Structural Health Monitoring Systems for Smart Heritage and Infrastructures in Spain

  • F. Javier Baeza
  • Salvador Ivorra
  • David Bru
  • F. Borja Varona
Chapter
Part of the Intelligent Systems, Control and Automation: Science and Engineering book series (ISCA, volume 92)

Abstract

The development of information and communication technologies (ICT) and robotics is currently demonstrating its potential impact on different fields of application. With regard to cultural heritage, and architectural and engineering heritage in particular, these new technologies are changing the possibilities for structural capacity assessment and health monitoring (SHM). The objective of smart heritage can be achieved thanks to properly designed SHM systems, which when connected to an automated diagnostic system can even self-evaluate retrofitting needs. This chapter includes a brief summary of the SHM technologies applied for cultural heritage management in Spain during the early 2000s.

Notes

Acknowledgements

The authors would like to thank the University of Alicante for its financial support, VIBGROB-212-(GRESMES). F. J. Baeza also wants to acknowledge the Spanish Government, Ministerio de Educación, Cultura y Deporte, for the financial support, Programme José Castillejo, grant CAS15/00223.

References

  1. 1.
    AENOR UNE 22381:1993 (1993) Control of vibrations made by blastingsGoogle Scholar
  2. 2.
    AENOR UNE 178104:2015 (2015) Smart cities. Infrastructures. Comprehensive systems for a Smart City managementGoogle Scholar
  3. 3.
    Aguasca A, Acevo-Herrera R, Broquetas A, Mallorqui JJ, Fabregas X (2013) ARBRES: Light-Weight CW/FM SAR sensors for small UAVs. Sensor 13:3204–3216Google Scholar
  4. 4.
    Alonso A, Martínez A, Llopis V, Moreno J (2013) Construction and structural analysis of the dome of the Cathedral of Valencia. In: VIII international conference on fracture mechanics of concrete and concrete structures FraMcos-8, Toledo, Spain, 10-14 Mar 2013Google Scholar
  5. 5.
    Arias P, Armesto J, Di-Capua D, González-Drigo R, Lorenzo H, Pérez-Gracia V (2007) Digital photogrammetry, GPR and computational analysis of structural damages in a mediaeval bridge. Eng Fail Anal 14:1444–1457CrossRefGoogle Scholar
  6. 6.
    Barbat A, Pujades LG, Lantada N (2006) Performance of buildings under earthquakes in Barcelona, Spain. Comp-Aided Civ Infrastruct Eng 21:573–593CrossRefGoogle Scholar
  7. 7.
    Bounatian L, Sánchez F, Poy I (2011) The monitoring of Barcelona’s Sagrada Familia church with fiber optic technology: control of the construction of a nearby tunnel. In: 5th International Conference on Structural Health Monitoring of Intelligent Infrastructure SHMII-5. Cancún, Mexico, pp 11–15, Dec 2011Google Scholar
  8. 8.
    Brotóns V, Tomás R, Ivorra S, Grediaga A (2014) Relationship between static and dynamic elastic modulus of calcarenite heated at different temperatures: the San Julián’s stone. B Eng Geol Environ 73:791–799CrossRefGoogle Scholar
  9. 9.
    Brownjohn JMW, De Stefano A, Xu YL, Wenzel H, Aktan AE (2011) Vibration-based monitoring of civil infrastructure: challenges and successes. J Civ Struct Health Monit 1:79–95CrossRefGoogle Scholar
  10. 10.
    Castillo A, Andrade C, Martínez I et al (2011) Assessment and monitoring of durability of shell structures in Zarzuela Racecourse Madrid. Inf Constr 63(524):33–41CrossRefGoogle Scholar
  11. 11.
    Ceci AM, Contento A, Fanale L, Galeota D, Gattulli V, Lepidi M, Potenza F (2010) Structural performance of the historic and modern buildings of the University of L’Aquila during the seismic events of April 2009. Eng Struct 32:1899–1924CrossRefGoogle Scholar
  12. 12.
    Chiriac M, Basulto D, Prieto JC (2014) Development and implementation of the MHS algorithm for the preventive conservation of heritage monuments. In: Rogerio-Candelera MA (ed) Science, Technology and Cultural Heritage. CRC Press, pp 417–422Google Scholar
  13. 13.
    Chiriac M, Basulto D, López E et al (2013) The MHS system as an active tool for the preventive conservation of Cultural Heritage. In: Rogerio-Candelera MA, Lazzari M, Cano E (eds) Science and technology for the conservation of cultural heritage. CRC Press, pp 383–386Google Scholar
  14. 14.
    Costanzo A, Minasi M, Casula G et al (2015) Combined use of terrestrial laser scanning and IR thermography applied to a historical building. Sensor 15:194–213.  https://doi.org/10.3390/s150100194 CrossRefGoogle Scholar
  15. 15.
    Deloitte Consulting (2015) Estudio y guía metodológica sobre ciudades inteligentes. ONTSIGoogle Scholar
  16. 16.
    Deutsches Institut für Normung (2015) DIN 4150–3: Vibration in building—Part 3: Effects on structuresGoogle Scholar
  17. 17.
    Fundación Santa María la Real (2016) Monitoring Heritage System Project. http://www.mhsproject.com. Accessed 14 Jul 2016
  18. 18.
    González R, Caballé F, Domengé J, Vendrel M, Giráldez P, Roca P, González JL (2008) Construction process, damage and structural analysis. Two case studies. In: D’Ayala D, Fodde E (eds) Structural analysis of historic construction. CRC Press, London, pp 643–651Google Scholar
  19. 19.
    Hernández S, Romera LE, Díaz J (2007) Twenty years of experience in numerical models of historical constructions: a temporal perspective. In: Brebbia CA (ed) WIT Transactions on the Built Environment, vol 95, WIT Press, pp 385–397.  https://doi.org/10.2495/STR070361
  20. 20.
    Ivorra S. Baeza FJ, Bru D, Varona FB (2015) Seismic behavior of a masonry chimney with severe cracking condition: preliminary study. Key Eng Mater 628:117–122Google Scholar
  21. 21.
    Ivorra S, Foti D, Bru D, Baeza FJ (2015) Dynamic behavior of a pedestrian bridge in Alicante, Spain. J Perform Constr Facil 29(5):04014132 p 10.  https://doi.org/10.1061/(ASCE)CF.1943-5509.0000556
  22. 22.
    Ivorra S, Pallarés FJ, Adam JM, Tomás R (2010) An evaluation of the incidence of soil subsidence on the dynamic behaviour of a Gothic bell tower. Eng Struct 32:2318–2325CrossRefGoogle Scholar
  23. 23.
    Jäger W, Burkert T, Boekhoff B, Bakeer T (2011) The monitoring of world heritage sites during construction works in their vicinity: the case of Casa Milà and of the Church of Sagrada Familia in Barcelona, Spain. In: Brebbia CA and Binda L (eds) WIT transactions on the built environment, vol 118, pp 357–374Google Scholar
  24. 24.
    Jia Y, Yan J, Feng T et al (2015) A vibration powered wireless mote on the Forth Road Bridge. J Phys Conf Ser 660:012094 5p.  https://doi.org/10.1088/1742-6596/660/1/012094 Google Scholar
  25. 25.
    Jia Y, Yan J, Soga K, Seshia AA (2014) A parametrically excited vibration energy harvester. J Intell Mater Syst Struct 25:278–289CrossRefGoogle Scholar
  26. 26.
    Lluís i, Ginovart J, Costa A, Fortuny G (2013) Assessment and restoration of a masonry dome in the cathedral of Tortosa enclosure. In: Brebbia CA (ed) WIT transactions on the built environment, vol 131, WIT Press, pp 391–401.  https://doi.org/10.2495/STR130331
  27. 27.
    Lombillo I, Blanco H, Pereda J et al (2016) Structural health monitoring of a damaged church: design of an integrated platform of electronic instrumentation, data acquisition and client/server software. Struct Control Health Monit 23:69–81CrossRefGoogle Scholar
  28. 28.
    López E, Chiriac M, Basulto D et al (2012) Desarrollo e innovación en los sistemas de gestión del patrimonio. MSH (Monitoring Heritage System) sistema de monitorización del patrimonio como herramienta de gestión integral. In: Congreso internacional AR&PA. Valladolid, Spain, 24–27, May 2012Google Scholar
