Skip to main content

Innovations in Fracture Reduction Computer-Assisted Surgery

  • Chapter
  • First Online:
Fracture Reduction and Fixation Techniques

Abstract

Computer-aided surgery (CAS) systems provide the surgeon with a precise, more complete, and up-to-date view of the intraoperative situation. By incorporating real-time tracking of the location of instruments and anatomy, and their precise relation to preoperative and intraoperative images, the systems create a new modality akin to continuous imaging. The role of computerization in the treatment of trauma patients is not only to enhance the surgical options in the preplanning stage but also to shorten surgery, an advantage that could be crucial for patient morbidity in a trauma setup. From the different computer-aided surgery (CAS) systems, the main modality which has been adapted to trauma surgery is fluoroscopy-based navigation. In this chapter applications of fluoroscopy-based navigation in trauma surgery will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nolte L, Beutler T. Basic principles of CAOS. Injury. 2004;35(suppl 1):6–16.

    Article  Google Scholar 

  2. Liebergall M, Ben-David D, Weil Y, et al. Computerized navigation for the internal fixation of femoral neck fractures. J Bone Joint Surg Am. 2006;88A:1748–54. Reddix RN, Webb LX. Computed-assisted preoperative planning in the surgical treatment of acetabular fractures. J Surg Orthop Adv. 2007;16:138–143.

    Article  Google Scholar 

  3. Mosheiff R, Khoury A, Weil Y, et al. First generation of fluoroscopic navigation in percutaneous pelvic surgery. J Orthop Trauma. 2004;18:106–11.

    Article  PubMed  Google Scholar 

  4. Weil YA, Liebergall M, Mosheiff R, et al. Assessment of two 3-D fluoroscopic systems for articular fracture reduction: a cadaver study. Int J Comput Assist Radiol Surg. 2011;6(5):685–92.

    Article  PubMed  Google Scholar 

  5. Kahler DM. Virtual fluoroscopy: a tool for decreasing radiation exposure during femoral intramedullary nailing. Stud Health Technol Inform. 2001;81:225–8.

    PubMed  CAS  Google Scholar 

  6. Weil YA, Liebergall M, Mosheiff R, et al. Long bone fracture reduction using a fluoroscopy-based navigation system: a feasibility and accuracy study. Comput Aided Surg. 2007;12:295–302.

    Article  PubMed  Google Scholar 

  7. Mosheiff R, Weil Y, Peleg E, et al. Computerised navigation for closed reduction during femoral intramedullary nailing. Injury. 2005;36:866–70.

    Article  PubMed  Google Scholar 

  8. Tornetta P III, Ritz G, Kantor A. Femoral torsion after interlocked nailing of unstable femoral fractures. J Trauma. 1995;38:213–9.

    Article  PubMed  Google Scholar 

  9. Jaarsma RL, Pakvis DF, Verdonschot N, et al. Rotational malalignment after intramedullary nailing of femoral fractures. J Orthop Trauma. 2004;18:403–9.

    Article  CAS  PubMed  Google Scholar 

  10. Weil Y, Gardner MJ, Helfet DL, et al. Accuracy of navigated femoral fracture reduction–a laboratory study. Clin Orthop Rel Res. 2007;460:185–91.

    Google Scholar 

  11. Attias N, Lindsey RW, Starr AJ, Borer D, Bridges K, Hipp JA. The use of a virtual three-dimensional model to evaluate the intraosseous space available for percutaneous screw fixation of acetabular fractures. J Bone Joint Surg Br. 2005;87(11):1520–3.

    Article  CAS  PubMed  Google Scholar 

  12. Cimerman M, Kristan A. Pre-operative planning in pelvic and acetabular surgery: the value of advanced computerised planning modules. Injury. 2007;38(4):442–9.

    Article  PubMed  Google Scholar 

  13. Noser H, Heldstab T, Schmutz B, Kamer L. Typical Accuracy and Quality Control of a Process for Creating CT-Based Virtual Bone Models. J Digit Imaging. 2011;24(3):437–45.

    Article  PubMed  Google Scholar 

  14. Varga E, Erdőhelyi B. Severe Pelvic Bleeding: The Role of Primary Internal Fixation. Eur J Trauma Emerg Surg. 2010;36(2):107–16.

    Article  PubMed  Google Scholar 

  15. Kovler I, Joskowicz L, Weil Y, Khoury A, Kronman A, Mosheiff R,·Liebergall M, Salavarrieta J. Haptic computer-assisted patient-specific preoperative planning for orthopedic fractures surgery. Int J CARS. 2015: 10: 1535–1546.

    Article  CAS  Google Scholar 

  16. Khoury A, Siewerdsen JH, Whyne CM, Daly MJ, Kreder HJ, Moseley DJ, Jaffray DA. Intraoperative cone-beam CT for image-guided tibial plateau fracture reduction. Comput Aided Surg. 2007;12(4):195–207.

    Article  CAS  PubMed  Google Scholar 

  17. Khoury A, Whyne CM, Daly M, Moseley D, Bootsma G, Skrinskas T, Siewerdsen J, Jaffray D. Intraoperative cone-beam CT for correction of periaxial malrotation of the femoral shaft: a surface-matching approach. Med Phys. 2007;34(4):1380–7.

    Article  PubMed  Google Scholar 

  18. Richter PH, Gebhard F, Dehner C, Scola A. Accuracy of computer-assisted iliosacral screw placement using a hybrid operating room. Injury. 2016;47(2):402–7. https://doi.org/10.1016/j.injury.2015.11.023. Epub 2015 Dec 12.

    Article  PubMed  CAS  Google Scholar 

  19. Lieberman IH, Togawa D, Kayanja MM, Reinhardt MK, Friedlander A, Knoller N, Benzel EC. Bone-mounted miniature robotic guidance for pedicle screw and translaminar facet screw placement: Part I-Technical development and a test case result. Neurosurgery. 2006;59(3):641–50. discussion 641-50

    Article  PubMed  Google Scholar 

  20. Stüer C, Ringel F, Stoffel M, Reinke A, Behr M, Meyer B. Robotic technology in spine surgery: current applications and future developments. Acta Neurochir Suppl. 2011;109:241–5. https://doi.org/10.1007/978-3-211-99651-5_38.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rami Mosheiff M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mosheiff, R., Khoury, A. (2018). Innovations in Fracture Reduction Computer-Assisted Surgery. In: Giannoudis, P. (eds) Fracture Reduction and Fixation Techniques. Springer, Cham. https://doi.org/10.1007/978-3-319-68628-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68628-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68627-1

  • Online ISBN: 978-3-319-68628-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics