Aeroecology pp 201-237 | Cite as

Aeroecological Observation Methods

  • V. Alistair Drake
  • Bruno Bruderer


Observation of animals flying in the atmosphere is the core empirical process of aeroecology. For species that are small, or that fly by night or at high altitudes, this presents a considerable challenge. Even for the more visible species and for flights near the ground, recording the animals’ movements requires specialised techniques. Fortunately, continuing rapid advances in radio and optical technologies, electronics, and computing are providing numerous opportunities for developing new and improved observing capabilities. The larger, more complete, and more precise observational datasets that these new technologies are providing underlie the current wave of discovery and growth in this novel discipline. This chapter is mainly concerned with methods for detecting and studying insects, birds, and bats flying in the open air, i.e. above the vegetation layer. Detection of these animals, and estimation of their numbers, can be achieved through in-flight capture or by remote sensing, with the latter comprising visual observation (including technologies for augmenting human sight), aural monitoring, radar, and laser/lidar. Remotely sensed animals can be identified, though sometimes only to a group of species, from characteristic features of the signals or images received. Information about the animals’ activities—their mode of flight, orientation, etc.—can be obtained either by remote sensing or from sensors mounted on the animals. The latter method, which relies on radio-telemetry or archival logging to record the acquired data, may also be used to monitor the animal’s physiological state, the environment it is moving in, and its trajectory. The chapter also examines how information about the timing and geographical extent of movements, and the environmental conditions the animals are experiencing, can be obtained. Finally, the particular challenges of observational aeroecology are identified, the multidisciplinary nature of the observing task is recognised, and some possible developments are proposed.



We gratefully acknowledge contributions from F. Liechti and D.R. Reynolds on some of the topics dealt with in this chapter.


  1. Able KP, Gauthreaux SA Jr (1975) Quantification of nocturnal passerine migration with a portable ceilometer. Condor 77:92–96CrossRefGoogle Scholar
  2. Adamík P, Emmenegger T, Briedis M, Gustafsson L, Henshaw I, Krist M, Laaksonen T, Liechti F, Procházka P, Salewski V, Hahn S (2016) Barrier crossing in small avian migrants: individual tracking reveals prolonged nocturnal flights into the day as a common migratory strategy. Sci Rep 6:21560PubMedPubMedCentralCrossRefGoogle Scholar
  3. Adams AM, Jantzen MK, Hamilton RM, Fenton MB (2012) Do you hear what I hear? Implications of detector selection for acoustic monitoring of bats. Methods Ecol Evol 3:992–998CrossRefGoogle Scholar
  4. Ahlén I, Baagøe H-J (1999) Use of ultrasound detectors for bat studies in Europe: experiences from field identification, surveys, and monitoring. Acta Chiropterol 1:137–150Google Scholar
  5. Alerstam T (1990) Bird migration. Cambridge University Press, Cambridge, 420 ppGoogle Scholar
  6. Alerstam T, Ulfstrand S (1972) Radar and field observations of diurnal bird migration in south Sweden, autumn 1971. Ornis Scand 3:99–139CrossRefGoogle Scholar
  7. Alerstam T, Bäckman J, Gudmundsson GA, Hedenström A, Henningsson SA, Karlsson A, Rosén M, Strandberg R (2007) A polar system of intercontinental bird migration. Proc R Soc B 274:2523–2530PubMedPubMedCentralCrossRefGoogle Scholar
  8. Alerstam T, Chapman JW, Bäckman J, Smith AD, Karlsson H, Nilsson C, Reynolds DR, Klaassen RHG, Hill J (2011) Convergent patterns of long-distance nocturnal migration in noctuid moths and passerine birds. Proc R Soc B 278:3074–3080PubMedPubMedCentralCrossRefGoogle Scholar
  9. Alon D, Granit B, Shamoun-Baranes J, Leshem Y, Kirwan GM, Shirihai H (2004) Soaring-bird migration over northern Israel in autumn. Br Birds 97:160–182Google Scholar
  10. Bairlein F, Norris DR, Nagel R, Bulte M, Voigt CC, Fox JW, Hussell DJT, Schmaljohann H (2012) Cross-hemisphere migration of a 25 g songbird. Biol Lett 8:505–507PubMedPubMedCentralCrossRefGoogle Scholar
  11. Baker RR (1978) The evolutionary ecology of animal migration. Hodder and Stoughton, Sevenoaks, UK. 1012 ppGoogle Scholar
  12. Barber JR, Conner WE (2006) Tiger moth responses to a simulated bat attack: timing and duty cycle. J Exp Biol 209:2637–2650PubMedCrossRefGoogle Scholar
  13. Beason RC, Nohara TJ, Weber P (2013) Beware the Boojum: caveats and strengths of avian radar. Human-Wildlife Interactions 7:16–46Google Scholar
  14. Bianco L (2010) Introduction to SODAR and RASS wind-profiler systems. In: Cimini D, Marzano FS, Visconti G (eds) Integrated ground-based observing systems. Applications for climate, meteorology, and civil protection. Springer, Heidelberg, pp 89–108Google Scholar
  15. Bluff LA, Rutz C (2008) A quick guide to video-tracking birds. Biol Lett 4:319–322PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bolshakov CV, Vorotkov MV, Sinelschikova A, Bulyuk VN, Griffiths M (2010) Application of the optical-electronic device for the study of specific aspects of nocturnal passerine migration. Avian Ecol Behav 18:23–51Google Scholar
  17. Bouten W, Baaij EW, Shamoun-Baranes J, Camphuysen KCJ (2013) A flexible GPS tracking system for studying bird behaviour at multiple scales. J Ornithol 154:571–580CrossRefGoogle Scholar
  18. Bowlin MS, Henningson P, Muijres FT, Vleugels RHE, Liechti F, Hedenström A (2010) The effects of geolocator drag and weight on the flight ranges of small migrants. Methods Ecol Evol 1:1–5CrossRefGoogle Scholar
  19. Bridge ES, Thorup K, Bowlin MS, Chilson PB, Diehls RH, Flérons RW, Hartl P, Kays R, Kelly JF, Robinson WD, Wikelski M (2011) Technology on the move: recent and forthcoming innovations for tracking migratory birds. Bioscience 61:689–698CrossRefGoogle Scholar
  20. Bruderer B (1969) Zur Registrierung und Interpretation von Echosignaturen an einem 3-cm-Zielverfolgungsradar. Ornithol Beob 66:70–88Google Scholar
  21. Bruderer B (1971) Radarbeobachtungen über den Frühlingszug im Schweizerischen Mittelland. (Ein Beitrag zum Problem der Witterungsabhängigkeit des Vogelzugs). Ornithol Beob 68:89–158Google Scholar
  22. Bruderer B (1980) Vogelzugforschung unter Einsatz von Radargeräten. Medizinische Informatik und Statistik 17:144–154CrossRefGoogle Scholar
  23. Bruderer B (1997) The study of bird migration by radar. Part 1: the technical basis. Naturwissenschaften 84:1–8CrossRefGoogle Scholar
  24. Bruderer B (2007) Adapting a military tracking radar for ornithological research—The case of the “Superfledermaus”. In: Ruth JM (ed) Applying radar technology to migratory bird conservation and management: strengthening and expanding a collaborative. Open-File Report 2007–1361. US Geological Service, Fort Collins, CO, USA, pp 32–37Google Scholar
  25. Bruderer B, Boldt A (2001) Flight characteristics of birds: 1. radar measurements of speeds. Ibis 143:178–204CrossRefGoogle Scholar
  26. Bruderer B, Peter D (2017) Windprofit als Ursache extremer Zughöhen. Ornithol Beob 114:73–86Google Scholar
  27. Bruderer B, Popa-Lisseanu AG (2005) Radar data on wing-beat frequencies and flight speeds of two bat species. Acta Chiropterol 7:73–82CrossRefGoogle Scholar
  28. Bruderer B, Steidinger P (1972) Methods of quantitative and qualitative analysis of bird migration with a tracking radar. In: Galler SR, Schmidt-Koenig K, Jacobs GJ, Belleville RE (eds) Animal orientation and navigation. NASA SP-262. US Government Printing Office, Washington, DC, USA, pp 141–167Google Scholar
  29. Bruderer B, Steuri T, Baumgartner M (1995a) Short-range high-precision surveillance of nocturnal migration and tracking of single targets. Israel J Zool 41:207–220Google Scholar
  30. Bruderer B, Underhill LG, Liechti F (1995b) Altitude choice of night migrants in a desert area predicted by meteorological factors. Ibis 137:44–55CrossRefGoogle Scholar
  31. Bruderer B, Peter D, Korner-Nievergelt F (2018) Vertical distribution of bird migration between the Baltic Sea and the Sahara. J Ornithol 159.
  32. Bruderer B, Peter D, Steuri T (1999) Behaviour of migrating birds exposed to X-band radar and a bright light beam. J Exp Biol 202:1015–1022PubMedGoogle Scholar
  33. Bruderer B, Peter D, Boldt A, Liechti F (2010) Wing-beat characteristics of birds recorded with tracking radar and cine camera. Ibis 152:272–291CrossRefGoogle Scholar
  34. Bruderer B, Steuri T, Aschwanden J, Liechti F (2012) Vom militätischen Zielfolgeradar zum Vogelradar. Ornithol Beob 109:157–176Google Scholar
  35. Brydegaard M, Guan ZG, Wellenreuther M, Svanberg S (2009) Insect monitoring with fluorescence lidar techniques: feasibility study. Appl Opt 48:5668–5677PubMedCrossRefGoogle Scholar
  36. Brydegaard M, Lundin P, Guan Z, Runemark A, Åkesson A, Svanberg S (2010) Feasibility study: fluorescence lidar for remote bird classification. Appl Opt 49:4531–4544PubMedCrossRefGoogle Scholar
  37. Brydegaard M, Gebru A, Svanberg S (2014) Super resolution laser radar with blinking atmospheric particles—application to interacting flying insects. Prog Electromagn Res 147:141–151CrossRefGoogle Scholar
  38. Brydegaard M, Gebru A, Kirkeby C, Åkesson S, Smith H (2016a) Daily evolution of the insect biomass spectrum in an agricultural landscape accessed with lidar. EPJ Web of Conferences 119:22004CrossRefGoogle Scholar
  39. Brydegaard M, Merdasa A, Gebru A, Jayaweera H, Svanberg S (2016b) Realistic instrumentation platform for active and passive optical remote sensing. Appl Spectrosc 70:372–385PubMedCrossRefGoogle Scholar
  40. Bub H (1995) Bird trapping and bird banding. A handbook for trapping methods all over the world. Cornell University Press, Ithaca, NY, USA. 330 ppGoogle Scholar
  41. Carlsten ES, Wicks GR, Repasky KS, Carlsten JL, Bromenshenk JJ, Henderson CB (2011) Field demonstration of a scanning lidar and detection algorithm for spatially mapping honeybees for biological detection of land mines. Appl Opt 50:2112–2123PubMedCrossRefGoogle Scholar
  42. Chapman JW, Reynolds DR, Smith AD, Smith ET, Woiwod IP (2004) An aerial netting study of insects migrating at high altitude over England. Bull Entomol Res 94:123–136PubMedCrossRefGoogle Scholar
  43. Chapman JW, Reynolds DR, Brooks SJ, Smith AD, Woiwod IP (2006) Seasonal variation in the migration strategies of the green lacewing Chrysoperla carnea species complex. Ecol Entomol 31:378–388CrossRefGoogle Scholar
  44. Chapman JW, Nesbit RL, Burgin LE, Reynolds DR, Smith AD, Middleton DR, Hill JK (2010) Flight orientation behaviors promote optimal migration trajectories in high-flying insects. Science 327:682–685PubMedCrossRefGoogle Scholar
  45. Chapman JW, Klaassen RHG, Drake VA, Fossette S, Hays GC, Metcalfe JD, Reynolds AM, Reynolds DR, Alerstam T (2011) Animal orientation strategies for movement in flows. Curr Biol 21:R861–R870PubMedCrossRefGoogle Scholar
  46. Chapman JW, Nilsson C, Lim KS, Bäckman J, Reynolds DR, Alerstam T (2016) Adaptive strategies in nocturnally migrating insects and songbirds: contrasting responses to wind. J Anim Ecol 85:115–124PubMedCrossRefGoogle Scholar
  47. Cheng DF, Wu KM, Tian Z, Wen LP, Shen ZR (2002) Acquisition and analysis of migration data from the digitised display of a scanning entomological radar. Comput Electron Agric 35:63–75CrossRefGoogle Scholar
  48. Coates PS, Casazza ML, Halstead BJ, Fleskes JP, Laughlin JA (2011) Using avian radar to examine relationships among avian activity, bird strikes, and meteorological factors. Human–Wildlife Interactions 5:249–268Google Scholar
  49. Cochran WW (1980) Wildlife telemetry. In: Schemnitz S (ed) Wildlife management techniques manual. The Wildlife Society, Washington, DC, USA, pp 507–520Google Scholar
  50. Cochran WW, Wikelski M (2005) Individual migratory tactics of New World Catharus thrushes. In: Greenberg R, Marra PP (eds) Birds of two worlds. The ecology and evolution of migration. The Johns Hopkins University Press, Baltimore, Maryland, pp 274–289Google Scholar
  51. Coiffier J (2011) Fundamentals of numerical weather prediction. Cambridge University Press, Cambridge, 368 ppCrossRefGoogle Scholar
  52. Contreras S (2013) Temporal and spatial patterns of bird migration along the lower Texas coast. Ph.D. dissertation, Texas A&M University-Kingsville. 97 ppGoogle Scholar
  53. Cooke SJ, Hinch SG, Wikelski M, Andrews RD, Kuchel LJ, Wolcott TG, Butler PJ (2004) Biotelemetry: a mechanistic approach to ecology. Trends Ecol Evol 19:334–343PubMedCrossRefGoogle Scholar
  54. Dickison RBB, Mason PJ, Browning KA, Lunnon RW, Pedgley DE, Riley JR, Joyce RJV (1990) Detection of mesoscale synoptic features associated with dispersal of spruce budworm moths in eastern Canada. Philos Trans R Soc Lond B 328:607–617CrossRefGoogle Scholar
  55. Dorka V (1966) Das jahres- und tageszeitliche Zugmuster von Kurz- und Langstreckenziehern nach Beobachtungen auf den Alpenpässen Cou/Bretolet (Wallis). Ornithol Beob 63:165–223Google Scholar
  56. Dorst J (1962) The migrations of birds. Houghton Mifflin, Boston, MA, USA. 476 ppGoogle Scholar
  57. Drake VA (2013) Signal processing for ZLC-configuration insect-monitoring radars: yields and sample biases. In: Radar 2013. International conference on radar, Adelaide, September 9–12. IEEE, Piscataway, NJ, pp 298–303Google Scholar
  58. Drake VA (2014) Estimation of unbiased insect densities and density profiles with vertically pointing entomological radars. Int J Remote Sens 35:4630–4654CrossRefGoogle Scholar
  59. Drake VA (2016) Distinguishing target classes in observations from vertically pointing entomological radars. Int J Remote Sens 37:3811–3835CrossRefGoogle Scholar
  60. Drake VA, Reynolds DR (2012) Radar entomology: observing insect flight and migration. CABI, Wallingford, UK. 496 ppCrossRefGoogle Scholar
  61. Drake VA, Wang HK (2013) Recognition and characterization of migratory movements of Australian Plague Locusts, Chortoicetes terminifera, with an Insect Monitoring Radar. J Appl Remote Sens 7:075095CrossRefGoogle Scholar
  62. Drake VA, Chapman JW, Lim KS, Reynolds DR, Riley JR, Smith AD (2017) Ventral-aspect radar cross sections and polarization patterns of insects at X band and their relation to size and form. Int J Remote Sens 38:5022–5044CrossRefGoogle Scholar
  63. Dudley R (2000) The biomechanics of insect flight: form, function, evolution. Princeton University Press, Princeton, NJ, USA. 476 ppGoogle Scholar
  64. Eastwood E (1967) Radar ornithology. Methuen, London, p 278Google Scholar
  65. Egevang C, Stenhouse IJ, Phillips RA, Petersen A, Fox JW, Silk JRE (2010) Tracking of Arctic terns Sterna paradisea reveals longest animal migration. Proc Natl Acad Sci 107:2078–2081PubMedPubMedCentralCrossRefGoogle Scholar
  66. Engel S, Bowlin MS, Hedenström A (2010) The role of wind-tunnel studies in integrative research on migration biology. Integr Comp Biol 50:323–335PubMedCrossRefGoogle Scholar
  67. Erni B, Liechti F, Bruderer B (2005) The role of wind in passerine autumn migration between Europe and Africa. Behav Ecol 16:732–740CrossRefGoogle Scholar
  68. Evans WR, Mellinger DK (1999) Monitoring grassland birds in nocturnal migration. Stud Avian Biol 19:219–229Google Scholar
  69. Evans WR, O’Brien M (2002) Flight calls of migratory birds. Eastern North American landbirds. Old Bird Inc, Ithaca, NY, USA. [CD-ROM]Google Scholar
  70. FAA (2010) Airport avian radar systems. Advisory circular 150/5220-25. US Department of Transportation Federal Aviation Administration, Washington, DC, USA. Google Scholar
  71. Fancy SG, Pank LF, Douglas DC, Curby CH, Garner GW, Amstrup SC, Regelin WL (1988) Satellite telemetry: a new tool for wildlife research and management. U.S. Fish and Wildlife Service, Washington, DC, USA. 54 ppGoogle Scholar
  72. Farnsworth A (2005) Flight calls and their value for future ornithological studies and conservation research. Auk 122:733–746CrossRefGoogle Scholar
  73. Farnsworth A, Gauthreaux SA Jr, van Blaricom DJ (2004) A comparison of nocturnal call counts of migrating birds and reflectivity measurements on Doppler radar. J Avian Biol 35:365–369CrossRefGoogle Scholar
  74. Feng H-Q, Wu K-M, Cheng D-F, Guo Y-Y (2004) Northward migration of Helicoverpa armigera (Lepidoptera: Noctuidae) and other moths in early summer observed with radar in northern China. J Econ Entomol 97:1874–1883PubMedCrossRefGoogle Scholar
  75. Fenton MB, Griffin DR (1997) High-altitude pursuit of insects by echolocating bats. J Mammal 78:247–250CrossRefGoogle Scholar
  76. Fijn RC, Hiemstra D, Phillips RA, van der Winden J (2013) Arctic terns Sterna paradisea from the Netherlands migrate record distances across three oceans to Wilkes Land, East Antarctica. Ardea 101:3–12CrossRefGoogle Scholar
  77. Fischer H, Ebert E (1999) Tegula function during free locust flight in relation to motor pattern, flight speed and aerodynamic output. J Exp Biol 202:711–721PubMedGoogle Scholar
  78. Frick WF (2013) Acoustic monitoring of bats, considerations of options for long-term monitoring. Therya 4:69–78CrossRefGoogle Scholar
  79. Fuller MR, Millspaugh JJ, Church KE, Kenward RE (2005) Wildlife radiotelemetry. In: Braun CE (ed) Techniques for wildlife investigations and management. The Wildlife Society, Bethesda, MD, USA, pp 377–417Google Scholar
  80. Gauthreaux SA Jr, Livingston JW (2006) Monitoring bird migration with a fixed-beam radar and a thermal-imaging camera. J Field Ornithol 77:319–328CrossRefGoogle Scholar
  81. Geerts B, Miao Q (2005) The use of millimeter Doppler radar echoes to estimate vertical air velocities in the fair-weather convective boundary layer. J Atmospheric Ocean Technol 22:225–246CrossRefGoogle Scholar
  82. Gehring W (1963) Radar- und Feldbeobachtungen über den Verlauf des Vogelzuges im Schweizerischen Mittelland: Der Tagzug im Herbst (1957-1961). Ornithol Beob 60:35–68Google Scholar
  83. Gehring W (1967) Analyse der Radarechos von Vögeln und Insekten. Ornithol Beob 64:145–151Google Scholar
  84. Gill RE, Tibbitts TL, Douglas DC, Handel CM, Mulcahy DM, Gottschalck JC, Warnock N, McCaffrey BJ, Battley PF, Piersma T (2009) Extreme endurance flights by landbirds crossing the Pacific Ocean: ecological corridor rather than barrier? Proc R Soc B 276:447–457PubMedCrossRefGoogle Scholar
  85. Glick PA (1939) The distribution of insects, spiders and mites in the air. Technical Bulletin No. 673. United States Department of Agriculture, Washington, DC, USA. 150 ppGoogle Scholar
  86. Green M, Alerstam T, Gudmundsson GA, Hedenström A, Piersma T (2004) Do Arctic waders use adaptive wind drift? J Avian Biol 35:305–315CrossRefGoogle Scholar
  87. Gregg PC, Fitt GP, Coombs M, Henderson GS (1993) Migrating moths (Lepidoptera) collected in tower-mounted light traps in northern New South Wales, Australia: species composition and seasonal abundance. Bull Entomol Res 83:563–578CrossRefGoogle Scholar
  88. Gregg PC, Del Socorro AP, Rochester RA (2001) Field test of a model of migration of moths (Lepidoptera: Noctuidae) in inland Australia. Aust J Entomol 40:249–256CrossRefGoogle Scholar
  89. Griffin DR (1958) Listening in the dark. The acoustic orientation of bats and men. Yale University Press, New Haven, CT, 413 ppGoogle Scholar
  90. Guan Z, Brydegaard M, Lundin P, Wellenreuther M, Runemark A, Svensson EI, Svanberg S (2010) Insect monitoring with fluorescence lidar techniques: field experiments. Appl Opt 49:5133–5142PubMedCrossRefGoogle Scholar
  91. Guerra PA, Gegear RJ, Reppert SM (2014) A magnetic compass aids monarch butterfly migration. Nat Commun 5:4164PubMedPubMedCentralCrossRefGoogle Scholar
  92. Guillemette M, Woakes AJ, Flagstad A, Butler PJ (2002) Effects of data-loggers implanted for a full year in female Common Eiders. Condor 104:448–452CrossRefGoogle Scholar
  93. Hagler JR, Jackson CG (2001) Methods for marking insects: current techniques and future prospects. Annu Rev Entomol 46:511–543PubMedCrossRefGoogle Scholar
  94. Hahn S, Dimitrov D, Rehse S, Yohannes E, Jenni L (2014) Avian claw morphometry and growth determine the temporal pattern of archived stable isotopes. J Avian Biol 45:202–207CrossRefGoogle Scholar
  95. Harel R, Horvitz N, Nathan R (2016) Adult vultures outperform juveniles in challenging thermal soaring conditions. Sci Rep 6:27865PubMedPubMedCentralCrossRefGoogle Scholar
  96. Harrington R, Woiwod I (2007) Foresight from hindsight: the Rothamsted Insect Survey. Outlooks Pest Manage 18:9–14CrossRefGoogle Scholar
  97. Hawkes LA, Balachandran S, Batbayar N, Butler PJ, Frapell PB, Milsom WK, Tseveenmyadag N, Newman SH, Scott GR, Sathiyaselvam P, Takekawa JT, Wikelski M, Bishop CM (2011) The trans-Himalayan flights of bar-headed geese (Anser indicus). Proc Natl Acad Sci 108:9516–9519PubMedPubMedCentralCrossRefGoogle Scholar
  98. Hobson KA (1999) Tracing origins and migration of wildlife using stable isotopes: a review. Oecologia 120:314–326PubMedCrossRefGoogle Scholar
  99. Horton KG, Stepanian PM, Wainwright CE, Tegeler AK (2015) Influence of atmospheric properties on detection of wood-warbler nocturnal flight calls. Int J Biometeorol 59:1385–1394PubMedCrossRefGoogle Scholar
  100. Hu G, Lim KS, Horvitz N, Clark SJ, Reynolds DR, Sapir N, Chapman JW (2016) Mass seasonal bioflows of high-flying insect migrants. Science 354:1584–1587PubMedCrossRefGoogle Scholar
  101. Hua H-X, Deng W-X, Li R-H (2002) Trajectory analysis on the summer immigrant brown planthoppers Nilaparvata lugens in the middle reaches of the Yangtze River captured by aerial net. Acta Entomol Sin 45:68–74Google Scholar
  102. Hüppop O, Hilgerloh G (2012) Flight call rates of migrating thrushes: effect of wind conditions, humidity and time of day at an illuminated platform. J Avian Biol 43:85–90CrossRefGoogle Scholar
  103. Hurley P (2008) The development and verification of TAPM. In: Borego C, Miranda AI (eds) Air pollution modelling and its application XIX. Springer, Dordrecht, Netherlands, pp 208–216CrossRefGoogle Scholar
  104. Jansson S, Brydegaard M, Papayannis A, Tsaknakis G, Åkesson S (2017) Exploitation of an atmospheric lidar network node in single-shot mode for the classification of aerofauna. J Appl Remote Sens 11:036009CrossRefGoogle Scholar
  105. Jenni L (1984) Herbstzugmuster von Vögeln auf dem Col de Bretolet unter besonderer Berücksichtigung nachbrutzeitlicher Bewegungen. Ornithol Beob 81:183–213Google Scholar
  106. Jennings N, Parsons S, Pocock MJO (2008) Human vs. machine: identification of bat species from their echolocation calls by humans and by artificial neural networks. Can J Zool 86:371–377CrossRefGoogle Scholar
  107. Jensen ME, Miller LA (1999) Echolocation signals of the bat Eptesicus serotinus recorded using a vertical microphone array: effect of flight altitude on searching signals. Behav Ecol Sociobiol 47:60–69CrossRefGoogle Scholar
  108. Johnson CG (1969) Migration and dispersal of insects by flight. Methuen, London, 763 ppGoogle Scholar
  109. Johnson OW, Fielding L, Fisher JF, Gold RS, Goodwill RH, Bruner AE, Furey JF, Brusseau PA, Brusseau NH, Johnson PM, Jukema J, Prince LL, Tenney MJ, Fox JW (2012) New insight concerning transoceanic migratory pathways of Pacific Golden Plover (Pluvialis fulva): the Japan stopover and other linkages as revealed by geolocators. Wader Stud Group Bull 119:1–8Google Scholar
  110. Kays R, Crofoot MC, Jetz W, Wikelski M (2015) Terrestrial animal tracking as an eye on life and planet. Science 348:aaa2478PubMedCrossRefGoogle Scholar
  111. Kelly JF, Horton KG, Stepanian PM, de Beurs KM, Fagin T, Bridge EF, Chilson PB (2016) Novel measures of continental-scale avian migration phenology related to proximate environmental cues. Ecosphere 7:e01434CrossRefGoogle Scholar
  112. Kenward RE (2001) A manual for wildlife radio tagging. Academic Press, London, 350 ppGoogle Scholar
  113. Kirkeby C, Wellenreuther M, Brydegaard M (2016) Observations of movement dynamics of flying insects using high resolution lidar. Sci Rep 6:29083PubMedPubMedCentralCrossRefGoogle Scholar
  114. Kissling WD, Pattemore DE, Hagen M (2014) Challenges and prospects in the telemetry of insects. Biol Rev 89:511–530CrossRefGoogle Scholar
  115. Klope MW, Beason RC, Nohara TJ, Begier MJ (2009) Role of near-miss bird strikes in assessing hazards. Human–Wildlife Conflicts 3:208–215Google Scholar
  116. Komenda-Zehnder S, Jenni L, Liechti F (2010) Do bird captures reflect migration intensity?—Trapping numbers on an Alpine pass compared with radar counts. J Avian Biol 41:434–444CrossRefGoogle Scholar
  117. Korner-Nievergelt F, Korner-Nievergelt P, Baader E, Fischer L, Schaffner W, Kestenholz M (2007) Jahres- und tageszeitliches Auftreten von Singvögeln auf dem Herbstzug im Jura (Ulmethöchi, Kanton Basel-Landschaft). Ornithol Beob 104:101–130Google Scholar
  118. Kranstauber B, Cameron A, Weinzierl R, Fountain T, Tilak S, Wikelski M, Kays R (2011) The Movebank data model for animal tracking. Environ Model Softw 26:834–835CrossRefGoogle Scholar
  119. La Sorte FA, Fink D, Hochachka WM, Kelling S (2016) Convergence of broad-scale migration strategies in terrestrial birds. Proc R Soc B 283:20152588PubMedPubMedCentralCrossRefGoogle Scholar
  120. Lawrence BD, Simmons JA (1982) Measurement of atmospheric attenuation at ultrasonic frequencies and the significance for echolocation by bats. J Acoust Soc Am 71:585–590PubMedCrossRefGoogle Scholar
  121. Leshem Y, Bahat O (1999) Flying with the birds. Chemed Books, Tel Aviv, Israel. 264 ppGoogle Scholar
  122. Leshem Y, Yom-Tov Y (1996) The use of thermals by soaring migrants. Ibis 138:667–674CrossRefGoogle Scholar
  123. Liechti F, Bruderer B, Paproth H (1995) Quantification of nocturnal bird migration by moonwatching: comparison with radar and infrared observations. Journal of Field Ornithology 66:457–468Google Scholar
  124. Liechti F, Peter D, Lardelli R, Bruderer B (1996) Herbstlicher Vogelzug im Alpenraum nach Mondbeobachtungen—Topographie und Wind beeinflussen den Zugverlauf. Ornithol Beob 93:131–152Google Scholar
  125. Liechti F, Klaassen M, Bruderer B (2000) Predicting migratory flight altitudes by physiological migration models. Auk 117:205–214CrossRefGoogle Scholar
  126. Liechti F, Witvliet W, Weber R, Bächler E (2013) First evidence of a 200-day non-stop flight in a bird. Nat Commun 4:2554PubMedCrossRefGoogle Scholar
  127. Lingren PD, Raulston JR, Popham TW, Wolf WW, Lingren PS, Esquivel JF (1995) Flight behaviour of corn earworm (Lepidoptera: Noctuidae) moths under low wind speed conditions. Environ Entomol 24:851–860CrossRefGoogle Scholar
  128. Lowery GH (1951) A quantitative study of the nocturnal migration of birds. Univ Kans Publ Mus Nat Hist 3:361–472Google Scholar
  129. Mateos M, Bruderer B (2010) Anwendung von Radar für das Studium des Zuges von Meeresvögeln durch die Strasse von Gibraltar. Ornithol Beob 107:179–190Google Scholar
  130. May PT, Cummings F, Koutsovasilis J, Jones R, Shaw D (2002) The Australian Bureau of Meteorology 1280-MHz wind profiler. J Atmos Ocean Technol 19:911–923CrossRefGoogle Scholar
  131. McCracken GF, Gillam EH, Westbrook JK, Lee Y-F, Jensen ML, Balsley BB (2008) Brazilian free-tailed bats (Tadarida brasiliensis: Molossidae, Chiroptera) at high altitude: Links to migratory insect populations. Integr Comp Biol 48:107–118PubMedCrossRefGoogle Scholar
  132. McKinnon EA, Fraser KC, Stutchbury BJM (2013) New discoveries in landbird migration using geolocators, and a flight plan for the future. Auk 130:211–222CrossRefGoogle Scholar
  133. Miller TA, Brooks RP, Lanzone MJ, Brandes D, Cooper J, Trembley JA, Wilhelm J, Duerr A, Katzner TE (2016) Limitations and mechanisms influencing the migratory performance of soaring birds. Ibis 158:116–134CrossRefGoogle Scholar
  134. Mitchell GW, Woodworth BK, Taylor PD, Norris DR (2015) Automated telemetry reveals age specific differences in flight duration and speed are driven by wind conditions in a migratory songbird. Mov Ecol 3:1–13CrossRefGoogle Scholar
  135. Naef-Daenzer B (2007) An allometric function to fit leg-loop harnesses to terrestrial birds. J Avian Biol 38:404–407CrossRefGoogle Scholar
  136. Naef-Daenzer B (2013) Entwicklungen in der Telemetrie und ihre Bedeutung für die ornithologische Forschung. Ornithol Beob 110:307–318Google Scholar
  137. Naef-Daenzer B, Früh D, Stalder M, Wetli P, Weise E (2005) Miniaturization (0.2 g) and evaluation of attachment techniques of telemetry transmitters. J Exp Biol 208:4063–4068PubMedCrossRefGoogle Scholar
  138. Nilsson C, Bäckman J, Alerstam T (2014) Are flight paths of nocturnal songbird migrants influenced by local coastlines at a peninsula? Curr Zool 60:660–669CrossRefGoogle Scholar
  139. Nohara TJ, Weber P, Ukrainec A, Premji B, Jones G (2007) An overview of avian radar developments—past, present and future. In: Proceedings, bird strike 2007 conference, September 10–13, 2007. Kingston, Ontario, CanadaGoogle Scholar
  140. NPL (1995) Tables of physical & chemical constants, 16th edition. 2.4.1 speed and attenuation of sound. Kaye & Laby online, Version 1.0. National Physical Laboratory, Teddington, UK. Google Scholar
  141. Otuka A (2013) Migration of rice planthoppers and their vectored re-emerging and novel rice viruses in East Asia. Front Microbiol 4:309PubMedPubMedCentralCrossRefGoogle Scholar
  142. Otuka A, Dudhia J, Watanabe T, Furuno A (2005) A new trajectory analysis method for migratory planthoppers, Sogatella furcifera (Horváth) (Homoptera: Delphacidae) and Nilaparvata lugens (Stål), using an advanced weather forecast model. Agric For Entomol 7:1–9CrossRefGoogle Scholar
  143. Pekarsky S, Angert A, Haese B, Werner M, Hobson KA, Nathan R (2015) Enriching the isotopic toolbox for migratory connectivity analysis: a new approach for migratory species breeding in remote or unexplored areas. Divers Distrib 21:416–427CrossRefGoogle Scholar
  144. Pennycuick CJ, Alerstam T, Larsson B (1979) Soaring migration of the Common Crane Grus grus observed by radar and from an aircraft. Ornis Scand 10:241–251CrossRefGoogle Scholar
  145. Peter D, Trösch B, Lücker L (1999) Intensiver Vogelzug im Spätherbst als Folge einer Stauentladung. Ornithol Beob 96:285–292Google Scholar
  146. Plonczkier P, Simms IC (2012) Radar monitoring of migrating pink-footed geese: behavioural responses to offshore wind farm development. J Appl Ecol 49:1187–1194CrossRefGoogle Scholar
  147. Pruess KP, Pruess NC (1971) Telescopic observation of the moon as a means for observing migration of the army cutworm, Chorizagrotis auxiliaris (Lepidoptera: Noctuidae). Ecology 52:999–1007CrossRefGoogle Scholar
  148. Rainey RC (1989) Migration and meteorology. Flight behaviour and the atmospheric environment of locusts and other migrant pests. Oxford University Press, Oxford, 344 ppGoogle Scholar
  149. Raman DR, Gerhardt RR, Wilkerson JB (2007) Detecting insect flight sounds in the field: implications for acoustical counting of mosquitoes. Trans Am Soc Agric Biol Eng 50:1481–1485Google Scholar
  150. Reynolds DR, Riley JR (2002) Remote-sensing, telemetric and computer-based technologies for investigating insect movement: a survey of existing and potential techniques. Comput Electron Agric 35:271–307CrossRefGoogle Scholar
  151. Reynolds DR, Riley JR, Armes NJ, Cooter RJ, Tucker MR, Colvin J (1997) Techniques for quantifying insect migration. In: Dent DR, Walton MP (eds) Methods in ecological and agricultural entomology. CAB International, Wallingford, UK, pp 111–145Google Scholar
  152. Reynolds DR, Nau BS, Chapman JW (2013) High-altitude migration of Heteroptera in Britain. Eur J Entomol 110:483–492CrossRefGoogle Scholar
  153. Riley JR (1994) Flying insects in the field. In: Wratten SD (ed) Video techniques in animal ecology and behaviour. Chapman and Hall, London, pp 1–15Google Scholar
  154. Riley JR, Reynolds DR, Farrow RA (1987) The migration of Nilaparvata lugens (Stål) (Delphacidae) and other Hemiptera associated with rice during the dry season in the Philippines: a study using radar, visual observations, aerial netting and ground trapping. Bull Entomol Res 77:145–169CrossRefGoogle Scholar
  155. Riley JR, Valeur P, Smith AD, Reynolds DR, Poppy G, Löfsted C (1998) Harmonic radar as a means of tracking the pheromone-finding and pheromone following flight of male moths. J Insect Behav 11:287–296CrossRefGoogle Scholar
  156. Riley JR, Reynolds DR, Smith AD, Edwards AS, Osborne JL, Williams IH, McCartney HA (1999) Compensation for wind drift by bumble-bees. Nature 400:126CrossRefGoogle Scholar
  157. Roffey J (1972) Radar studies of insects. PANS 18:303–309Google Scholar
  158. Russell RW, May ML, Soltesz KL, Fitzpatrick JW (1998) Massive swarm migrations of dragonflies (Odonata) in eastern North America. Am Midl Nat 140:325–342CrossRefGoogle Scholar
  159. Rutz C, Hays GC (2009) New frontiers in biologging science. Biol Lett 5:289–292PubMedPubMedCentralCrossRefGoogle Scholar
  160. Salewski V, Kéry M, Herremans M, Liechti L, Jenni L (2009) Estimating fat and protein fuel from fat and muscle scores in passerines. Ibis 151:640–653CrossRefGoogle Scholar
  161. Sanders CE, Mennill DJ (2014) Acoustic monitoring of nocturnally migrating birds accurately assesses the timing and magnitude of migration through the Great Lakes. Condor 116:371–383CrossRefGoogle Scholar
  162. Sapir N, Horvitz N, Dechmann DKN, Fahr J, Wikelski M (2014a) Commuting fruit bats beneficially modulate their flight in relation to wind. Proc R Soc B 281:20140018PubMedPubMedCentralCrossRefGoogle Scholar
  163. Sapir N, Horvitz N, Wikelski M, Avissar R, Nathan R (2014b) Compensation for lateral drift due to crosswind in migrating European Bee-eaters. J Ornithol 155:745–753CrossRefGoogle Scholar
  164. Schaefer GW (1968) Bird recognition by radar. A study in quantitative radar ornithology. In: Murton RK (ed) The problems of birds as pests. Academic Press, New York, NY, USA, pp 53–86CrossRefGoogle Scholar
  165. Schaefer GW (1976) Radar observations of insect flight. In: Rainey RC (ed) Insect flight. Symposia of the Royal Entomological Society no. 7. Blackwell Scientific, Oxford, UK, pp 157–197Google Scholar
  166. Schmaljohann H, Liechti F, Bächler E, Steuri T, Bruderer B (2008) Quantification of bird migration by radar—a detection probability problem. Ibis 150:342–355CrossRefGoogle Scholar
  167. Schmaljohann H, Liechti F, Bruderer B (2009) Trans-Sahara migrants select flight altitudes to minimize energy costs rather than water loss. Behav Ecol Sociobiol 63:1609–1619CrossRefGoogle Scholar
  168. Schnitzler H-U, Kalko EKV (2001) Echolocation by insect-eating bats. Bioscience 51:557–569CrossRefGoogle Scholar
  169. Sexon MG, Mulcahy DM, Spriggs M, Myres GE (2014) Factors influencing immediate post-release survival of Spectacled Eiders following surgical implantation of transmitters with percutaneous antennae. J Wildl Manag 78:550–560CrossRefGoogle Scholar
  170. Shamoun-Baranes J, Alves JA, Bauer S, Dokter AM, Hüppop O, Koistinen J, Leijnse H, Liechti F, van Gasteren H, Chapman JW (2014) Continental-scale radar monitoring of the aerial movements of animals. Mov Ecol 2:9CrossRefGoogle Scholar
  171. Shamoun-Baranes J, Liechti F, Vansteelant WMG (2017) Atmospheric conditions create freeways, detours and tailbacks for migrating birds. J Comp Physiol A 203:509–529CrossRefGoogle Scholar
  172. Sjöberg S, Nilsson C (2015) Nocturnal migratory songbirds adjust their travelling direction aloft: evidence from a radiotelemetry and radar study. Biol Lett 11:20150337PubMedPubMedCentralCrossRefGoogle Scholar
  173. Smith AD, Paton PWC, McWilliams SR (2014) Using nocturnal flight calls to assess the fall migration of warblers and sparrows along a coastal ecological barrier. PLoS One 9:e92218PubMedPubMedCentralCrossRefGoogle Scholar
  174. Sokolov LV (2011) Modern telemetry: new possibilities in ornithology. Biol Bull 38:885–904CrossRefGoogle Scholar
  175. Spaar R, Bruderer B (1996) Soaring migration of Steppe Eagles Aquila nipalensis in southern Israel: flight behaviour under various wind and thermal conditions. J Avian Biol 27:289–301CrossRefGoogle Scholar
  176. Stefanescu C, Alarcón M, Àvila A (2007) Migration of the painted lady butterfly, Vanessa cardui, to north-eastern Spain is aided by African wind currents. J Anim Ecol 76:888–898PubMedCrossRefGoogle Scholar
  177. Stefanescu C, Páramo F, Åkesson S, Alarcón M, Ávila A, Brereton T, Carnicer J, Cassar LF, Fox R, Heliölä J, Hill JK, Hirneisen N, Kjellén N, Kühn E, Kuussaari M, Leskinen M, Liechti F, Musche M, Regan EC, Reynolds DR, Roy DB, Ryrholm N, Schmaljohann H, Settele J, Thomas CD, van Swaay C, Chapman JW (2013) Multi-generational long-distance migration of insects: studying the painted lady butterfly in the Western Palearctic. Ecography 36:474–486CrossRefGoogle Scholar
  178. Stefanescu C, Soto DX, Talavera G, Vila R, Hobson KA (2016) Long-distance autumn migration across the Sahara by painted lady butterflies: exploiting resources in the tropical savannah. Biol Lett 12:20160561PubMedPubMedCentralCrossRefGoogle Scholar
  179. Stepanian PM, Horton KG, Hille DC, Wainwright CE, Chilson PB, Kelly JF (2016) Extending bioacoustic monitoring of birds aloft through flight call localization with a three-dimensional microphone array. Ecol Evol 6(19):7039–7046PubMedPubMedCentralCrossRefGoogle Scholar
  180. Symmons PM (1986) Locust displacing winds in eastern Australia. Int J Biometeorol 30:53–64CrossRefGoogle Scholar
  181. Tauc MJ, Fristrup KM, Shaw JA (2017) Development of a wing-beat-modulation scanning lidar system for insect studies. In: Singh UN (ed) Lidar remote sensing for environmental monitoring 2017, Proc SPIE 10406:104060GGoogle Scholar
  182. Taylor LR (1986) Synoptic dynamics, migration and the Rothamsted Insect Survey: presidential address to the British Ecological Society, December 1984. J Anim Ecol 55:1–38CrossRefGoogle Scholar
  183. Taylor PD, Crewe TL, Mackenzie SA, Lepage D, Aubry Y, Crysler Z, Finney G, Francis CM, Guglielmo CG, Hamilton DJ, Holberton RL, Loring PH, Mitchell GW, Norris D, Paquet J, Ronconi RA, Smetzer J, Smith PA, Welch LJ, Woodworth BK (2017) The Motus Wildlife Tracking System: a collaborative research network to enhance the understanding of wildlife movement. Avian Cons Ecol 12(1):8Google Scholar
  184. Therrien J-F, Goodrich LJ, Barber DR, Bildstein KL (2012) A long-term database on raptor migration at Hawk Mountain Sanctuary, northeastern United States. Ecology 93:1979CrossRefGoogle Scholar
  185. Tomkiewicz SM, Fuller MR, Kie JG, Bates KK (2010) Global positioning system and associated technologies in animal behaviour and ecological research. Philos Trans R Soc B 365:2163–2176CrossRefGoogle Scholar
  186. Treep J, Bohrer G, Shamoun-Baranes J, Duriez O, Frasson RPdM, Bouten W (2016) Using high-resolution GPS tracking data of bird flight for meteorological observations. Bull Am Meteorol Soc 97:951–961CrossRefGoogle Scholar
  187. Vardanis Y, Nilsson J-A, Klaassen RHG, Strandberg R, Alerstam T (2016) Consistency in long-distance bird migration: contrasting patterns in time and space for two raptors. Anim Behav 113:177–187CrossRefGoogle Scholar
  188. Vyssotski AL, Serkov AN, Itskov PM, Dell’Omo G, Latanov AV, Wolfer DP, Lipp H-P (2006) Miniature neurologgers for flying pigeons: multichannel EEG and action and field potentials in combination with GPS recording. J Neurophysiol 95:1263–1273PubMedCrossRefGoogle Scholar
  189. Wainwright CE, Stepanian PM, Horton KG (2016) The role of the US Great Plains low-level jet in nocturnal migrant behavior. Int J Biometeorol 60:1531–1542PubMedCrossRefGoogle Scholar
  190. Wainwright CE, Stepanian PM, Reynolds DR, Reynolds AM (2017) The movement of small insects in the convective boundary layer: linking patterns to processes. Sci Rep 7:5438PubMedPubMedCentralCrossRefGoogle Scholar
  191. Walker TJ (2001) Butterfly migrations in Florida: seasonal patterns and long-term changes. Environ Entomol 30:1052–1060CrossRefGoogle Scholar
  192. Wang R, Hu C, Fu X, Long T, Zeng T (2017) Micro-Doppler measurement of insect wing-beat frequencies with W-band coherent radar. Sci Rep 7:1396PubMedPubMedCentralCrossRefGoogle Scholar
  193. Webster MS, Marra PP, Haig SM, Bensch S, Holmes RT (2002) Links between worlds: unraveling migratory connectivity. Trends Ecol Evol 17:76–83CrossRefGoogle Scholar
  194. Weisshaupt N, Maruri M, Arizaga J (2016) Nocturnal bird migration in the Bay of Biscay as observed by a thermal-imaging camera. Bird Study 63:533–542CrossRefGoogle Scholar
  195. Weisshaupt N, Lehmann V, Arizaga J, Maruri M, Freckleton R (2017) Radar wind profilers and avian migration: a qualitative and quantitative assessment verified by thermal imaging and moon watching. Methods Ecol Evol 8:1133–1145CrossRefGoogle Scholar
  196. Weitkamp C (2005) Lidar: range-resolved optical remote sensing of the atmosphere. Springer, New York, 456 ppGoogle Scholar
  197. Weller TJ, Castle KT, Liechti F, Hein CD, Schirmacher MR, Cryan PM (2016) First direct evidence of long-distance seasonal movements and hibernation in a migratory bat. Sci Rep 6:34585PubMedPubMedCentralCrossRefGoogle Scholar
  198. Westbrook JK, Eyster RS, Wolf WW, Lingren PD, Raulston JR (1995) Migration pathways of corn earworm (Lepidoptera: Noctuidae) indicated by tetroon trajectories. Agric For Meteorol 73:67–87CrossRefGoogle Scholar
  199. Wikelski M, Moskowitz D, Adelman JS, Cochran J, Wilcove DS, May ML (2006) Simple rules guide dragonfly migration. Biol Lett 2:325–329PubMedPubMedCentralCrossRefGoogle Scholar
  200. Wikelski M, Kays RW, Kasdin NJ, Thorup K, Smith JA, Swenson GW Jr (2007) Going wild: what a global small-animal tracking system could do for experimental biologists. J Exp Biol 210:181–186PubMedCrossRefGoogle Scholar
  201. Wilcock J (1964) Radar and visible migration in Norfolk, England: a comparison. Ibis 106:101–109CrossRefGoogle Scholar
  202. Wilczak JM, Strauch RG, Martin FM, Weber BL, Meritt DA, Jordan JR, Wolfe DE, Lewis LK, Wuertz DB, Gaynor JE, McLaughlin SA, Rogers RR, Riddle AC, Dye TS (1995) Contamination of wind profiler data by migrating birds: characteristics of corrupted data and potential solutions. J Atmos Ocean Technol 12:449–467CrossRefGoogle Scholar
  203. Williams CB (1958) Insect migration. Collins, London, 237 ppGoogle Scholar
  204. Wilson RP, Shepard EL, Liebsch N (2008) Prying into the intimate details of animal lives: use of a daily diary on animals. Endanger Species Res 4:123–137CrossRefGoogle Scholar
  205. Wiltschko R, Wiltschko W (2003) Mechanism of orientation and navigation in migratory birds. In: Berthold P, Gwinner E, Sonnenschein E (eds) Avian migration. Springer, Berlin, Germany, pp 433–456CrossRefGoogle Scholar
  206. Wood CR, O’Connor EJ, Hurley RA, Reynolds DR, Illingworth AJ (2009) Cloud-radar observations of insects in the UK convective boundary layer. Meteorol Appl 16:491–500CrossRefGoogle Scholar
  207. Wood CR, Clarke SJ, Barlow JF, Chapman JW (2010) Layers of nocturnal insect migrants at high-altitude: the influence of atmospheric conditions on their formation. Agric For Entomol 12:113–121CrossRefGoogle Scholar
  208. Zaugg S, Saporta G, van Loon E, Schmaljohann H, Liechti F (2008) Automatic identification of bird targets with radar via patterns produced by wing flapping. J R Soc Interface 5:1041–1053PubMedPubMedCentralCrossRefGoogle Scholar
  209. Zehnder S, Åkesson S, Liechti F, Bruderer B (2001) Nocturnal autumn bird migration at Falsterbo, South Sweden. J Avian Biol 32:239–248CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.School of Physical, Environmental and Mathematical SciencesUniversity of New South WalesCanberraAustralia
  2. 2.Institute for Applied Ecology, University of CanberraCanberraAustralia
  3. 3.Swiss Ornithological InstituteSempachSwitzerland

Personalised recommendations