  29. 29.
    Lozano-Galant JA, Payá-Zaforteza I, Xu D et al (2012) Forward algorithm for the construction control of cable-stayed bridges built on temporary supports. Eng Struct 40:119–130CrossRefGoogle Scholar
  30. 30.
    Lubowiecka I, Arias P, Riveiro B, Solla M (2011) Multidisciplinary approach to the assessment of historic structures based on the case of a masonry bridge in Galicia (Spain). Comput Struct 89:1615–1627CrossRefGoogle Scholar
  31. 31.
    Macías-Bernal JM, Calama-Rodríguez JM, Chávez MJ (2014) Prediction model of the useful life of a heritage building from fuzzy logic. Inf Constr 66:e006CrossRefGoogle Scholar
  32. 32.
    Maierhofer C, Roellig M (2009) Active thermography for the characterization of surfaces and interfaces of historic masonry structures. In: 7th International symposium on non-destructive testing in civil engineering. Nantes, France, 30 June–3 July 2009Google Scholar
  33. 33.
    Martínez S, Ortiz J, Gil ML, Rego MT (2013) Recording complex structures using close range photogrammetry: the Cathedral of Santiago de Compostela. Photogramm Rec 28(144):375–395.  https://doi.org/10.1111/phor.12040 CrossRefGoogle Scholar
  34. 34.
    Martinez-Garrido I, Fort R (2016) Experimental assessment of a wireless communications platform for the built and natural heritage. Measurement 82:188–201CrossRefGoogle Scholar
  35. 35.
    Meroño JE, Perea AJ, Aguilera MJ, Laguna AM (2015) Recognition of materials and damage on historical buildings using digital image classification. S Afr J Sci 111:Art.#2014-0001 9pGoogle Scholar
  36. 36.
    Morgenthal G, Hallermann N (2014) Quality assessment of unmanned aerial vehicle (UAV) based visual inspection of structures. Adv Struct Eng 17(3):289–302CrossRefGoogle Scholar
  37. 37.
    Oses N, Dornaika F, Moujahid A (2014) Image-based delineation and classification of built heritage masonry. Remote Sens 6:1863–1889.  https://doi.org/10.3390/rs6031863 CrossRefGoogle Scholar
  38. 38.
    Pachón P, Compán V, Rodríguez E et al (2015) Definition and characterization of a historical building by using digital photogrammetry and operational modal analysis. San Juan de los Caballeros Church (Cádiz, Spain). In: Proceedings of 3rd international conference on mechanical models in structural engineering, Sevilla, Spain, 24–26 June 2015Google Scholar
  39. 39.
    Pachón P, Rodríguez-Mayorga E, Cobo A, Yanes E (2014) Control of the structural intervention in the area of the Roman Theatre of Cadiz. Inf Constr 66 (EXTRA 1):m003Google Scholar
  40. 40.
    Palaia L, Tormo S, López V, Mofort J (2011) NDT assessment of timber structures: a case study—Villa Ivonne, Meliana. In: Brebbia CA, Binda L (eds) WIT transactions on the built environment, vol 118, WIT Press, pp 529–540Google Scholar
  41. 41.
    Pérez-Gracia V, Caselles O, Clapés J et al (2009) Radar exploration applied to historical buildings: a case study of the Marques de Llió palace, in Barcelona (Spain). Eng Fail Anal 16:1039–1050CrossRefGoogle Scholar
  42. 42.
    Pineda P, Sáez A (2009) Assessment of ancient masonry slender towers under seismic loading: dynamic characterization of the Cuatrovitas tower. In: Brebbia CA (ed) WIT transactions on the built environment, vol 109, WIT Press, pp 615–629.  https://doi.org/10.2495/STR090541
  43. 43.
    Pineda P, Robador MD, Gil-Martí MA (2011) Seismic damage propagation prediction in ancient masonry structures: an application in the non-linear range via numerical models. Open Constr Build Technol J 5(Suppl 1-M4):71–79Google Scholar
  44. 44.
    Potenza F, Federici F, Lepidi M et al (2015) Long-term structural monitoring of the damaged Basilica S. Maria di Collemaggio through a low-cost wireless sensor network. J Civil Struct Health Monit 5:655–676.  https://doi.org/10.1007/s13349-015-0146-3 CrossRefGoogle Scholar
  45. 45.
    Prieto AJ, Macías-Bernal JM, Chávez MJ, Alejandre FJ (2016) Expert system for predicting buildings service life under ISO 31000 standard. Application in architectural heritage. J Cult Herit 18:209–218CrossRefGoogle Scholar
  46. 46.
    Roca P, Cervera M, Pelà L et al (2013) Continuum FE models for the analysis of Mallorca Cathedral. Eng Struct 46:653–670CrossRefGoogle Scholar
  47. 47.
    Roca P, Cervera M, Gariup G, Pelà L (2010) Structural analysis of masonry historical constructions. Classical and advanced approaches. Arch Comput Method Eng 17:299–325CrossRefMATHGoogle Scholar
  48. 48.
    Roca P, González JL, Aguerri F, Aguerri JI (2003) Monitoring of long-term damage in Gothic Cathedrals. In: Brebbia CA (ed) WIT transactions on the built environment, vol 66, WIT Press, pp 109–119Google Scholar
  49. 49.
    Rodenas-Herráiz D, Soga K, Fidler P, de Battista N (2016) Wireless sensor networks for civil infrastructure monitoring: a best practice guide. ICE PublishingGoogle Scholar
  50. 50.
    Rodríguez-Mayorga E, Yanes-Bustamante E, Sáez-Pérez A (2015) Analysis and diagnosis of the Church of Santiago in Jerez de la Frontera (Spain). Inf Constr 67:e127CrossRefGoogle Scholar
  51. 51.
    Romera LE, Hernández S, Reinosa JM (2005) A comprehensive structural study of the Basilica of Pilar in Zaragoza (Spain). In: Brebbia CA (ed) WIT transactions on the built environment, vol 83, WIT Press, pp 103–113Google Scholar
  52. 52.
    Saloustros S, Pelà L, Roca P, Portal J (2015) Numerical analysis of structural damage in the church of the Poblet Monastery. Eng Fail Anal 48:41–61CrossRefGoogle Scholar
  53. 53.
    Serrano-Juan A, Vázquez-Suñè E, Monserrat O et al (2016) Gb-SAR interferometry displacement measurements during dewatering in construction works. Case of La Sagrera railway station in Barcelona, Spain. Eng Geol 205:104–115CrossRefGoogle Scholar
  54. 54.
    Solís M, Romero A, Galvín P (2010) Monitoring the mechanical behavior of the weathervane sculpture mounted atop Seville Cathedral’s Giralda tower. Struct Control Health Monit 9(1):41–57CrossRefGoogle Scholar
  55. 55.
    Solla M, Lagüela S, Riveiro B, Lorenzo H (2012) Non-destructive testing for the analysis of moisture in the masonry arch bridge of Lubians (Spain). Struct Health Monit 22:334–339Google Scholar
  56. 56.
    Solla M, Lorenzo H, Rial FI, Novo A (2011) GPR evaluation of the Roman masonry arch bridge of Lugo (Spain). NDT&E Int 44:8–12CrossRefGoogle Scholar
  57. 57.
    Stajano F, Hoult N, Wassell I et al (2010) Smart bridges, smart tunnels: transforming wireless sensor networks from research prototypes into robust engineering infrastructure. Ad Hoc Netw 8(8):872–888CrossRefGoogle Scholar
  58. 58.
    Tomás R, García-Barba J, Cano M et al (2012) Subsidence damage assessment of a Gothic church using differential interferometry and field data. Struct Health Monit 11(6):751–762CrossRefGoogle Scholar
  59. 59.
    Valle JM, Rodríguez A, Pérez P (2008) Evaluation of the conventional surveying equipment applied to deformation analysis of heritage buildings. A case study: the bell tower of Santa María la Blanca church in Agoncillo (La Rioja, Spain). In: 13th FIG international symposium on deformation measurements and analysis, Lisbon, Portugal, 12–15 May 2008Google Scholar
  60. 60.
    Villegas D, Cámara M, Compán V (2014) Assessment of procedures for the structural analysis of Homenaje tower in the Alhambra in Granada (Spain). Inf Constr 66(EXTRA 1):m017Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • F. Javier Baeza
    • 1
  • Salvador Ivorra
    • 1
  • David Bru
    • 1
  • F. Borja Varona
    • 1
  1. 1.Department of Civil EngineeringUniversity of AlicanteAlicanteSpain

Personalised recommendations