Skip to main content

On the Hardness of Sparsely Learning Parity with Noise

  • Conference paper
  • First Online:
Provable Security (ProvSec 2017)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10592))

Included in the following conference series:

  • 1523 Accesses

Abstract

Learning Parity with Noise (LPN) represents the average-case analogue of the NP-Complete problem “decoding random linear codes”, and it has been extensively studied in learning theory and cryptography with applications to quantum-resistant cryptographic schemes. In this paper, we study a sparse variant of the LPN whose public matrix consists of sparse vectors (or alternatively each element of the matrix follows the Bernoulli distribution), of which the variant considered by Benny, Boaz and Avi (STOC 2010) falls into a (extreme) special case. We show a win-win argument that at least one of the following is true: (1) either the hardness of sparse LPN is implied by that of the standard LPN under the same noise rate; (2) there exist new black-box constructions of public-key encryption (PKE) schemes and oblivious transfer (OT) protocols from the standard LPN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alekhnovich, M.: More on average case vs approximation complexity. Comput. Complex. 20, 755–786 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Applebaum, B., Barak, B., Wigderson, A.: Public-key cryptography from different assumptions. In: Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010, Cambridge, Massachusetts, USA, 5–8 June 2010, pp. 171–180 (2010)

    Google Scholar 

  3. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography with constant input locality. J. Cryptol. 22(4), 429–469 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barak, B., Dodis, Y., Krawczyk, H., Pereira, O., Pietrzak, K., Standaert, F.-X., Yu, Y.: Leftover hash lemma, revisited. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 1–20. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22792-9_1

    Chapter  Google Scholar 

  5. Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary linear codes in 2n/20: how \(1+1=0\) improves information set decoding. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 520–536. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29011-4_31

    Chapter  Google Scholar 

  6. Berlekamp, E.R., McEliece, R.J., van Tilborg, H.C.A.: On the inherent intractability of certain coding problems (corresp.). IEEE Trans. Inf. Theor. 24(3), 384–386 (1978)

    Article  MATH  Google Scholar 

  7. Bernstein, D.J., Lange, T., Peters, C.: Smaller decoding exponents: ball-collision decoding. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 743–760. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22792-9_42

    Chapter  Google Scholar 

  8. Blum, A., Furst, M., Kearns, M., Lipton, R.J.: Cryptographic primitives based on hard learning problems. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 278–291. Springer, Heidelberg (1994). doi:10.1007/3-540-48329-2_24

    Chapter  Google Scholar 

  9. Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem, and the statistical query model. J. ACM 50(4), 506–519 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Canteaut, A., Chabaud, F.: A new algorithm for finding minimum-weight words in a linear code: Application to mceliece’s cryptosystem and to narrow-sense BCH codes of length 511. IEEE Trans. Inf. Theor. 44(1), 367–378 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Feldman, V., Gopalan, P., Khot, S., Ponnuswami, A.K.: New results for learning noisy parities and halfspaces. In: 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006), 21–24 October 2006, Berkeley, California, USA, Proceedings, pp. 563–574 (2006)

    Google Scholar 

  12. Holenstein, T.: Key agreement from weak bit agreement. In: STOC, pp. 664–673 (2005)

    Google Scholar 

  13. Holenstein, T.: Strengthening Key Agreement using Hard-Core Sets. PhD thesis, ETH Zurich, Zurich, Switzerland (2006)

    Google Scholar 

  14. Katz, J., Shin, J.S., Smith, A.D.: Parallel and concurrent security of the HB and hb\({^{\text{+ }}}\) protocols. J. Cryptol. 23(3), 402–421 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kirchner, P.: Improved generalized birthday attack. IACR Cryptology ePrint Archive 2011:377 (2011)

    Google Scholar 

  16. Levieil, É., Fouque, P.-A.: An improved LPN algorithm. In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 348–359. Springer, Heidelberg (2006). doi:10.1007/11832072_24

    Chapter  Google Scholar 

  17. Lyubashevsky, V.: The parity problem in the presence of noise, decoding random linear codes, and the subset sum problem. In: Chekuri, C., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds.) APPROX/RANDOM -2005. LNCS, vol. 3624, pp. 378–389. Springer, Heidelberg (2005). doi:10.1007/11538462_32

    Google Scholar 

  18. May, A., Meurer, A., Thomae, E.: Decoding random linear codes in \(\tilde{\cal{O}}(2^{ 0.054n})\). In: Advances in Cryptology - ASIACRYPT 2011–17th International Conference on the Theory and Application of Cryptology and Information Security, Seoul, South Korea, December 4–8, 2011, Proceedings, pp. 107–124 (2011)

    Google Scholar 

  19. Micciancio, D., Mol, P.: Pseudorandom knapsacks and the sample complexity of LWE search-to-decision reductions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 465–484. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22792-9_26

    Chapter  Google Scholar 

  20. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. J. ACM 56(6), 34:1–34:40 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Stern, J.: A method for finding codewords of small weight. In: Cohen, G., Wolfmann, J. (eds.) Coding Theory 1988. LNCS, vol. 388, pp. 106–113. Springer, Heidelberg (1989). doi:10.1007/BFb0019850

    Chapter  Google Scholar 

  22. Yu, Y., Zhang, J.: Cryptography with auxiliary input and trapdoor from constant-noise LPN. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 214–243. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53018-4_9

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Liu, H., Yan, D., Yu, Y., Zhao, S. (2017). On the Hardness of Sparsely Learning Parity with Noise. In: Okamoto, T., Yu, Y., Au, M., Li, Y. (eds) Provable Security. ProvSec 2017. Lecture Notes in Computer Science(), vol 10592. Springer, Cham. https://doi.org/10.1007/978-3-319-68637-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68637-0_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68636-3

  • Online ISBN: 978-3-319-68637-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics