Skip to main content

Structural Health Monitoring Systems for Smart Heritage and Infrastructures in Spain

  • Chapter
  • First Online:
Mechatronics for Cultural Heritage and Civil Engineering

Part of the book series: Intelligent Systems, Control and Automation: Science and Engineering ((ISCA,volume 92))

Abstract

The development of information and communication technologies (ICT) and robotics is currently demonstrating its potential impact on different fields of application. With regard to cultural heritage, and architectural and engineering heritage in particular, these new technologies are changing the possibilities for structural capacity assessment and health monitoring (SHM). The objective of smart heritage can be achieved thanks to properly designed SHM systems, which when connected to an automated diagnostic system can even self-evaluate retrofitting needs. This chapter includes a brief summary of the SHM technologies applied for cultural heritage management in Spain during the early 2000s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. AENOR UNE 22381:1993 (1993) Control of vibrations made by blastings

    Google Scholar 

  2. AENOR UNE 178104:2015 (2015) Smart cities. Infrastructures. Comprehensive systems for a Smart City management

    Google Scholar 

  3. Aguasca A, Acevo-Herrera R, Broquetas A, Mallorqui JJ, Fabregas X (2013) ARBRES: Light-Weight CW/FM SAR sensors for small UAVs. Sensor 13:3204–3216

    Google Scholar 

  4. Alonso A, Martínez A, Llopis V, Moreno J (2013) Construction and structural analysis of the dome of the Cathedral of Valencia. In: VIII international conference on fracture mechanics of concrete and concrete structures FraMcos-8, Toledo, Spain, 10-14 Mar 2013

    Google Scholar 

  5. Arias P, Armesto J, Di-Capua D, González-Drigo R, Lorenzo H, Pérez-Gracia V (2007) Digital photogrammetry, GPR and computational analysis of structural damages in a mediaeval bridge. Eng Fail Anal 14:1444–1457

    Article  Google Scholar 

  6. Barbat A, Pujades LG, Lantada N (2006) Performance of buildings under earthquakes in Barcelona, Spain. Comp-Aided Civ Infrastruct Eng 21:573–593

    Article  Google Scholar 

  7. Bounatian L, Sánchez F, Poy I (2011) The monitoring of Barcelona’s Sagrada Familia church with fiber optic technology: control of the construction of a nearby tunnel. In: 5th International Conference on Structural Health Monitoring of Intelligent Infrastructure SHMII-5. Cancún, Mexico, pp 11–15, Dec 2011

    Google Scholar 

  8. Brotóns V, Tomás R, Ivorra S, Grediaga A (2014) Relationship between static and dynamic elastic modulus of calcarenite heated at different temperatures: the San Julián’s stone. B Eng Geol Environ 73:791–799

    Article  Google Scholar 

  9. Brownjohn JMW, De Stefano A, Xu YL, Wenzel H, Aktan AE (2011) Vibration-based monitoring of civil infrastructure: challenges and successes. J Civ Struct Health Monit 1:79–95

    Article  Google Scholar 

  10. Castillo A, Andrade C, Martínez I et al (2011) Assessment and monitoring of durability of shell structures in Zarzuela Racecourse Madrid. Inf Constr 63(524):33–41

    Article  Google Scholar 

  11. Ceci AM, Contento A, Fanale L, Galeota D, Gattulli V, Lepidi M, Potenza F (2010) Structural performance of the historic and modern buildings of the University of L’Aquila during the seismic events of April 2009. Eng Struct 32:1899–1924

    Article  Google Scholar 

  12. Chiriac M, Basulto D, Prieto JC (2014) Development and implementation of the MHS algorithm for the preventive conservation of heritage monuments. In: Rogerio-Candelera MA (ed) Science, Technology and Cultural Heritage. CRC Press, pp 417–422

    Google Scholar 

  13. Chiriac M, Basulto D, López E et al (2013) The MHS system as an active tool for the preventive conservation of Cultural Heritage. In: Rogerio-Candelera MA, Lazzari M, Cano E (eds) Science and technology for the conservation of cultural heritage. CRC Press, pp 383–386

    Google Scholar 

  14. Costanzo A, Minasi M, Casula G et al (2015) Combined use of terrestrial laser scanning and IR thermography applied to a historical building. Sensor 15:194–213. https://doi.org/10.3390/s150100194

    Article  Google Scholar 

  15. Deloitte Consulting (2015) Estudio y guía metodológica sobre ciudades inteligentes. ONTSI

    Google Scholar 

  16. Deutsches Institut für Normung (2015) DIN 4150–3: Vibration in building—Part 3: Effects on structures

    Google Scholar 

  17. Fundación Santa María la Real (2016) Monitoring Heritage System Project. http://www.mhsproject.com. Accessed 14 Jul 2016

  18. González R, Caballé F, Domengé J, Vendrel M, Giráldez P, Roca P, González JL (2008) Construction process, damage and structural analysis. Two case studies. In: D’Ayala D, Fodde E (eds) Structural analysis of historic construction. CRC Press, London, pp 643–651

    Google Scholar 

  19. Hernández S, Romera LE, Díaz J (2007) Twenty years of experience in numerical models of historical constructions: a temporal perspective. In: Brebbia CA (ed) WIT Transactions on the Built Environment, vol 95, WIT Press, pp 385–397. https://doi.org/10.2495/STR070361

  20. Ivorra S. Baeza FJ, Bru D, Varona FB (2015) Seismic behavior of a masonry chimney with severe cracking condition: preliminary study. Key Eng Mater 628:117–122

    Google Scholar 

  21. Ivorra S, Foti D, Bru D, Baeza FJ (2015) Dynamic behavior of a pedestrian bridge in Alicante, Spain. J Perform Constr Facil 29(5):04014132 p 10. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000556

  22. Ivorra S, Pallarés FJ, Adam JM, Tomás R (2010) An evaluation of the incidence of soil subsidence on the dynamic behaviour of a Gothic bell tower. Eng Struct 32:2318–2325

    Article  Google Scholar 

  23. Jäger W, Burkert T, Boekhoff B, Bakeer T (2011) The monitoring of world heritage sites during construction works in their vicinity: the case of Casa Milà and of the Church of Sagrada Familia in Barcelona, Spain. In: Brebbia CA and Binda L (eds) WIT transactions on the built environment, vol 118, pp 357–374

    Google Scholar 

  24. Jia Y, Yan J, Feng T et al (2015) A vibration powered wireless mote on the Forth Road Bridge. J Phys Conf Ser 660:012094 5p. https://doi.org/10.1088/1742-6596/660/1/012094

    Google Scholar 

  25. Jia Y, Yan J, Soga K, Seshia AA (2014) A parametrically excited vibration energy harvester. J Intell Mater Syst Struct 25:278–289

    Article  Google Scholar 

  26. Lluís i, Ginovart J, Costa A, Fortuny G (2013) Assessment and restoration of a masonry dome in the cathedral of Tortosa enclosure. In: Brebbia CA (ed) WIT transactions on the built environment, vol 131, WIT Press, pp 391–401. https://doi.org/10.2495/STR130331

  27. Lombillo I, Blanco H, Pereda J et al (2016) Structural health monitoring of a damaged church: design of an integrated platform of electronic instrumentation, data acquisition and client/server software. Struct Control Health Monit 23:69–81

    Article  Google Scholar 

  28. López E, Chiriac M, Basulto D et al (2012) Desarrollo e innovación en los sistemas de gestión del patrimonio. MSH (Monitoring Heritage System) sistema de monitorización del patrimonio como herramienta de gestión integral. In: Congreso internacional AR&PA. Valladolid, Spain, 24–27, May 2012

    Google Scholar 

  29. Lozano-Galant JA, Payá-Zaforteza I, Xu D et al (2012) Forward algorithm for the construction control of cable-stayed bridges built on temporary supports. Eng Struct 40:119–130

    Article  Google Scholar 

  30. Lubowiecka I, Arias P, Riveiro B, Solla M (2011) Multidisciplinary approach to the assessment of historic structures based on the case of a masonry bridge in Galicia (Spain). Comput Struct 89:1615–1627

    Article  Google Scholar 

  31. Macías-Bernal JM, Calama-Rodríguez JM, Chávez MJ (2014) Prediction model of the useful life of a heritage building from fuzzy logic. Inf Constr 66:e006

    Article  Google Scholar 

  32. Maierhofer C, Roellig M (2009) Active thermography for the characterization of surfaces and interfaces of historic masonry structures. In: 7th International symposium on non-destructive testing in civil engineering. Nantes, France, 30 June–3 July 2009

    Google Scholar 

  33. Martínez S, Ortiz J, Gil ML, Rego MT (2013) Recording complex structures using close range photogrammetry: the Cathedral of Santiago de Compostela. Photogramm Rec 28(144):375–395. https://doi.org/10.1111/phor.12040

    Article  Google Scholar 

  34. Martinez-Garrido I, Fort R (2016) Experimental assessment of a wireless communications platform for the built and natural heritage. Measurement 82:188–201

    Article  Google Scholar 

  35. Meroño JE, Perea AJ, Aguilera MJ, Laguna AM (2015) Recognition of materials and damage on historical buildings using digital image classification. S Afr J Sci 111:Art.#2014-0001 9p

    Google Scholar 

  36. Morgenthal G, Hallermann N (2014) Quality assessment of unmanned aerial vehicle (UAV) based visual inspection of structures. Adv Struct Eng 17(3):289–302

    Article  Google Scholar 

  37. Oses N, Dornaika F, Moujahid A (2014) Image-based delineation and classification of built heritage masonry. Remote Sens 6:1863–1889. https://doi.org/10.3390/rs6031863

    Article  Google Scholar 

  38. Pachón P, Compán V, Rodríguez E et al (2015) Definition and characterization of a historical building by using digital photogrammetry and operational modal analysis. San Juan de los Caballeros Church (Cádiz, Spain). In: Proceedings of 3rd international conference on mechanical models in structural engineering, Sevilla, Spain, 24–26 June 2015

    Google Scholar 

  39. Pachón P, Rodríguez-Mayorga E, Cobo A, Yanes E (2014) Control of the structural intervention in the area of the Roman Theatre of Cadiz. Inf Constr 66 (EXTRA 1):m003

    Google Scholar 

  40. Palaia L, Tormo S, López V, Mofort J (2011) NDT assessment of timber structures: a case study—Villa Ivonne, Meliana. In: Brebbia CA, Binda L (eds) WIT transactions on the built environment, vol 118, WIT Press, pp 529–540

    Google Scholar 

  41. Pérez-Gracia V, Caselles O, Clapés J et al (2009) Radar exploration applied to historical buildings: a case study of the Marques de Llió palace, in Barcelona (Spain). Eng Fail Anal 16:1039–1050

    Article  Google Scholar 

  42. Pineda P, Sáez A (2009) Assessment of ancient masonry slender towers under seismic loading: dynamic characterization of the Cuatrovitas tower. In: Brebbia CA (ed) WIT transactions on the built environment, vol 109, WIT Press, pp 615–629. https://doi.org/10.2495/STR090541

  43. Pineda P, Robador MD, Gil-Martí MA (2011) Seismic damage propagation prediction in ancient masonry structures: an application in the non-linear range via numerical models. Open Constr Build Technol J 5(Suppl 1-M4):71–79

    Google Scholar 

  44. Potenza F, Federici F, Lepidi M et al (2015) Long-term structural monitoring of the damaged Basilica S. Maria di Collemaggio through a low-cost wireless sensor network. J Civil Struct Health Monit 5:655–676. https://doi.org/10.1007/s13349-015-0146-3

    Article  Google Scholar 

  45. Prieto AJ, Macías-Bernal JM, Chávez MJ, Alejandre FJ (2016) Expert system for predicting buildings service life under ISO 31000 standard. Application in architectural heritage. J Cult Herit 18:209–218

    Article  Google Scholar 

  46. Roca P, Cervera M, Pelà L et al (2013) Continuum FE models for the analysis of Mallorca Cathedral. Eng Struct 46:653–670

    Article  Google Scholar 

  47. Roca P, Cervera M, Gariup G, Pelà L (2010) Structural analysis of masonry historical constructions. Classical and advanced approaches. Arch Comput Method Eng 17:299–325

    Article  MATH  Google Scholar 

  48. Roca P, González JL, Aguerri F, Aguerri JI (2003) Monitoring of long-term damage in Gothic Cathedrals. In: Brebbia CA (ed) WIT transactions on the built environment, vol 66, WIT Press, pp 109–119

    Google Scholar 

  49. Rodenas-Herráiz D, Soga K, Fidler P, de Battista N (2016) Wireless sensor networks for civil infrastructure monitoring: a best practice guide. ICE Publishing

    Google Scholar 

  50. Rodríguez-Mayorga E, Yanes-Bustamante E, Sáez-Pérez A (2015) Analysis and diagnosis of the Church of Santiago in Jerez de la Frontera (Spain). Inf Constr 67:e127

    Article  Google Scholar 

  51. Romera LE, Hernández S, Reinosa JM (2005) A comprehensive structural study of the Basilica of Pilar in Zaragoza (Spain). In: Brebbia CA (ed) WIT transactions on the built environment, vol 83, WIT Press, pp 103–113

    Google Scholar 

  52. Saloustros S, Pelà L, Roca P, Portal J (2015) Numerical analysis of structural damage in the church of the Poblet Monastery. Eng Fail Anal 48:41–61

    Article  Google Scholar 

  53. Serrano-Juan A, Vázquez-Suñè E, Monserrat O et al (2016) Gb-SAR interferometry displacement measurements during dewatering in construction works. Case of La Sagrera railway station in Barcelona, Spain. Eng Geol 205:104–115

    Article  Google Scholar 

  54. Solís M, Romero A, Galvín P (2010) Monitoring the mechanical behavior of the weathervane sculpture mounted atop Seville Cathedral’s Giralda tower. Struct Control Health Monit 9(1):41–57

    Article  Google Scholar 

  55. Solla M, Lagüela S, Riveiro B, Lorenzo H (2012) Non-destructive testing for the analysis of moisture in the masonry arch bridge of Lubians (Spain). Struct Health Monit 22:334–339

    Google Scholar 

  56. Solla M, Lorenzo H, Rial FI, Novo A (2011) GPR evaluation of the Roman masonry arch bridge of Lugo (Spain). NDT&E Int 44:8–12

    Article  Google Scholar 

  57. Stajano F, Hoult N, Wassell I et al (2010) Smart bridges, smart tunnels: transforming wireless sensor networks from research prototypes into robust engineering infrastructure. Ad Hoc Netw 8(8):872–888

    Article  Google Scholar 

  58. Tomás R, García-Barba J, Cano M et al (2012) Subsidence damage assessment of a Gothic church using differential interferometry and field data. Struct Health Monit 11(6):751–762

    Article  Google Scholar 

  59. Valle JM, Rodríguez A, Pérez P (2008) Evaluation of the conventional surveying equipment applied to deformation analysis of heritage buildings. A case study: the bell tower of Santa María la Blanca church in Agoncillo (La Rioja, Spain). In: 13th FIG international symposium on deformation measurements and analysis, Lisbon, Portugal, 12–15 May 2008

    Google Scholar 

  60. Villegas D, Cámara M, Compán V (2014) Assessment of procedures for the structural analysis of Homenaje tower in the Alhambra in Granada (Spain). Inf Constr 66(EXTRA 1):m017

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the University of Alicante for its financial support, VIBGROB-212-(GRESMES). F. J. Baeza also wants to acknowledge the Spanish Government, Ministerio de Educación, Cultura y Deporte, for the financial support, Programme José Castillejo, grant CAS15/00223.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Javier Baeza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baeza, F.J., Ivorra, S., Bru, D., Varona, F.B. (2018). Structural Health Monitoring Systems for Smart Heritage and Infrastructures in Spain. In: Ottaviano, E., Pelliccio, A., Gattulli, V. (eds) Mechatronics for Cultural Heritage and Civil Engineering. Intelligent Systems, Control and Automation: Science and Engineering, vol 92. Springer, Cham. https://doi.org/10.1007/978-3-319-68646-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68646-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68645-5

  • Online ISBN: 978-3-319-68646-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics