Advertisement

Innovations in Fracture Reduction Computer-Assisted Surgery

  • Rami Mosheiff
  • Amal Khoury
Chapter

Abstract

Computer-aided surgery (CAS) systems provide the surgeon with a precise, more complete, and up-to-date view of the intraoperative situation. By incorporating real-time tracking of the location of instruments and anatomy, and their precise relation to preoperative and intraoperative images, the systems create a new modality akin to continuous imaging. The role of computerization in the treatment of trauma patients is not only to enhance the surgical options in the preplanning stage but also to shorten surgery, an advantage that could be crucial for patient morbidity in a trauma setup. From the different computer-aided surgery (CAS) systems, the main modality which has been adapted to trauma surgery is fluoroscopy-based navigation. In this chapter applications of fluoroscopy-based navigation in trauma surgery will be discussed.

References

  1. 1.
    Nolte L, Beutler T. Basic principles of CAOS. Injury. 2004;35(suppl 1):6–16.CrossRefGoogle Scholar
  2. 2.
    Liebergall M, Ben-David D, Weil Y, et al. Computerized navigation for the internal fixation of femoral neck fractures. J Bone Joint Surg Am. 2006;88A:1748–54. Reddix RN, Webb LX. Computed-assisted preoperative planning in the surgical treatment of acetabular fractures. J Surg Orthop Adv. 2007;16:138–143.CrossRefGoogle Scholar
  3. 3.
    Mosheiff R, Khoury A, Weil Y, et al. First generation of fluoroscopic navigation in percutaneous pelvic surgery. J Orthop Trauma. 2004;18:106–11.CrossRefPubMedGoogle Scholar
  4. 4.
    Weil YA, Liebergall M, Mosheiff R, et al. Assessment of two 3-D fluoroscopic systems for articular fracture reduction: a cadaver study. Int J Comput Assist Radiol Surg. 2011;6(5):685–92.CrossRefPubMedGoogle Scholar
  5. 5.
    Kahler DM. Virtual fluoroscopy: a tool for decreasing radiation exposure during femoral intramedullary nailing. Stud Health Technol Inform. 2001;81:225–8.PubMedGoogle Scholar
  6. 6.
    Weil YA, Liebergall M, Mosheiff R, et al. Long bone fracture reduction using a fluoroscopy-based navigation system: a feasibility and accuracy study. Comput Aided Surg. 2007;12:295–302.CrossRefPubMedGoogle Scholar
  7. 7.
    Mosheiff R, Weil Y, Peleg E, et al. Computerised navigation for closed reduction during femoral intramedullary nailing. Injury. 2005;36:866–70.CrossRefPubMedGoogle Scholar
  8. 8.
    Tornetta P III, Ritz G, Kantor A. Femoral torsion after interlocked nailing of unstable femoral fractures. J Trauma. 1995;38:213–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Jaarsma RL, Pakvis DF, Verdonschot N, et al. Rotational malalignment after intramedullary nailing of femoral fractures. J Orthop Trauma. 2004;18:403–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Weil Y, Gardner MJ, Helfet DL, et al. Accuracy of navigated femoral fracture reduction–a laboratory study. Clin Orthop Rel Res. 2007;460:185–91.Google Scholar
  11. 11.
    Attias N, Lindsey RW, Starr AJ, Borer D, Bridges K, Hipp JA. The use of a virtual three-dimensional model to evaluate the intraosseous space available for percutaneous screw fixation of acetabular fractures. J Bone Joint Surg Br. 2005;87(11):1520–3.CrossRefPubMedGoogle Scholar
  12. 12.
    Cimerman M, Kristan A. Pre-operative planning in pelvic and acetabular surgery: the value of advanced computerised planning modules. Injury. 2007;38(4):442–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Noser H, Heldstab T, Schmutz B, Kamer L. Typical Accuracy and Quality Control of a Process for Creating CT-Based Virtual Bone Models. J Digit Imaging. 2011;24(3):437–45.CrossRefPubMedGoogle Scholar
  14. 14.
    Varga E, Erdőhelyi B. Severe Pelvic Bleeding: The Role of Primary Internal Fixation. Eur J Trauma Emerg Surg. 2010;36(2):107–16.CrossRefPubMedGoogle Scholar
  15. 15.
    Kovler I, Joskowicz L, Weil Y, Khoury A, Kronman A, Mosheiff R,·Liebergall M, Salavarrieta J. Haptic computer-assisted patient-specific preoperative planning for orthopedic fractures surgery. Int J CARS. 2015: 10: 1535–1546.CrossRefGoogle Scholar
  16. 16.
    Khoury A, Siewerdsen JH, Whyne CM, Daly MJ, Kreder HJ, Moseley DJ, Jaffray DA. Intraoperative cone-beam CT for image-guided tibial plateau fracture reduction. Comput Aided Surg. 2007;12(4):195–207.CrossRefPubMedGoogle Scholar
  17. 17.
    Khoury A, Whyne CM, Daly M, Moseley D, Bootsma G, Skrinskas T, Siewerdsen J, Jaffray D. Intraoperative cone-beam CT for correction of periaxial malrotation of the femoral shaft: a surface-matching approach. Med Phys. 2007;34(4):1380–7.CrossRefPubMedGoogle Scholar
  18. 18.
    Richter PH, Gebhard F, Dehner C, Scola A. Accuracy of computer-assisted iliosacral screw placement using a hybrid operating room. Injury. 2016;47(2):402–7.  https://doi.org/10.1016/j.injury.2015.11.023. Epub 2015 Dec 12.CrossRefPubMedGoogle Scholar
  19. 19.
    Lieberman IH, Togawa D, Kayanja MM, Reinhardt MK, Friedlander A, Knoller N, Benzel EC. Bone-mounted miniature robotic guidance for pedicle screw and translaminar facet screw placement: Part I-Technical development and a test case result. Neurosurgery. 2006;59(3):641–50. discussion 641-50CrossRefPubMedGoogle Scholar
  20. 20.
    Stüer C, Ringel F, Stoffel M, Reinke A, Behr M, Meyer B. Robotic technology in spine surgery: current applications and future developments. Acta Neurochir Suppl. 2011;109:241–5.  https://doi.org/10.1007/978-3-211-99651-5_38.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Orthopedic SurgeryHadassah Medical CenterJerusalemIsrael

Personalised recommendations