATH  Google Scholar 

  65. Foliente GC, Singh MP, Noori MN (1996) Equivalent linearization of generally pinching hysteretic and degrading systems. Earthquake Eng Struct Dynam 25:611–629

    Article  Google Scholar 

  66. Zangani D (2010) Final report -polytect (polyfunctional technical textiles against natural hazards), project no. nmp2-ct-2006-026789. Technical Report D’ Appolonia S.p.A

    Google Scholar 

  67. Peeters B, De Roeck G (Feb 2001) Stochastic system identification for operational modal analysis: a review. J Dynam Syst. measurem. Control 123:659–667

    Google Scholar 

  68. James GH, Carne TG, Lauffer JP, Nord AR (1992) Modal testing using natural excitation. In: Proceedings of 10th Int. Modal Analysis Conference, San Diego

    Google Scholar 

  69. Juang J-N, Pappa RS (Sept 1985) An eigensystem realization algorithm for modal parameter identification and model reduction. J Guid Control Dynam 8:620–627

    Google Scholar 

  70. Brincker R, Zhang L, Andersen P (2000) Modal identification from ambient responses using frequency domain decomposition. In: Proceedings of the 18th SEM International Modal Analysis Con-ference, San Antonio

    Google Scholar 

  71. Ansys academic research, release 16.2

    Google Scholar 

  72. Carrols DI open source code http://www.cuaerospace.com/carroll/ga.html

  73. http://peer.berkeley.edu/peer_ground_motion_database/. Accessed 20 May 2014

  74. Ri. abaqus version 6.11 [computer software]. Dassault systmes simulia, providence

    Google Scholar 

Download references

Acknowledgements

Dr. Fuggini would like to gratefully acknowledge the support of European Community’s Seventh Framework Programme [FP7/2007-2013] for access to Eucentre under grant agreement N 227887. Prof. Chatzi and Prof. Triantafyllou would like to gratefully acknowledge the support of the Swiss National Science Foundation under Research Grants \(\#200021\_146996\), \(\#200021\_153379\).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleni N. Chatzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chatzi, E.N., Triantafyllou, S.P., Fuggini, C. (2018). Numerical and Experimental Investigations of Reinforced Masonry Structures Across Multiple Scales. In: Ottaviano, E., Pelliccio, A., Gattulli, V. (eds) Mechatronics for Cultural Heritage and Civil Engineering. Intelligent Systems, Control and Automation: Science and Engineering, vol 92. Springer, Cham. https://doi.org/10.1007/978-3-319-68646-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68646-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68645-5

  • Online ISBN: 978-3-319-68646-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics