Skip to main content

Weighted Clique Analysis Reveals Hierarchical Neuronal Network Dynamics

  • Conference paper
  • First Online:
  • 2790 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10613))

Abstract

A biologically-plausible simulation of a neuronal network is studied as its topology is shaped by its activity by means of an encoding of its connectivity structure as a directed clique complex. Specially defined invariants of this mathematical structure, including the information about synaptic strength, are introduced and show how the initial topology of a network and its evolution during the simulation are tightly inter-related with the dynamical activity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bassett, D.S., Bullmore, E.T.: Small-world brain networks revisited. Neuroscientist 23(5), 499–516 (2016). doi:10.1177/1073858416667720

    Article  Google Scholar 

  2. Bonson, G.: The hierarchical organization of the central nervous system: implications for learning processes and critical periods in early development. Behav. Sci. 10, 7–25 (1965)

    Article  Google Scholar 

  3. Chaudhuri, R., Knoblauch, K., Gariel, M.A., Kennedy, H., Wang, X.J.: A large-scale circuit mechanism for hierarchical dynamical processing in the primate cortex. Neuron 88(2), 419–431 (2015)

    Article  Google Scholar 

  4. Del Prete, V., Martignon, L., Villa, A.E.: Detection of syntonies between multiple spike trains using a coarse-grain binarization of spike count distributions. Network 15(1), 13–28 (2004)

    Article  Google Scholar 

  5. Eguiluz, V.M., Chialvo, D.R., Cecchi, G.A., Baliki, M., Apkarian, A.V.: Scale-free brain functional networks. Phys. Rev. Lett. 94(1), 018102 (2005)

    Article  Google Scholar 

  6. Freeman, W.J.: Neural networks and chaos. J. Theor. Biol. 171, 13–18 (1994)

    Article  Google Scholar 

  7. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  8. Hilgetag, C.C., Hütt, M.T.: Hierarchical modular brain connectivity is a stretch for criticality. Trends Cogn. Sci. 18(3), 114–115 (2014)

    Article  Google Scholar 

  9. Hutchins, J.B., Barger, S.W.: Why neurons die: cell death in the nervous system. Anat. Rec. 253(3), 79–90 (1998)

    Article  Google Scholar 

  10. Iglesias, J., Villa, A.E.: Recurrent spatiotemporal firing patterns in large spiking neural networks with ontogenetic and epigenetic processes. J. Physiol. Paris 104(34), 137–146 (2010). Neural Coding

    Article  Google Scholar 

  11. Innocenti, G.M.: Exuberant development of connections, and its possible permissive role in cortical evolution. Trends Neurosci. 18(9), 397–402 (1995)

    Article  Google Scholar 

  12. Masulli, P., Villa, A.E.P.: The topology of the directed clique complex as a network invariant. Springer Plus 5, 388 (2016)

    Article  Google Scholar 

  13. Masulli, P., Villa, A.E.P.: Dynamics of evolving feed-forward neural networks and their topological invariants. In: Villa, A.E.P., Masulli, P., Pons Rivero, A.J. (eds.) ICANN 2016. LNCS, vol. 9886, pp. 99–106. Springer, Cham (2016). doi:10.1007/978-3-319-44778-0_12

    Chapter  Google Scholar 

  14. Park, H.J., Friston, K.: Structural and functional brain networks: from connections to cognition. Science 342(6158), 1238411 (2013)

    Article  Google Scholar 

  15. Tannenbaum, N.R., Burak, Y.: Shaping neural circuits by high order synaptic interactions. PLoS Comput. Biol. 12(8), 1–27 (2016)

    Google Scholar 

  16. Shaposhnyk, V., Villa, A.E.: Reciprocal projections in hierarchically organized evolvable neural circuits affect EEG-like signals. Brain Res. 1434, 266–276 (2012)

    Article  Google Scholar 

  17. Stam, C.J., Reijneveld, J.C.: Graph theoretical analysis of complex networks in the brain. Nonlinear Biomed. Phys. 1(1), 3 (2007)

    Article  Google Scholar 

  18. Yang, W., Sun, Q.Q.: Hierarchical organization of long-range circuits in the olfactory cortices. Physiol. Rep. 3(9), e12550 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Swiss National Science Foundation grant CR13I1-138032.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Masulli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Masulli, P., Villa, A.E.P. (2017). Weighted Clique Analysis Reveals Hierarchical Neuronal Network Dynamics. In: Lintas, A., Rovetta, S., Verschure, P., Villa, A. (eds) Artificial Neural Networks and Machine Learning – ICANN 2017. ICANN 2017. Lecture Notes in Computer Science(), vol 10613. Springer, Cham. https://doi.org/10.1007/978-3-319-68600-4_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68600-4_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68599-1

  • Online ISBN: 978-3-319-68600-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics