Ai, T.J., Kachitvichyanukul, V.: A particle swarm optimization for vehicle routing problem with time windows. Int. J. Oper. Res. 6(4), 519–537 (2009)
Google Scholar
Ai, T.J., Kachitvichyanukul, V.: A particle swarm optimization for the vehicle routing problem with simultaneous pickup and delivery. Comput. Oper. Res. 36, 1693–1702 (2009)
Google Scholar
Ai, T.J., Kachitvichyanukul, V.: Particle swarm optimization and two solution representations for solving the capacitated vehicle routing problem. Comput. Ind. Eng. 56, 380–387 (2009)
Google Scholar
Bandeira, J.M., Fontes, T., Pereira, S.R., Fernandes, P., Khattak, A., Coelho, M.C.: Assessing the importance of vehicle type for the implementation of eco-routing systems. Transp. Res. Procedia 3, 800–809 (2014)
Google Scholar
Banks, A., Vincent, J., Anyakoha, C.: A review of particle swarm optimization. Part I: background and development. Nat. Comput. 6(4), 467–484 (2007)
Google Scholar
Banks, A., Vincent, J., Anyakoha, C.: A review of particle swarm optimization. Part II: hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications. Nat. Comput. 7, 109–124 (2008)
Google Scholar
Bartz-Beielstein, T., Limbourg, P., Parsopoulos, K.E., Vrahatis, M.N., Mehnen, J., Schmitt, K.: Particle swarm optimizers for pareto optimization with enhanced archiving techniques. In: IEEE Congress on Evolutionary Computation (CEC2003), vol. 3, pp. 1780–1787 (2003)
Google Scholar
Bektas, T., Laporte, G.: The pollution-routing problem. Transp. Res. B 45, 1232–1250 (2011)
Google Scholar
Brits, R., Engelbrecht, A.P., Van Den Bergh, F.: Locating multiple optima using particle swarm optimization. Appl. Math. Comput. 189, 1859–1883 (2007)
Google Scholar
Charoenroop, N., Satayopas, B., Eungwanichayapant, A.: City bus routing model for minimal energy consumption. Asian J. Energy Environ. 11(01), 19–31 (2010)
Google Scholar
Chen, A.-L., Yang, G.-K., Wu, Z.-M.: Hybrid discrete particle swarm optimization algorithm for capacitated vehicle routing problem. J. Zheijang Univ. Sci. A 7(4), 607–614 (2006)
Google Scholar
Chow, C., Tsui, H.: Autonomous agent response learning by a multi-species particle swarm optimization. In: IEEE Congress on Evolutionary Computation (CEC2004), vol. 1, pp. 778–785 (2004)
Google Scholar
Cicero-Fernandez, P., Long, J.R., Winer, A.M.: Effects of grades and other loads on on-road emissions of hydrocarbons and carbon monoxide. J. Air Waste Manage. Assoc. 47, 898–904 (1997)
Google Scholar
Clerc, M.: Particle Swarm Optimization. ISTE, London (2006)
Google Scholar
Clerc, M., Kennedy, J.: The particle swarm: explosion, stability and convergence in a multi-dimensional complex space. IEEE Trans. Evol. Comput. 6, 58–73 (2002)
Google Scholar
Coello Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Problems. Springer, Berlin (2007)
Google Scholar
Deb, K., Pratap, A., Agarwal, S., Meyarivan T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)
Google Scholar
Dehuri, S., Jagadev, A.K., Panda, M.: Multi-Objective Swarm Intelligence: Theoretical Advances and Applications. Springer, Berlin (2002)
Google Scholar
Dekker, R., Fleischmann, M., Inderfurth, K., Van Wassenhove, L.N.: Reverse Logistics: Quantitative Models for Closed-Loop Supply Chains. Springer, Berlin (2004)
Google Scholar
Demir, E., Bektas, T., Laporte, G.: The bi-objective pollution-routing problem. Eur. J. Oper. Res. 232, 464–478 (2014)
Google Scholar
Dethloff, J.: Vehicle routing and reverse logistics: the vehicle routing problem with simultaneous delivery and pick-up. OR Spektrum 23, 79–96 (2001)
Google Scholar
Erdogan, S., Miller-Hooks, E.: A green vehicle routing problem. Transp. Res. E 48, 100–114 (2012)
Google Scholar
Fan, J., Zhao, L., Du, L., Zheng, Y.: Crowding-distance-based multi-objective particle swarm optimization. Comput. Intell. Intell. Syst. Commun. Comput. Inf. Sci. 107, 218–225 (2010)
Google Scholar
Feo, T.A., Resende, M.G.C.: Greedy randomized adaptive search procedure. J. Glob. Optim. 6, 109–133 (1995)
Google Scholar
Fieldsend, J.E., Singh, S.: A multiobjective algorithm based upon particle swarm optimisation, an efficient data structure and turbulence. In: Proceedings of the 2002 U.K. Workshop on Computational Intelligence, pp. 37–44 (2002)
Google Scholar
Figliozzi, M.: Vehicle routing problem for emissions minimization. Transp. Res. Rec. J. Transp. Res. Board 2, 1–7 (2011)
Google Scholar
Fleischmann, M., Bloemhof-Ruwaard, J.M., Dekker, R., Van Der Laan, E., Van Nunen, J.A.E.E., Van Wassenhove, L.N.: Quantitative models for reverse logistics: a review. Eur. J. Oper. Res. 103, 1–17 (1997)
Google Scholar
Goksal, F.P., Karaoglan, I., Altiparmak, F.: A hybrid discrete particle swarm optimization for vehicle routing problem with simultaneous pickup and delivery. Comput. Ind. Eng. 65, 39–53 (2013)
Google Scholar
Gong, Y.-J., Zhang, J., Liu, O., Huang, R.-Z., Chung, H.S.-H., Shi, Y.-H.: Optimizing the vehicle routing problem with time windows: a discrete particle swarm optimization approach. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 42(2), 254–267 (2012)
Google Scholar
Hansen, P., Mladenovic, N.: Variable neighborhood search: principles and applications. Eur. J. Oper. Res. 130, 449–467 (2001)
Google Scholar
Ho, S.L., Shiyou, Y., Guangzheng, N., Lo, E.W.C., Wong, H.C.: A particle swarm optimization-based method for multiobjective design optimizations. IEEE Trans. Magn. 41, 1756–1759 (2005)
Google Scholar
Hu, X., Eberhart, R.C.: Multiobjective optimization using dynamic neighborhood particle swarm optimization. In: IEEE Congress on Evolutionary Computation (CEC2002), vol. 2, pp. 1677–1681 (2002)
Google Scholar
Hu, X., Eberhart, R.C., Shi, Y.: Particle swarm with extended memory for multiobjective optimization. In: Proceedings of the 2003 IEEE Swarm Intelligence Symposium, pp. 193–197 (2003)
Google Scholar
Janson S., Merkle D.: A new multiobjective particle swarm optimization algorithm using clustering applied to automated docking. In: Hybrid Metaheuristics, 2nd International Workshop, HM 2005, pp. 128–142 (2005)
Google Scholar
Jemai, J., Zekri, M., Mellouli, K.: An NSGA-II algorithm for the green vehicle routing problem. In: Evolutionary Computation in Combinatorial Optimization. Lecture Notes in Computer Science, vol. 7245, pp. 37–48. Springer, Berlin/Heidelberg (2012)
Google Scholar
Johnson, D.S., Papadimitriou, C.H.: Computational complexity. In: Lawer, E.L., Lenstra, J.K., Rinnoy Kan, A.H.D., Shmoys, D.B. (eds.) The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization, pp. 37–85. Wiley and Sons, Hoboken (1985)
Google Scholar
Jozefowiez, N., Semet, F., Talbi, E.G.: Multi-objective vehicle routing problems. Eur. J. Oper. Res. 189, 293–309 (2008)
Google Scholar
Kara, I., Kara, B.Y., Yetis, M.K.: Energy minimizing vehicle routing problem. In: COCOA 2007, pp. 62–71 (2007)
Google Scholar
Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of 1995 IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)
Google Scholar
Khouadjia, M.R., Sarasola, B., Alba, E., Jourdan, L., Talbi, E.-G.: A comparative study between dynamic adapted PSO and VNS for the vehicle routing problem with dynamic requests. Appl. Soft Comput. 12, 1426–1439 (2012)
Google Scholar
Kim, H., Yang, J., Lee, K.D.: Vehicle routing in reverse logistics for recycling end-of-life consumer electronic goods in South Korea. Transp. Res. D 14(5), 291–299 (2009)
Google Scholar
Kim, H., Yang, J., Lee, K.D.: Reverse logistics using a multi-depot VRP approach for recycling end-of-life consumer electronic products in South Korea. Int. J. Sustain. Transp. 5(5), 289–318 (2011)
Google Scholar
Koc, C., Bektas, T., Jabali, O., Laporte, G.: The fleet size and mix pollution-routing problem. Transp. Res. B 70, 239–254 (2014)
Google Scholar
Kontovas, C.A.: The green ship routing and scheduling problem (GSRSP): a conceptual approach. Transp. Res. D 31, 61–69 (2014)
Google Scholar
Kumar, R.S., Kondapaneni, K., Dixit, V., Goswami, A., Thakur, L.S., Tiwari, M.K.: Multi-objective modeling of production and pollution routing problem with time window: a self-learning particle swarm optimization approach. Comput. Ind. Eng. 99, 29–40 (2015). PII: S0360-8352(15)00287-9
Google Scholar
Kuo, Y.: Using simulated annealing to minimize fuel consumption for the time-dependent vehicle routing problem. Comput. Ind. Eng. 59(1), 157–165 (2010)
Google Scholar
Labadie, N., Prodhon, C.: A survey on multi-criteria analysis in logistics: Focus on vehicle routing problems. In: Applications of Multi-Criteria and Game Theory Approaches. Springer Series in Advanced Manufacturing, pp. 3–29. Springer, London (2014)
Google Scholar
Lahyani, R., Khemakhem, M., Semet, F.: Rich vehicle routing problems: from a taxonomy to a definition. Eur. J. Oper. Res. 241, 1–14 (2015)
Google Scholar
Laporte, G.: The vehicle routing problem: an overview of exact and approximate algorithms. Eur. J. Oper. Res. 59, 345–358 (1992)
Google Scholar
Lawer, E.L., Lenstra, J.K., Rinnoy Kan, A.H.G.R., Shmoys, D.B.: The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization. Wiley and Sons, Hoboken (1985)
Google Scholar
Leonardi, J., Baumgartner, M.: CO
2 efficiency in road freight transportation: status quo, measures and potential. Transp. Res. D 9, 451–464 (2004)
Google Scholar
Li, X.: A non-dominated sorting particle swarm optimizer for multiobjective optimization. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO2003), pp. 37–48 (2003)
Google Scholar
Li, J.: Vehicle routing problem with time windows for reducing fuel consumption. J. Comput. 7(12), 3020–3027 (2012)
Google Scholar
Li, H., Lv, T., Li, Y.: The tractor and semitrailer routing problem with many-to-many demand considering carbon dioxide emissions. Transp. Res. D 34, 68–82 (2015)
Google Scholar
Lichtblau, D.: Discrete optimization using mathematica, In: Callaos, N., Ebisuzaki, T., Starr, B., Abe, J.M., Lichtblau, D. (eds.) World Multi-conference on Systemics, Cybernetics and Informatics (SCI 2002), vol. 16, pp. 169–174. International Institute of Informatics and Systemics, Winter Garden (2002)
Google Scholar
Lin, S.: Computer solutions of the traveling salesman problem. Bell Syst. Tech. J. 44, 2245–2269 (1965)
Google Scholar
Lin, C., Choy, K.L., Ho, G.T.S., Ng, T.W.: A genetic algorithm-based optimization model for supporting green transportation operations. Expert Syst. Appl. 41, 3284–3296 (2014)
Google Scholar
Lin, C., Choy, K.L., Ho, G.T.S., Chung, S.H., Lam, H.Y.: Survey of green vehicle routing problem: past and future trends. Expert Syst. Appl. 41(4), 1118–1138 (2014)
Google Scholar
Marinakis, Y., Marinaki, M.: A particle swarm optimization algorithm with path relinking for the location routing problem. J. Math Model. Algor. 7(1), 59–78 (2008)
Google Scholar
Marinakis, Y., Marinaki, M.: A hybrid genetic - particle swarm optimization algorithm for the vehicle routing problem. Expert Syst. Appl. 37, 1446–1455 (2010)
Google Scholar
Marinakis, Y., Marinaki, M.: A hybrid multi-swarm particle swarm optimization algorithm for the probabilistic traveling salesman problem. Comput. Oper. Res. 37, 432–442 (2010)
Google Scholar
Marinakis, Y., Marinaki, M.: A hybrid particle swarm optimization algorithm for the open vehicle routing problem. In: Dorigo, M., et al. (eds.) ANTS 2012. Lecture Notes in Computer Science, vol. 7461, pp. 180–187. Springer, Berlin/Heidelberg (2012)
Google Scholar
Marinakis, Y., Marinaki, M.: Combinatorial neighborhood topology particle swarm optimization algorithm for the vehicle routing problem. In: Middendorf, M., Blum, C. (eds.) EvoCOP 2013. Lecture Notes in Computer Science, vol. 7832, pp. 133–144. Springer, Berlin/Heidelberg (2013)
Google Scholar
Marinakis, Y., Marinaki, M.: Combinatorial expanding neighborhood topology particle swarm optimization for the vehicle routing problem with stochastic demands. In: GECCO: 2013, Genetic and Evolutionary Computation Conference, Amsterdam, 6–10 July 2013, pp. 49–56
Google Scholar
Marinakis, Y., Marinaki, M., Dounias, G.: A hybrid particle swarm optimization algorithm for the vehicle routing problem. Eng. Appl. Artif. Intell. 23, 463–472 (2010)
Google Scholar
Marinakis, Y., Iordanidou, G., Marinaki, M.: Particle swarm optimization for the vehicle routing problem with stochastic demands. Appl. Soft Comput. 13(4), 1693–1704 (2013)
Google Scholar
Marinakis, Y., Marinaki, M., Migdalas, A.: An adaptive particle swarm optimization algorithm for the vehicle routing problem with time windows. In: LOT 2014, Logistics, Optimization and Transportation Conference, 1–2 November 2014, Molde, Norway (2014)
Google Scholar
McKinnon, A.: A logistical perspective on the fuel efficiency of road freight transport. In: OECD, ECMT and IEA: Workshop Proceedings, Paris (1999)
Google Scholar
McKinnon, A.: Green logistics: the carbon agenda. Electron. Sci. J. Logist. 6(3), 1–9 (2010)
MathSciNet
Google Scholar
Molina, J.C., Eguia, I., Racero, J, Guerrero, F.: Multi-objective vehicle routing problem with cost and emission functions. Procedia Soc. Behav. Sci. 160, 254–263 (2014)
CrossRef
Google Scholar
Moore, J.: Application of particle swarm to multiobjective optimization. Department of Computer Science and Software Engineering, Auburn University (1999)
Google Scholar
Mostaghim, S., Teich, J.: Covering pareto-optimal fronts by subswarms in multi-objective particle swarm optimization. In: IEEE Congress on Evolutionary Computation (CEC2004), vol. 2, pp. 1404–1411 (2004)
Google Scholar
Niu, B., Zhu, Y., He, X., Wu, H.: MCPSO: a multi-swarm cooperative particle swarm optimizer. Appl. Math. Comput. 185, 1050–1062 (2007)
MATH
Google Scholar
Niu, B., Zhu, Y., He, X., Shen, H.: A multi-swarm optimizer based fuzzy modeling approach for dynamic systems processing. Neurocomputing 71, 1436–1448 (2008)
CrossRef
Google Scholar
Okabe, T., Jin, Y., Sendhoff, B.: A critical survey of performance indices for multi-objective optimization. Evol. Comput. 2, 878–885 (2003)
Google Scholar
Parsopoulos, K.E., Tasoulis, D.K., Vrahatis, M.N.: Multiobjective optimization using parallel vector evaluated particle swarm optimization. In: Proceedings of the IASTED International Conference on Artificial Intelligence and Applications (AIA 2004), vol. 2, pp. 823–828 (2004)
Google Scholar
Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. An overview. Swarm Intell. 1, 33–57 (2007)
CrossRef
Google Scholar
Psychas, I.D., Marinaki, M., Marinakis, Y.: A parallel multi-start NSGA II algorithm for multiobjective energy reduction vehicle routing problem. In: Gaspar-Cunha, A., et al. (eds.) 8th International Conference on Evolutionary Multicriterion Optimization, EMO 2015, Part I. Lecture Notes in Computer Science, vol. 9018, pp. 336–350. Springer International Publishing, Cham (2015)
Google Scholar
Psychas, I.D., Marinaki, M., Marinakis, Y. Migdalas, A.: Non-dominated sorting differential evolution algorithm for the minimization of route based fuel consumption multiobjective vehicle routing problems. Energy Syst. 1–30 (2016). https://doi.org/10.1007/s12667-016-0209-5
Psychas, I.D., Marinaki, M., Marinakis, Y. Migdalas, A.: Minimizing the fuel consumption of a multiobjective vehicle routing problem using the parallel multi-start NSGA II algorithm. In: Kalyagin, V.A., et al. (eds.) Models, Algorithms and Technologies for Network Analysis, pp. 69–88. Springer, Cham (2016)
CrossRef
Google Scholar
Pulido, G.T., Coello Coello, C.A.: Using clustering techniques to improve the performance of a particle swarm optimizer. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO2004), pp. 225–237 (2004)
Google Scholar
Raquel, C.R., Prospero, J., Naval, C.: An effective use of crowding distance in multiobjective particle swarm optimization. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2005), pp. 257–264 (2005)
Google Scholar
Reyes-Sierra, M., Coello Coello, C.A.: Multi-objective particle swarm optimizers: a survey of the state of the art. Int. J. Comput. Intell. Res. 2(3), 287–308 (2006)
MathSciNet
Google Scholar
Sarker, R., Coello Coello, C.A.: Assessment methodologies for multiobjective evolutionary algorithms. In: Evolutionary Optimization. International Series in Operations Research and Management Science, vol. 48, pp. 177–195. Springer, Boston (2002)
Google Scholar
Sbihi, A., Eglese, R.W.: Combinatorial optimization and green logistics. 4OR, 5(2), 99–116 (2007)
Google Scholar
Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of 1998 IEEE World Congress on Computational Intelligence, pp. 69–73 (1998)
Google Scholar
Srinivasan, D., Seow, T.H.: Particle swarm inspired evolutionary algorithm (PS-EA) for multiobjective optimization problem. In: IEEE Congress on Evolutionary Computation (CEC2003), vol. 3, pp. 2292–2297 (2003)
Google Scholar
Suzuki, Y.: A new truck-routing approach for reducing fuel consumption and pollutants emission. Transp. Res. D 16, 73–77 (2011)
CrossRef
Google Scholar
Tajik, N., Tavakkoli-Moghaddam, R., Vahdani, B., Meysam Mousavi, S.: A robust optimization approach for pollution routing problem with pickup and delivery under uncertainty. J. Manuf. Syst. 33, 277–286 (2014)
CrossRef
Google Scholar
Tillett, T., Rao, T.M., Sahin, F., Rao R.: Darwinian particle swarm optimization. In: Proceedings of the 2nd Indian International Conference on Artificial Intelligence, Pune, pp. 1474–1487 (2005)
Google Scholar
Tiwari, A., Chang, P.C.: A block recombination approach to solve green vehicle routing problem. Int. J. Prod. Econ. 64, 1–9 (2002)
Google Scholar
Toth, P., Vigo, D.: The Vehicle Routing Problem, Monographs on Discrete Mathematics and Applications. SIAM, Philadelphia (2002)
CrossRef
MATH
Google Scholar
Toth, P., Vigo, D.: Vehicle Routing: Problems, Methods and Applications, 2nd edn. MOS-Siam Series on Optimization, SIAM, Philadelphia (2014)
CrossRef
MATH
Google Scholar
Weizhen, R., Chun, J.: A model of vehicle routing problem minimizing energy consumption in urban environment. In: Asian Conference of Management Science & Applications, September 2012, Chengdu-Jiuzhaigou, pp. 21–29 (2012)
Google Scholar
Xiao, Y., Zhao, Q., Kaku, I., Xu, Y.: Development of a fuel consumption optimization model for the capacitated vehicle routing problem. Comput. Oper. Res. 39(7), 1419–1431 (2012)
MathSciNet
CrossRef
MATH
Google Scholar
Zhang, S., Lee, C.K.M., Choy, K.L., Ho, W., Ip, W.H.: Design and development of a hybrid artificial bee colony algorithm for the environmental vehicle routing problem. Transp. Res. D 31, 85–99 (2014)
CrossRef
Google Scholar
Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)
CrossRef
Google Scholar