Skip to main content

Augmented Reality in Training of Fused Deposition Modelling Process

  • Conference paper
  • First Online:
Advances in Manufacturing

Abstract

The paper presents results of a pilot study using Augmented Reality techniques for learning and training of 3D printing process of Fused Deposition Modelling (FDM). The authors created a mobile, tablet-based Augmented Reality solution for learning of basic operations performed on a 3D printer during preparation and realization of a process of Fused Deposition Modelling. Then, two groups of novice students were tested for efficiency in realizing these processes: one group was taught using traditional learning method and the other—without any traditional training whatsoever, only basing on the Augmented Reality application for the process guidance (self-learning). The obtained process realization times were compared with reference times obtained by expert process engineers. The results are promising, but there is a high need of expert consulting for students using only the Augmented Reality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kujawińska, A., Rogalewicz, M., Diering, M., Hamrol, A.: Statistical approach to making decisions in manufacturing process of floorboard. In: Proceedings of 5th World Conference on Information Systems and Technologies, Recent Advances in Information Systems and Technologies, vol. 3, pp. 499–508. Springer (2017) doi:10.1007/978-3-319-56541-5_51

  2. Dostatni, E., Diakun, J., Hamrol, A., Mazur, W.: Application of agent technology for recycling‐oriented product assessment. Ind. Manag. Data Syst. 113(6), 817–839. http://dx.doi.org/10.1108/IMDS-02-2013-0062

  3. Azuma, R.T.: A survey of augmented reality. Presence Teleoperators Virtual Environ 6(4), 355–385 (1997)

    Article  Google Scholar 

  4. Hamacher, A., et al.: Application of virtual augmented, and mixed reality to urology. Int. Neurourol. J. 20(3), 172–181 (2016)

    Article  Google Scholar 

  5. Ramirez, H., Mendivil, E.G., Flores, P.R., Gonzalez, M.C.: Authoring software for augmented reality applications for the use of maintenance and training process. Procedia Comput. Sci. 25, 189–193 (2013)

    Article  Google Scholar 

  6. Rumiński, D., Walczak K.: Creation of interactive AR content on mobile devices, in: lecture notes in business information processing. In: van der Aalst, W., Mylopoulos, J., Rosemann, M., Shaw, M.J., Szyperski, C. (eds.) International Conference on Business Information Systems, Poznań, Poland, 19–20 June 2013, vol. 160, pp. 258–269. Springer (2013)

    Google Scholar 

  7. Ong, S.K., Nee, A.Y.C.: Virtual and augmented reality applications in manufacturing. Springer, Singapore (2004)

    Book  Google Scholar 

  8. Palmarini, R., Erkoyuncu, J.A., Roy, R.: An innovative process to select augmented reality (AR) technology for maintenance. Procedia CIRP 59, 23–28 (2017)

    Article  Google Scholar 

  9. Bowman, D.A., McMahan, R.P.: Virtual reality: how much immersion is enough? Computer 40(7), 36–43 (2007)

    Article  Google Scholar 

  10. Wu, F., Liu, Z., Wang, J., Zhao, Y.: Establishment virtual maintenance environment based on VIRTOOLS to effectively enhance the sense of immersion of teaching equipment. In: Proceedings of the 2015 International Conference on Education Technology, Management and Humanities Science (ETMHS 2015). Atlantis Press. doi:10.2991/etmhs-15.2015.93

  11. Martín-Gutiérrez, J., Mora, C.E., Añorbe-Díaz, B., González-Marrero, A.: Virtual technologies trends in education. EURASIA J. Math. Sci. Technol. Educ. 13(2), 469–486 (2017)

    Google Scholar 

  12. Torres, F., Tovar, L.A.N., del Rio, M.S.: A learning evaluation for an immersive virtual laboratory for technical training applied into a welding workshop. EURASIA J. Math. Sci. Technol. Educ. 13(2), 521–532 (2017)

    Google Scholar 

  13. Gorski, F., Bun, P., Wichniarek, R., Zawadzki, P., Hamrol, A.: Immersive city bus configuration system for marketing and sales education. Procedia Comput. Sci. 75, 137–146 (2015)

    Article  Google Scholar 

  14. Trojanowska, J., Karwasz, A., Machado, J., Varela, M.L.R.: Virtual reality based ecodesign. In: Golinska-Dawson, P., Kolinski, A. (eds.) Efficiency in Sustainable Supply Chain, Part II, pp. 119–135. Springer International Publishing (2017). doi:10.1007/978-3-319-46451-0_8

  15. Martín-Gutiérrez, J., Fabiani, P., Benesova, W., Meneses, M.D., Mora, C.E.: Augmented reality to promote collaborative and autonomous learning in higher education. Comput. Hum. Behav. 51, 752–761 (2015)

    Article  Google Scholar 

  16. Gorski, F., Bun, P., Wichniarek, R., Zawadzki, P., Hamrol, A.: Effective design of educational virtual reality applications for medicine using knowledge-engineering techniques. EURASIA J. Math. Sci. Technol. Educ. 13(2), 395–416 (2017)

    Google Scholar 

  17. Zawadzki, P., Żywicki, K.: Smart product design and production control for effective mass customization in the industry 4.0 concept. Manag. Prod. Eng. Rev. 7(3) (2016)

    Google Scholar 

  18. Gajdoš, I., Slota, J., Spišák, E., Jachowicz, T., Tor-Świątek, A.: Structure and tensile properties evaluation of samples produced by Fused Deposition Modeling. Open Eng. 6(1), 86–89 (2016)

    Google Scholar 

  19. Górski, F., Wichniarek, R., Kuczko, W., Zawadzki, P., Buń, P.: Strength of ABS parts produced by fused deposition modelling technology—a critical orientation problem. Adv. Sci. Technol. Res. J. 9(26), 12–19 (2015)

    Article  Google Scholar 

  20. Sooda, A.K., Ohdarb, R.K., Mahapatra, S.S.: Improving dimensional accuracy of fused deposition modelling processed part using grey Taguchi method. Mater. Des. 30(10), 4243–4252 (2009)

    Article  Google Scholar 

  21. Nickel, A.H., Barnett, D.M., Prinz, F.B.: Thermal stresses and deposition patterns in layered manufacturing. Mater. Sci. Eng. A 317, 59–64 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filip Gorski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Gorski, F., Wichniarek, R., Kuczko, W., Bun, P., Erkoyuncu, J.A. (2018). Augmented Reality in Training of Fused Deposition Modelling Process. In: Hamrol, A., Ciszak, O., Legutko, S., Jurczyk, M. (eds) Advances in Manufacturing. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-68619-6_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68619-6_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68618-9

  • Online ISBN: 978-3-319-68619-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics