Skip to main content

Indefinite Support Vector Regression

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2017 (ICANN 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10614))

Included in the following conference series:

Abstract

Non-metric proximity measures got wide interest in various domains such as life sciences, robotics and image processing. The majority of learning algorithms for these data are focusing on classification problems. Here we derive a regression algorithm for indefinite data representations based on the support vector machine. The approach avoids heuristic eigen spectrum modifications or costly proxy matrix approximations, as used in general. We evaluate the method on a number of benchmark data using an indefinite measure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A mathematical construct detailed in [16].

  2. 2.

    Details are skipped due to lack of space, but follow analogous to the derivation of the Krein SVM. Instead we provide an adapted pseudo code with descriptions.

  3. 3.

    Note: iSVR can be applied on non-psd as well as on psd kernels.

References

  1. Schleif, F.-M., Tiño, P.: Indefinite proximity learning: a review. Neural Comput. 27(10), 2039–2096 (2015)

    Article  Google Scholar 

  2. Stulp, F., Sigaud, O.: Many regression algorithms, one unified model: a review. Neural Netw. 69, 60–79 (2015)

    Article  Google Scholar 

  3. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis and Discovery. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  4. Neuhaus, M., Bunke, H.: Edit distance based kernel functions for structural pattern classification. Pattern Recogn. 39(10), 1852–1863 (2006)

    Article  MATH  Google Scholar 

  5. Ling, H., Jacobs, D.W.: Shape classification using the inner-distance. IEEE Trans. Pattern Anal. Mach. Intell. 29(2), 286–299 (2007)

    Article  Google Scholar 

  6. Gisbrecht, A., Schleif, F.-M.: Metric and non-metric proximity transformations at linear costs. Neurocomputing 167, 643–657 (2015)

    Article  Google Scholar 

  7. Gnecco, G.: Approximation and estimation bounds for subsets of reproducing kernel Krein spaces. Neural Process. Lett. 39(2), 137–153 (2014)

    Article  Google Scholar 

  8. Zhang, Z., Ooi, B.C., Parthasarathy, S., Tung, A.K.H.: Similarity search on Bregman divergence: towards non-metric indexing. PVLDB 2(1), 13–24 (2009)

    Google Scholar 

  9. Mwebaze, E., Schneider, P., Schleif, F.-M., Aduwo, J.R., Quinn, J.A., Haase, S., Villmann, T., Biehl, M.: Divergence based classification in learning vector quantization. Neurocomputing 74, 1429–1435 (2010)

    Article  Google Scholar 

  10. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Acoust. Speech Sig. Process. 26(1), 43–49 (1978)

    Article  MATH  Google Scholar 

  11. Vapnik, V.N.: The Nature of Statistical Learning Theory. Statistics for Engineering and Information Science. Springer, New York (2000)

    Book  MATH  Google Scholar 

  12. Loosli, G., Canu, S., Ong, C.S.: Learning SVM in Krein spaces. IEEE Trans. Pattern Anal. Mach. Intell. PP(99), 1 (2015)

    Google Scholar 

  13. Xu, W., Wilson, R.C., Hancock, E.R.: Determining the cause of negative dissimilarity eigenvalues. In: Real, P., Diaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds.) CAIP 2011. LNCS, vol. 6854, pp. 589–597. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23672-3_71

    Chapter  Google Scholar 

  14. Scheirer, W.J., Wilber, M.J., Eckmann, M., Boult, T.E.: Good recognition is non-metric. Pattern Recogn. 47(8), 2721–2731 (2014)

    Article  Google Scholar 

  15. Duin, R.P.W., Pekalska, E.: Non-Euclidean dissimilarities: causes and informativeness. In: Proceedings of Structural, Syntactic, and Statistical Pattern Recognition, Joint IAPR International Workshop, SSPR&SPR 2010, Cesme, Izmir, Turkey, 18–20 August 2010. pp. 324–333 (2010)

    Google Scholar 

  16. Ong, C.S., Mary, X., Canu, S., Smola, A.J.: Learning with non-positive kernels. In: Brodley, C.E. (ed.) Proceedings of 21st International Conference on Machine Learning (ICML 2004), vol. 69. ACM (2004)

    Google Scholar 

  17. Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Stat. Comput. 14(3), 199–222 (2004)

    Article  MathSciNet  Google Scholar 

  18. Pekalska, E., Duin, R.: The Dissimilarity Representation for Pattern Recognition. World Scientific, Singapore (2005)

    Book  MATH  Google Scholar 

  19. Lichman, M.: UCI Machine Learning Repository (2013)

    Google Scholar 

  20. Cortez, P., Morais, A.: A data mining approach to predict forest fires using meteorological data. In: Neves, J., Santos, M.F., Machado, J. (eds.) Proceedings of EPIA 2007, pp. 512–523 (2007)

    Google Scholar 

  21. Cortez, P., Cerdeira, A., Almeida, F., Matos, T., Reis, J.: Modeling wine preferences by data mining from physicochemical properties. Decis. Support Syst. 47(4), 547–553 (2009)

    Article  Google Scholar 

  22. Thente, K.: Tecator dataset. http://lib.stat.cmu.edu/datasets/tecator. Accessed 01 Feb 2017

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank-Michael Schleif .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Schleif, FM. (2017). Indefinite Support Vector Regression. In: Lintas, A., Rovetta, S., Verschure, P., Villa, A. (eds) Artificial Neural Networks and Machine Learning – ICANN 2017. ICANN 2017. Lecture Notes in Computer Science(), vol 10614. Springer, Cham. https://doi.org/10.1007/978-3-319-68612-7_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68612-7_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68611-0

  • Online ISBN: 978-3-319-68612-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics