Skip to main content

Three-Dimensional Macroporous Nanoelectronics Scaffold Innervated Synthetic Tissue

  • Chapter
  • First Online:
Biomimetics Through Nanoelectronics

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Functional synthetic 3D macroporous biomaterials as extracellular matrices (ECMs) are crucial for areas ranging from biophysics to regenerative medicine because they allow for studies of cell/tissue development in the presence of spatiotemporal biochemical stimulants [1,2,3,4,5,6], and the understanding of pharmacological response of cells within synthetic tissues models is expected to provide a more robust link to in vivo disease treatment than that from 2D cell cultures [6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Na K et al (2011) Directing zeolite structures into hierarchically nanoporous architectures. Science 333:328–332

    Google Scholar 

  2. Schaedler TA et al (2011) Ultralight metallic microlattices. Science 334:962–965

    Google Scholar 

  3. Place ES, George JH, Williams CK, Stevens MM (2009) Synthetic polymer scaffolds for tissue engineering. Chem Soc Rev 38:1139

    Google Scholar 

  4. Wylie RG, Ahsan S, Aizawa Y, Maxwell KL, Morshead CM, Shoichet MS (2011) Spatially controlled simultaneous patterning of multiple growth factors in three-dimensional hydrogels. Nat Mater 10:799

    Google Scholar 

  5. Kloxin AM, Kasko AM, Salinas CN, Anseth KS (2009) Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324:59

    Google Scholar 

  6. Dvir T, Timko BP, Kohane DS, Langer R (2011) Nanotechnological strategies for engineering complex tissues. Nat Nanotechnol 6:13

    Google Scholar 

  7. Kraehenbuehl TP, Langer R, Ferreira L (2011) Three-dimensional biomaterials for the study of human pluripotent stem cells. Nat Meth 8:731

    Google Scholar 

  8. Hutmacher DW (2010)  Biomaterials offer cancer research the third dimension. Nat Mater 9:90

    Google Scholar 

  9. Huh D et al (2010) Reconstituting organ-level lung functions on a chip. Science 328:1662

    Google Scholar 

  10. Baker M (2011) Tissue models: A living system on a chip. Nature 471:661

    Google Scholar 

  11. Schwille P (2011) Bottom-up synthetic biology: Engineering in a Tinkerer’s world. Science 333:1252

    Google Scholar 

  12. Ruder WC, Lu T, Collins JJ (2011)  Synthetic biology moving into the clinic. Science 333:1248

    Google Scholar 

  13. Timko BP et al (2009) Electrical recording from hearts with flexible nanowire device arrays. Nano Lett 9:914

    Google Scholar 

  14. Viventi J et al (2010)  A conformal, bio-interfaced class of silicon electronics for mapping cardiac electrophysiology. Transl Med 2:24ra22

    Google Scholar 

  15. Kim DH et al (2011) Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. Nat Mater 10:316

    Google Scholar 

  16. Viventi J et al (2011)  Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat Neurosci 14:1599

    Google Scholar 

  17. Kim DH et al (2011) Epidermal electronics. Science 333:838

    Article  CAS  Google Scholar 

  18. Tian B, Cohen-Karni T, Qing Q, Duan X, Xie P, Lieber CM (2010) Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 329:831

    Google Scholar 

  19. Qing Q et al (2010) Nanowire transistor arrays for mapping neural circuits in acute brain slices. Proc Natl Acad Sci USA 107:1882

    Google Scholar 

  20. Cohen-Karni T, Timko BP, Weiss LE, Lieber CM (2009) Flexible electrical recording from cells using nanowire transistor arrays. Proc Natl Acad Sci USA 106:7309

    Google Scholar 

  21. Timko BP, Cohen-Karni T, Qing Q, Tian B, Lieber CM (2010) Design and implementation of functional nanoelectronic interfaces with biomolecules, cells, and tissue using nanowire device arrays. IEEE Trans Nanotechnol 9:269

    Google Scholar 

  22. Prohaska OJ, Olcaytug F, Pfundner P, Dragaun H (1986)  Thin-film multiple electrode probes: Possibilities and limitations. IEEE T Bio-Med Eng BME 33:223

    Google Scholar 

  23. Nicolelis, MAL (ed) Methods for neural ensemble recordings, 2nd edn. CRC Press, Boca Raton (FL)

    Google Scholar 

  24. McKnight TE et al (2006) Resident neuroelectrochemical interfacing using carbon nanofibre arrays. J Phys Chem B 110:15317

    Google Scholar 

  25. Yu Z et al (2007) Vertically aligned carbon nanofibre arrays record electrophysiological signals from hippocampal slices. Nano Lett 7:2188

    Google Scholar 

  26. Aviss KJ, Gough JE, Downes S (2010) Aligned electrospun polymer fibres for skeletal muscle regeneration. Euro Cells Mater 19:193

    Google Scholar 

  27. Timoshenko S, Woinowsky-Krieger S (1959) Theory of plates and shells, 2nd edn. McGraw-Hill Inc., p 4–6

    Google Scholar 

  28. http://www.genlantis.com/objects/catalog/product/extras/1285_N100200_NeuroPure_E18_Hippocampal_Cells_MV25April2007.pdfS8

  29. Xu T, Molnar P, Gregory C, Das M, Boland T, Hickman JJ (2009) Electrophysiological characterization of embryonic hippocampal neurons cultured in a 3D collagen hydrogel. Biomaterials 30:4377

    Google Scholar 

  30. Sapir Y, Kryukov O, Cohen S (2011) Integration of multiple cell-matrix interactions into alginate scaffolds for promoting cardiac tissue regeneration. Biomaterials 32:1838

    Google Scholar 

  31. L’Heureux N, Pâquet S, Labbé R, Germain L, Auger FA (1998) A completely biological tissue-engineered human blood vessel. FASEB J 12:47

    Google Scholar 

  32. Pautot S, Wyart C, Isacoff EY (2008) Colloid-guided assembly of oriented 3D neuronal networks. Nat Meth 5:735

    Google Scholar 

  33. Kiernan JA (2008) Histological and histochemical methods: theory and practice, 4th edn. Scion Publishing Ltd.

    Google Scholar 

  34. http://www.polysciences.com/SiteData/docs/872/4dfaddd3f92e8e02f9ac9638745201f1/872.pdf

  35. Prabhakaran MP, Kai D, Ghasemi-Mobarakeh L, Ramakrishna S (2011) Electrospun biocomposite nanofibrous patch for cardiac tissue engineering. Biomed Mater 6:055001

    Google Scholar 

  36. Dequach JA, Yuan SH, Goldstein LS, Christman KL (2011) Decellularized porcine brain matrix for cell culture and tissue engineering scaffolds. Tissue Eng Part A 17:2583

    Google Scholar 

  37. Hanley PJ, Young AA, LeGrice IJ, Edgar SG, Loiselle DS (1999) 3‐Dimensional configuration of perimysial collagen fibres in rat cardiac muscle at resting and extended sarcomere lengths. J Physiol 517:831

    Google Scholar 

  38. Engelmayr GC Jr et al (2008) Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nat Mater 7:1003

    Google Scholar 

  39. Lu W, Lieber CM (2007) Nanoelectronics from the bottom up. Nat Mater 6:841

    Google Scholar 

  40. Yan H et al (2011) Programmable nanowire circuits for nanoprocessors. Nature 470:240

    Google Scholar 

  41. Wang MF, Maleki T, Ziaie B (2008) Enhanced three-dimensional folding of 53 silicon microstructures via thermal shrinkage of a composite organic/inorganic 54 bilayer. IEEE/ASME J Microelectromech Syst 17:882

    Google Scholar 

  42. Cho SH et al (2008) Biocompatible SU-8-based microprobes for recording neural spike signals from regenerated peripheral nerve fibres. IEEE Sensors J 8:1830

    Google Scholar 

  43. Voskerician G et al (2003) Biocompatibility and biofouling of MEMS drug delivery devices. Biomaterials 24:1959

    Google Scholar 

  44. Zipes DP, Jalife J (2009) Cardiac electrophysiology: from cell to bedside, 5th edn. Saunders, Philadelphia, PA

    Google Scholar 

  45. L’Heureux N et al (2006) Human tissue-engineered blood vessels for adult arterial revascularization. Nat Med 12:361

    Google Scholar 

  46. Neri D, Supuran CT (2011) Interfering with pH regulation in tumours as a therapeutic strategy. Nat Rev Drug Discov 10:767

    Google Scholar 

  47. Kraut JA, Madias NE (2010) Metabolic acidosis: pathophysiology, diagnosis and management. Nat Rev Nephrol 6:274

    Google Scholar 

  48. Dvir T et al (2011) Nanowired three-dimensional cardiac patches. Nat Nanotechnol 6:720

    Google Scholar 

  49. Sekitani T et al (2008) A rubberlike stretchable active matrix using elastic conductors. Science 321:1468

    Google Scholar 

  50. Mannsfeld SCB et al (2010) Highly sensitive flexible pressure sensors with micro-structured rubber as the dielectric layer. Nat Mater 9:859

    Google Scholar 

  51. Takei K et al (2010) Nanowire active matrix circuitry for low-voltage macro-scale artificial skin. Nat Mater 9:821

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Liu .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, J. (2018). Three-Dimensional Macroporous Nanoelectronics Scaffold Innervated Synthetic Tissue. In: Biomimetics Through Nanoelectronics. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-68609-7_4

Download citation

Publish with us

Policies and ethics