Skip to main content

Interactive Control of Computational Power in a Model of the Basal Ganglia-Thalamocortical Circuit by a Supervised Attractor-Based Learning Procedure

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2017 (ICANN 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10613))

Included in the following conference series:

Abstract

The attractor-based complexity of a Boolean neural network refers to its ability to discriminate among the possible input streams, by means of alternations between meaningful and spurious attractor dynamics. The higher the complexity, the greater the computational power of the network. The fine tuning of the interactivity – the network’s feedback output combined with the current input stream – can maintain a high degree of complexity within stable domains of the parameters’ space. In addition, the attractor-based complexity of the network is related to the degree of discrimination of specific input streams. We present a novel supervised attractor-based learning procedure aimed at achieving a maximal discriminability degree of a selected input stream. With a predefined target value of discriminability degree and in the absence of changes in the internal connectivity matrix of the network, the learning procedure updates solely the weights of the feedback projections. In a Boolean model of the basal ganglia-thalamocortical circuit, we show how the learning trajectories starting from different configurations can converge to final configurations associated with same high discriminability degree. We discuss the possibility that the limbic system may play the role of the interactive feedback to the network studied here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Skarda, C.A., Freeman, W.J.: How brains make chaos in order to make sense of the world. Behav. Brain Sci. 10, 161–173 (1987)

    Article  Google Scholar 

  2. Tsuda, I.: Chaotic itinerancy as a dynamical basis of hermeneutics of brain and mind. World Futures 32, 167–185 (1991)

    Article  Google Scholar 

  3. Villa, A.E.P.: Empirical evidence about temporal structure in multi-unit recordings. In: Miller, R. (ed.) Time and the Brain. Conceptual Advances in Brain Research, vol. 3, pp. 1–61. CRC Press, London (2000)

    Google Scholar 

  4. Mpitsos, G.J., Burton, R.M., Creech, H.C., Soinila, S.O.: Evidence for chaos in spike trains of neurons that generate rhythmic motor patterns. Brain Res. Bull. 21(3), 529–38 (1988)

    Article  Google Scholar 

  5. Hoppensteadt, F.C.: Intermittent chaos, self-organization, and learning from synchronous synaptic activity in model neuron networks. Proc. Natl. Acad. Sci. U.S.A. 86(9), 2991–2995 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  6. Celletti, A., Villa, A.E.P.: Low-dimensional chaotic attractors in the rat brain. Biol. Cybern. 74(5), 387–393 (1996)

    Article  Google Scholar 

  7. Villa, A.E.P., Tetko, I.V., Celletti, A., Riehle, A.: Chaotic dynamics in the primate motor cortex depend on motor preparation in a reaction-time task. Cah. Psychol. Cogn. 17, 763–780 (1998)

    Google Scholar 

  8. Segundo, J.P.: Nonlinear dynamics of point process systems and data. Int. J. Bifurcat. Chaos 13(08), 2035–2116 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Abeles, M.: Local Cortical Circuits: An Electrophysiological Study. Studies of Brain Function, vol. 6. Springer, New York (1982)

    Google Scholar 

  10. Vaadia, E., Bergman, H., Abeles, M.: Neuronal activities related to higher brain functions-theoretical and experimental implications. IEEE Trans. Biomed. Eng. 36(1), 25–35 (1989)

    Article  Google Scholar 

  11. Villa, A., Fuster, J.: Temporal correlates of information processing during visual short-term memory. Neuroreport 3(1), 113–116 (1992)

    Article  Google Scholar 

  12. Vaadia, E., Haalman, I., Abeles, M., Bergman, H., Prut, Y., Slovin, H., Aertsen, A.: Dynamics of neuronal interactions in monkey cortex in relation to behavioural events. Nature 373(6514), 515–518 (1995)

    Article  Google Scholar 

  13. Prut, Y., Vaadia, E., Bergman, H., Haalman, I., Slovin, H., Abeles, M.: Spatiotemporal structure of cortical activity: properties and behavioral relevance. J. Neurophysiol. 79(6), 2857–2874 (1998)

    Google Scholar 

  14. Villa, A.E.P., Tetko, I.V., Hyland, B., Najem, A.: Spatiotemporal activity patterns of rat cortical neurons predict responses in a conditioned task. Proc. Natl. Acad. Sci. U.S.A. 96(3), 1106–1111 (1999)

    Article  Google Scholar 

  15. Asai, Y., Villa, A.E.: Reconstruction of underlying nonlinear deterministic dynamics embedded in noisy spike trains. J. Biol. Phys. 34(3–4), 325–340 (2008)

    Article  Google Scholar 

  16. Asai, Y., Villa, A.: Integration and transmission of distributed deterministic neural activity in feed-forward networks. Brain Res. 1434, 17–33 (2012)

    Article  Google Scholar 

  17. Iglesias, J., Villa, A.E.: Recurrent spatiotemporal firing patterns in large spiking neural networks with ontogenetic and epigenetic processes. J. Physiol. Paris 104(3–4), 137–146 (2010)

    Article  Google Scholar 

  18. Cabessa, J., Villa, A.E.P.: An attractor-based complexity measurement for boolean recurrent neural networks. PLoS ONE 9(4), e94204 (2014)

    Article  Google Scholar 

  19. Masulli, P., Villa, A.E.P.: The topology of the directed clique complex as a network invariant. Springerplus 5, 388 (2016)

    Article  Google Scholar 

  20. Cabessa, J., Villa, A.E.P.: The expressive power of analog recurrent neural networks on infinite input streams. Theor. Comput. Sci. 436, 23–34 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  21. Cabessa, J., Villa, A.E.P.: Expressive power of first-order recurrent neural networks determined by their attractor dynamics. J. Comput. Syst. Sci. 82, 1232–1250 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  22. Cabessa, J., Villa, A.E.P.: Attractor-based complexity of a boolean model of the basal ganglia-thalamocortical network. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 4664–4671. IEEE, July 2016

    Google Scholar 

  23. Cabessa, J., Villa, A.E.P.: Attractor dynamics driven by interactivity in boolean recurrent neural networks. In: Villa, A.E.P., Masulli, P., Pons Rivero, A.J. (eds.) ICANN 2016. LNCS, vol. 9886, pp. 115–122. Springer, Cham (2016). doi:10.1007/978-3-319-44778-0_14

    Chapter  Google Scholar 

  24. Nakahara, H., Amari Si, S., Hikosaka, O.: Self-organization in the basal ganglia with modulation of reinforcement signals. Neural Comput. 14(4), 819–844 (2002)

    Article  MATH  Google Scholar 

  25. Guthrie, M., Leblois, A., Garenne, A., Boraud, T.: Interaction between cognitive and motor cortico-basal ganglia loops during decision making: a computational study. J. Neurophysiol. 109(12), 3025–3040 (2013)

    Article  Google Scholar 

  26. Leblois, A., Boraud, T., Meissner, W., Bergman, H., Hansel, D.: Competition between feedback loops underlies normal and pathological dynamics in the basal ganglia. J. Neurosci. 26(13), 3567–3583 (2006)

    Article  Google Scholar 

  27. Wagner, K.: On \(\omega \)-regular sets. Inf. Control 43(2), 123–177 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  28. Wimmer, K., Nykamp, D.Q., Constantinidis, C., Compte, A.: Bump attractor dynamics in prefrontal cortex explains behavioral precision in spatial working memory. Nat. Neurosci. 17(3), 431–439 (2014)

    Article  Google Scholar 

  29. Packard, M.G., Goodman, J.: Factors that influence the relative use of multiple memory systems. Hippocampus 23(11), 1044–1052 (2013)

    Article  Google Scholar 

  30. Lintas, A.: Discharge properties of neurons recorded in the parvalbumin-positive (pv1) nucleus of the rat lateral hypothalamus. Neurosci. Lett. 571, 29–33 (2014)

    Article  Google Scholar 

  31. Atallah, H.E., Frank, M.J., O’Reilly, R.C.: Hippocampus, cortex, and basal ganglia: insights from computational models of complementary learning systems. Neurobiol. Learn Mem. 82(3), 253–267 (2004)

    Article  Google Scholar 

  32. Perrig, S., Iglesias, J., Shaposhnyk, V., Chibirova, O., Dutoit, P., Cabessa, J., Espa-Cervena, K., Pelletier, L., Berger, F., Villa, A.E.P.: Functional interactions in hierarchically organized neural networks studied with spatiotemporal firing patterns and phase-coupling frequencies. Chin. J. Physiol. 53(6), 382–395 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro E. P. Villa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Cabessa, J., Villa, A.E.P. (2017). Interactive Control of Computational Power in a Model of the Basal Ganglia-Thalamocortical Circuit by a Supervised Attractor-Based Learning Procedure. In: Lintas, A., Rovetta, S., Verschure, P., Villa, A. (eds) Artificial Neural Networks and Machine Learning – ICANN 2017. ICANN 2017. Lecture Notes in Computer Science(), vol 10613. Springer, Cham. https://doi.org/10.1007/978-3-319-68600-4_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68600-4_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68599-1

  • Online ISBN: 978-3-319-68600-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics