Aeroecology pp 179-198 | Cite as

Facing the Wind: The Aeroecology of Vertebrate Migrants

  • Felix Liechti
  • Liam P. McGuire


The aerosphere is an essential part of the habitat of flying vertebrates. Birds and bats make use of the airspace for daily activities like foraging, commuting, mating, and seasonal movements including migration. In this chapter, we focus on how the properties of the aerosphere affect migration and a few other regular large-scale movements. For animals moving between seasonally favourable habitats across hundreds or thousands of kilometres, the conditions of the aerosphere have a substantial impact on energy and time demands, on orientation and navigation, and finally on survival. Although bats and birds often make similar use of the aerosphere, there is a huge difference in our actual knowledge of these interactions. There are about 4000 migratory bird species comprising 100–150 billion individuals undertaking regular seasonal movements within and between continents and across the oceans. Our understanding of bat migration is much more limited and such estimates are not available, but many bat species and many millions of individuals show similar kinds of migratory behaviour. Atmospheric conditions vary across time and space, including variation in air flow and air temperature, humidity, and density. In this chapter, we emphasize the importance of wind and precipitation as the main factors driving behaviour and evolutionary adaptations. Flying within a moving air space, bats and birds can make use of regular seasonal wind fields, like the trade and anti-trade winds, but they also must deal with irregular events, like heavy storms. In combination with the distribution of their preferred habitats, large-scale atmospheric conditions guide their flight routes and shape their migratory strategies. The timing of individual flight stages is directed by weather conditions, mainly wind and precipitation. Once aloft, individuals may select among varying wind conditions at different flight altitudes to achieve beneficial wind conditions en route. These behavioural patterns have a strong effect on the time needed to move between suitable habitats, but probably more importantly on overall energy demand and thus foraging time/cost and survival. While birds are known to explore heights up to 8000 m asl during migration, bats are generally restricted to heights below 3000 m asl, possibly due to differences in lung morphology. On the other hand, many bats can withstand harsh weather conditions by using torpor, while birds may have to leave or starve. Birds and bats are confronted with the regular occurrence of both predictable (e.g. wind support deviations from target) and unpredictable (e.g. storms) displacements and are therefore equipped with excellent orientation capabilities (Chap.  6). This chapter provides the background of what we really know about the role of the aerosphere for the migration of birds and bats and where we still marvel.



We thank P. Chilson for the initiative to compile this book, and J. Kelly and W. Frick for revising our manuscript. We are also grateful for the many insightful and stimulating conversations with colleagues and collaborators that have contributed to the ideas for this chapter.


  1. Adamík P, Emmenegger T, Briedis M, Gustafsson L, Henshaw I, Krist M, Laaksonen T, Liechti F, Procházka P, Salewski V, Hahn S (2016) Barrier crossing in small avian migrants: individual tracking reveals prolonged nocturnal flights into the day as a common migratory strategy. Sci Rep 6:21560PubMedPubMedCentralCrossRefGoogle Scholar
  2. Alerstam T (1979) Wind as a selective agent in bird migration. Ornis Scand 10:76–93CrossRefGoogle Scholar
  3. Alerstam T (1990) Bird migration. Cambridge University Press, CambridgeGoogle Scholar
  4. Alerstam T (2011) Optimal bird migration revisited. J Ornithol 152:5–23CrossRefGoogle Scholar
  5. Alerstam T, Hedenström A, Åkesson S (2003) Long-distance migration: evolution and determinants. Oikos 103:247–260CrossRefGoogle Scholar
  6. Alerstam T, Rosen M, Bäckman J, Ericson PGP, Hellgren O (2007) Flight speeds among bird species: allometric and phylogenetic effects. PLoS Biol 5:e197PubMedPubMedCentralCrossRefGoogle Scholar
  7. Alexander RM (2006) Principles of animal locomotion, 2nd edn. University Press, PrincetonGoogle Scholar
  8. Alves JA, Shamoun-Baranes J, Desmet P, Dokter A, Bauer S, Hüppop O et al (2016) Monitoring continent - wide aerial patterns of bird movements usi ng weather radars. In: Proceedings of the BOU’s 2015 Annual Conference, #BOU2015 2015, pp 1–5Google Scholar
  9. Arnett EB, Baerwald EF (2013) Impacts of wind energy development on bats: implications for conservation. In: Adams RA, Pedersen SC (eds) Bat evolution, ecology, and conservation. Springer, New York, pp 435–456CrossRefGoogle Scholar
  10. Arnett EB, Baerwald EF, Matthews F, Rodrigues L, Rodríguez-Durán A, Rydell J, Villegas-Patraca R, Voigt CC (2016) Impacts of wind energy development on bats: a global perspective. In: Voigt CC, Kingston T (eds) Bats in the Anthropocene: conservation in a Changing World. Springer, Cham, pp 295–324CrossRefGoogle Scholar
  11. Baerwald EF, Barclay RMR (2009) Geographic variation in activity and fatality of migratory bats at wind energy facilities. J Mammal 90:1341–1349CrossRefGoogle Scholar
  12. Baerwald EF, Barclay RMR (2011) Patterns of activity and fatality of migratory bats at a wind energy facility in Alberta, Canada. J Wildl Manag 75:1103–1114CrossRefGoogle Scholar
  13. Battley PF, Warnock N, Tibbitts TL, Gill RE, Piersma T, Hassell CJ, Douglas DC, Mulcahy DM, Gartrell BD, Schuckard R, Melville DS, Riegen AC (2012) Contrasting extreme long-distance migration patterns in bar-tailed godwits Limosa lapponica. J Avian Biol 43:21–32CrossRefGoogle Scholar
  14. Bauchinger U, Wohlmann A, Biebach H (2005) Flexible remodeling of organ size during spring migration of the garden warbler (Sylvia borin). Zoology 108:97–106PubMedCrossRefGoogle Scholar
  15. Bauer S, Lisovski S, Hahn S (2016) Timing is crucial for consequences of migratory connectivity. Oikos 125:605–612CrossRefGoogle Scholar
  16. Berthold P (2001) Bird migration—a general survey, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  17. Bishop CM, Spivey RJ, Hawkes LA, Batbayar N, Chua B, Frappell PB, Milsom WK, Natsagdorj T, Newman SH, Scott GR, Takekawa JY, Wikelski M, Butler PJ (2015) The roller coaster flight strategy of bar-headed geese conserves energy during Himalayan migrations. Science 347:250–254PubMedCrossRefGoogle Scholar
  18. Bisson I-A, Safi K, Holland RA (2009) Evidence for repeated independent evolution of migration in the largest family of bats. PLoS One 4:e7504PubMedPubMedCentralCrossRefGoogle Scholar
  19. Bonaccorso FJ, McGuire LP (2013) Modeling the colonization of Hawaii by hoary bats (Lasiurus cinereus). In: Adams RA, Pedersen SC (eds) Bat ecology, evolution, and conservation. Springer, New York, pp 187–206CrossRefGoogle Scholar
  20. Bowlin MS, Bisson I-A, Shamoun-Baranes J, Reichard JD, Sapir N, Marra PP, Kunz TH, Wilcove DS, Hedenström A, Guglielmo CG, Åkesson S, Ramenofsky M, Wikelski M (2010) Grand challenges in migration biology. Integr Comp Biol 50:261–279PubMedCrossRefGoogle Scholar
  21. Bowlin MS, Enstrom DA, Murphy BJ, Plaza E, Jurich P, Cochran J (2015) Unexplained altitude changes in a migrating thrush: long-flight altitude data from radio-telemetry. Auk 132:808–816CrossRefGoogle Scholar
  22. Breuner CW, Sprague RS, Patterson SH, Woods HA (2013) Environment, behavior and physiology: do birds use barometric pressure to predict storms? J Exp Biol 216:1982–1990PubMedCrossRefGoogle Scholar
  23. Brown RE, Fedde MR (1993) Airflow sensors in the avian wing. J Exp Biol 179:13–30Google Scholar
  24. Bruderer B (1971) Radarbeobachtungen über den Frühlingszug im Schweizerischen Mittelland. (Ein Beitrag zum Problem der Witterungsabhängigkeit des Vogelzugs). Ornithol Beob 68:89–158Google Scholar
  25. Bruderer B (1975) Zur Schwalbenkatastrophe im Herbst 1974. Tierwelt 4–6:1–20Google Scholar
  26. Bruderer B, Boldt A (2001) Flight characteristics of birds: I. Radar measurements of speeds. Ibis 143:178–204CrossRefGoogle Scholar
  27. Bruderer B, Underhill LG, Liechti F (1995) Altitude choice of night migrants in a desert area predicted by meteorological factors. Ibis 137:44–55CrossRefGoogle Scholar
  28. Bruderer B, Peter D (2017) Windprofit favouring extreme altitudes of bird migration. Ornithologische Beobachter 114:73–86Google Scholar
  29. Byng JW, Racey PA, Swaine MD (2009) The ecological impacts of a migratory bat aggregation on its seasonal roost in Kasanka National Park, Zambia. Afr J Ecol 48:29–36CrossRefGoogle Scholar
  30. Chapman JW, Nilsson C, Lim KS, Bäckman J, Reynolds DR, Alerstam T (2016) Adaptive strategies in nocturnally migrating insects and songbirds: contrasting responses to wind. J Anim Ecol 85:115–124PubMedCrossRefGoogle Scholar
  31. Cockrum EL (1969) Migration in the guano bat, Tadarida brasiliensis. Misc Pub Univ Kansas Museum Nat Hist 51:303–336Google Scholar
  32. Cryan PM, Brown AC (2007) Migration of bats past a remote island offers clues toward the problem of bat fatalities at wind turbines. Biol Conserv 139:1–11CrossRefGoogle Scholar
  33. Davenport J (1994) How and why do flying fish fly? Rev Fish Biol Fish 4:184–214CrossRefGoogle Scholar
  34. Dechmann DKN, Wikelski M, Ellis-Soto D, Safi K, Teague O’Mara M (2017) Determinants of spring migration departure decision in a bat. Biol Lett 13(9):20170395PubMedPubMedCentralCrossRefGoogle Scholar
  35. Delingat J, Bairlein F, Hedenström A (2008) Obligatory barrier crossing and adaptive fuel management in migratory birds: the case of the Atlantic crossing in Northern Wheatears (Oenanthe oenanthe). Behav Ecol Sociobiol 62:1069–1078CrossRefGoogle Scholar
  36. DeLuca WV, Woodworth BK, Rimmer CC, Marra PP, Taylor PD, McFarland KP, Mackenzie SA, Norris DR (2015) Transoceanic migration by a 12 g songbird. Biol Lett 11:20141045PubMedPubMedCentralCrossRefGoogle Scholar
  37. Dokter AM, Shamoun-Baranes J, Kemp MU, Tijm S, Holleman I (2013) High altitude bird migration at temperate latitudes: a synoptic perspective on wind assistance. PLoS One 8:e52300PubMedPubMedCentralCrossRefGoogle Scholar
  38. Dossman BC, Mitchell GW, Norris DR, Taylor PD, Guglielmo CG, Matthews SN, Rodewald PG (2016) The effects of wind and fuel stores on stopover departure behavior across a migratory barrier. Behav Ecol 27:567–574CrossRefGoogle Scholar
  39. Dudley R, Byrnes G, Yanoviak SP, Borrell B, Brown RM, McGuire JA (2007) Gliding and the functional origins of flight: biomechanical novelty or necessity? Annu Rev Ecol Evol Syst 38:179–201CrossRefGoogle Scholar
  40. Egevang C, Stenhouse IJ, Phillips RA, Petersen A, Fox JW, Silk JRD (2010) Tracking of Arctic terns Sterna paradisaea reveals longest animal migration. Proc Natl Acad Sci USA 107:2078–2081PubMedPubMedCentralCrossRefGoogle Scholar
  41. Eikenaar C, Schmaljohann H (2015) Wind conditions experienced during the day predict nocturnal restlessness in a migratory songbird. Ibis 157:125–132CrossRefGoogle Scholar
  42. Elkins N (1988) Can high-altitude migrants recognize optimum flight levels? Ibis 130:562–563CrossRefGoogle Scholar
  43. Engel S, Herbert B, Visser GH (2006) Metabolic costs of avian flight in relation to flight velocity: a study in Rose Coloured Starlings (Sturnus roseus, Linnaeus). J Comp Physiol B 176:415–427PubMedCrossRefGoogle Scholar
  44. Erni B, Liechti F, Bruderer B (2003) How does a first year passerine migrant find its way? Simulating migration mechanisms and behavioural adaptations. Oikos 103:333–340CrossRefGoogle Scholar
  45. Erni B, Liechti F, Bruderer B (2005) The role of wind in passerine autumn migration between Europe and Africa. Behav Ecol 16:732–740CrossRefGoogle Scholar
  46. Finlayson JC, Garcia EFJ, Mosquera MA, Bourne WRP (1976) Raptor migration across the Strait of Gibraltar. Br Birds 69:77–87Google Scholar
  47. Fleming TH, Eby P (2003) Ecology of bat migration. In: Kunz TH, Fenton MB (eds) Bat ecology. University of Chicago Press, Chicago, pp 156–208Google Scholar
  48. Fleming TH, Nuñez RA, Sternberg LSL (1993) Seasonal changes in the diets of migrant and non-migrant nectarivorous bats as revealed by carbon stable isotope analysis. Oecologia 74:72–75CrossRefGoogle Scholar
  49. Frick WF, Baerwald EF, Pollock JF, Barclay RMR, Szymanski JA, Weller TJ, Russell AL, Loeb SC, Medellin RA, McGuire LP (2017) Fatalities at wind turbines may threaten population viability of a migratory bat. Biol Conserv 209:172–177CrossRefGoogle Scholar
  50. Frick WF, Chilson PB, Fuller NW, Bridge ES, Kunz TH (2013) Aeroecology. In: Adams RA, Pedersen SC (eds) Bat ecology, evolution, and conservation. Springer, New York, pp 149–168CrossRefGoogle Scholar
  51. Gaston KJ, Blackburn TM (1997) How many birds are there? Biodivers Conserv 6:615–625CrossRefGoogle Scholar
  52. Geiser F, Brigham RM (2012) The Other Functions of Torpor. In: Ruf T, Bieber C, Arnold W, Millesi E (eds) Living in a Seasonal World. Springer, HeidelbergGoogle Scholar
  53. Gerson AR, Guglielmo CG (2011) House sparrows (Passer domesticus) increase protein catabolism in response to water restriction. Am J Phys 300:R925–R930Google Scholar
  54. Giavi S, Moretti M, Bontadina F, Zambelli N, Schaub M (2014) Seasonal survival probabilities suggest low migration mortality in migrating bats. PLoS One 9:e85628PubMedPubMedCentralCrossRefGoogle Scholar
  55. Gill RE, Piersma T, Hufford G, Servranckx R, Riegen A (2005) Crossing the ultimate ecological barrier: evidence for an 11000-km-long nonstop flight from Alaska to New Zealand and Eastern Australia by bar-tailed godwits. Condor 107:1–20CrossRefGoogle Scholar
  56. Gill RE Jr, Tibbitts TL, Douglas DC, Handel CM, Mulcahy DM, Gottschalck JC, Warnock N, McCaffery BJ, Battley PF, Piersma T (2009) Extreme endurance flights by landbirds crossing the Pacific Ocean: ecological corridor rather than barrier? Proc R Soc B 276:447–457PubMedCrossRefGoogle Scholar
  57. Gill J, Douglas DC, Handel CM, Tibbitts TL, Hufford G, Piersma T (2014) Hemispheric-scale wind selection facilitates bar-tailed godwit circum-migration of the Pacific. Anim Behav 90:117–130CrossRefGoogle Scholar
  58. Green M, Alerstam T, Gudmundsson GA, Hedenström A, Piersma T (2004) Do Arctic waders use adaptive wind drift? J Avian Biol 35:305–315CrossRefGoogle Scholar
  59. Greenberg R, Marra PP (2005) Birds of two worlds: the ecology and evolution of migration. The John Hopkins University Press, BaltimoreGoogle Scholar
  60. Grüebler MU, Korner-Nievergelt F, Naef-Daenzer B (2014) Equal nonbreeding period survival in adults and juveniles of a long-distant migrant bird. Ecol Evol 4:756–765PubMedPubMedCentralCrossRefGoogle Scholar
  61. Hahn S, Bauer S, Liechti F (2009) The natural link between Europe and Africa – 2.1 billion birds on migration. Oikos 118:624–626CrossRefGoogle Scholar
  62. Hawkes LA, Balachandran S, Batbayar N, Butler PJ, Frappell PB, Milsom WK, Tseveenmyadag N, Newman SH, Scott GR, Sathiyaselvam P, Takekawa JY, Wikelski M, Bishop CM (2011) The trans-Himalayan flights of bar-headed geese (Anser indicus). Proc Natl Acad Sci 108(23):9516–9519PubMedPubMedCentralCrossRefGoogle Scholar
  63. Hawkes LA, Balachandran S, Batbayar N, Butler PJ, Chua B, Douglas DC, Frappell PB, Hou Y, Milsom WK, Newman SH, Prosser DJ, Sathiyaselvam P, Scott GR, Takekawa JY, Natsagdorj T, Wikelski M, Witt MJ, Yan B, Bishop CM (2013) The paradox of extreme high-altitude migration in bar-headed geese Anser indicus. Proc R Soc B 280:20122114PubMedPubMedCentralCrossRefGoogle Scholar
  64. Hedenström A, Alerstam T (1997) Optimum fuel loads in migratory birds: distinguishing between time and energy minimization. J Theor Biol 189:227–234PubMedCrossRefGoogle Scholar
  65. Hedenström A, Norevik G, Warfvinge K, Andersson A, Bäckman J, Åkesson S (2016) Annual 10-Month Aerial Life Phase in the Common Swift Apus apus. Curr Biol 26(22):3066–3070PubMedCrossRefGoogle Scholar
  66. Horn JW, Kunz TH (2008) Analyzing NEXRAD Doppler radar images to assess nightly dispersal patterns and population trends in Brazilian free-tailed bats (Tadarida brasiliensis). Integr Comp Biol 48:24–39PubMedCrossRefGoogle Scholar
  67. Horton KG, Van Doren BM, Stepanian PM, Farnsworth A, Kelly JF (2016a) Where in the air? Aerial habitat use of nocturnally migrating birds. Biol Lett 12(11):20160591PubMedPubMedCentralCrossRefGoogle Scholar
  68. Horton KG, Van Doren BM, Stepanian PM, Hochachka WM, Farnsworth A, Kelly JF (2016b) Nocturnally migrating songbirds drift when they can and compensate when they must. Sci Rep 6(1)Google Scholar
  69. Horvitz N, Sapir N, Liechti F, Avissar R, Mahrer I, Nathan R (2014) The gliding speed of migrating birds: slow and safe or fast and risky? Ecol Lett 17:670–679PubMedCrossRefGoogle Scholar
  70. Hüppop O, Hüppop K (2003) North Atlantic Oscillation and timing of spring migration in birds. Proc R Soc B Biol Sci 270(1512):233–240CrossRefGoogle Scholar
  71. Hutterer R, Teodora I, Meyer-Cords C, Rodrigues L (2005) Bat migrations in Europe. Naturschutz und Biologische Vielfalt, BonnGoogle Scholar
  72. Jenni L, Jenni-Eiermann S (1998) Fuel supply and metabolic constraints in migrating birds. J Avian Biol 29:521–528CrossRefGoogle Scholar
  73. Kahlert J, Leito A, Laubek B, Luigujõe L, Kuresoo A, Aaen K, Luud A (2012) Factors affecting the flight altitude of migrating waterbirds in Western Estonia. Ornis Fenn 89:241–253Google Scholar
  74. Kelly JF, Ryan Shipley J, Chilson PB, Howard KW, Frick WF, Kunz TH (2012) Quantifying animal phenology in the aerosphere at a continental scale using NEXRAD weather radars. Ecosphere 3(2):art16CrossRefGoogle Scholar
  75. Kemp MU, Shamoun-Baranes J, Dokter AM, van Loon E, Bouten W (2013) The influence of weather on the flight altitude of nocturnal migrants in mid-latitudes. Ibis 155:734–749CrossRefGoogle Scholar
  76. Kerlinger P, Moore FR (1989) Atmospheric structure and avian migration. In: Power DM (ed) Current ornithology. Plenum Press, New York, pp 109–142CrossRefGoogle Scholar
  77. Klaassen M (1995) Water and energy limitations on flight range. Auk 112:260–262CrossRefGoogle Scholar
  78. Koleček J, Procházka P, El-Arabany N, Tarka M, Ilieva M, Hahn S, Honza M, de la Puente J, Bermejo A, Gürsoy A, BenschS, Zehtindjiev P, Hasselquist D, Hansson B (2016) Cross-continental migratory connectivity and spatiotemporal migratory patterns in the great reed warbler. J Avian Biol.
  79. Kopp M, Peter HU, Mustafa O, Lisovski S, Ritz MS, Phillips RA, Hahn S (2011) South polar skuas from a single breeding population overwinter in different oceans though show similar migration patterns. Mar Ecol Prog Ser 435:263–267CrossRefGoogle Scholar
  80. Kranstauber B, Weinzierl R, Wikelski M, Safi K (2015) Global aerial flyways allow efficient travelling. Ecol Lett 18:1338–1345PubMedCrossRefGoogle Scholar
  81. Krauel JJ, McCracken GF (2013) Recent advances in bat migration research. In: Adams RA, Pedersen SC (eds) Bat ecology, evolution, and conservation. Springer, New York, pp 293–314CrossRefGoogle Scholar
  82. Krauel JJ, Westbrook JK, McCracken GF (2015) Weather-driven dynamics in a dual-migrant system: moths and bats. J Anim Ecol 84:604–614PubMedCrossRefGoogle Scholar
  83. Kreithen ML, Keeton WT (1974) Detection of atmospheric pressure by the homing pigeon, Columba liviia. J Comp Physiol 89:73–82CrossRefGoogle Scholar
  84. Landys MM, Piersma T, Visser GH, Jukema J, Wijker A (2000) Water balance during real and simulated long-distance migratory flight in the bar-tailed godwit. Condor 102:645–652CrossRefGoogle Scholar
  85. Lehnert LS, Kramer-Schadt S, Schönborn S, Lindecke O, Niermann I, Voigt CC (2014) Wind farm facilities in Germany kill noctule bats from near and far. PLoS One 9:e103106PubMedPubMedCentralCrossRefGoogle Scholar
  86. Liechti F (2006) Birds: blowin’ by the wind? J Ornithol 147:202–211CrossRefGoogle Scholar
  87. Liechti F, Schaller E (1999) The use of low-level jets by migrating birds. Naturwissenschaften 86:549–551PubMedCrossRefGoogle Scholar
  88. Liechti F, Klaassen M, Bruderer B (2000) Predicting migratory flight altitudes by physiological migration models. Auk 117:205–214CrossRefGoogle Scholar
  89. Liechti F, Witvliet W, Weber R, Bächler E (2013) First evidence of a 200-day non-stop flight in a bird. Nat Commun 4:2554PubMedCrossRefGoogle Scholar
  90. Liechti F, Scandolara C, Rubolini D, Ambrosini R, Korner-Nievergelt F, Hahn S, Lardelli R, Romano M, Caprioli M, Romano A, Sicurella B, Saino N (2015) Timing of migration and residence areas during the non-breeding period of barn swallows Hirundo rustica in relation to sex and population. J Avian Biol 46:254–265CrossRefGoogle Scholar
  91. Maina JN (2000) What it takes to fly: the structural and functional respiratory refinements in birds and bats. J Exp Biol 203:3045–3064PubMedGoogle Scholar
  92. Mateos-Rodriguez M, Liechti F (2012) How do diurnal long-distance migrants select flight altitude in relation to wind? Behav Ecol 23:403–409CrossRefGoogle Scholar
  93. McCracken GF, Gillam EH, Westbrook JK, Lee Y-F, Jensen ML, Balsley BB (2008) Brazilian free-tailed bats (Tadarida brasiliensis: Molossidae, Chiroptera) at high altitude: links to migratory insect populations. Integr Comp Biol 48:107–118PubMedCrossRefGoogle Scholar
  94. McCracken GF, Safi K, Kunz TH, Dechmann DKN, Swartz SM, Wikelski M (2016) Airplane tracking documents the fastest flight speeds recorded for bats. R Soc Open Sci 3(11):160398PubMedPubMedCentralCrossRefGoogle Scholar
  95. McGuire LP, Guglielmo CG (2009) What can birds tell us about the migration physiology of bats? J Mammal 90:1290–1297CrossRefGoogle Scholar
  96. McGuire LP, Ratcliffe JM (2011) Light enough to travel: migratory bats have smaller brains, but not larger hippocampi, than sedentary species. Biol Lett 7:233–236PubMedCrossRefGoogle Scholar
  97. McGuire LP, Guglielmo CG, Mackenzie SA, Taylor PD (2012) Migratory stopover in the long-distance migrant silver-haired bat, Lasionycteris noctivagans. J Anim Ecol 81:377–385PubMedCrossRefGoogle Scholar
  98. McGuire LP, Fenton MB, Guglielmo CG (2013a) Phenotypic flexibility in migrating bats: seasonal variation in body composition, organ sizes and fatty acid profiles. J Exp Biol 216:800–808PubMedCrossRefGoogle Scholar
  99. McGuire LP, Fenton MB, Guglielmo CG (2013b) Seasonal upregulation of catabolic enzymes and fatty acid transporters in the flight muscle of migrating hoary bats, Lasiurus cinereus. Comp Biochem Physiol B 165:138–143PubMedCrossRefGoogle Scholar
  100. McGuire LP, Jonasson KA, Guglielmo CG (2014) Bats on a budget: torpor-assisted migration saves time and energy. PLoS One 9:e115724PubMedPubMedCentralCrossRefGoogle Scholar
  101. McLaren JD, Shamoun-Baranes J, Bouten W (2012) Wind selectivity and partial compensation for wind drift among nocturnally migrating passerines. Behav Ecol 23:1089–1101PubMedPubMedCentralCrossRefGoogle Scholar
  102. McLaren JD, Shamoun-Baranes J, Camphuysen CJ, Bouten W (2016) Directed flight and optimal airspeeds: homeward-bound gulls react flexibly to wind yet fly slower than predicted. J Avian Biol.
  103. McWilliams SR, Karasov WH (2005) Migration takes guts – digestive physiology of migratory birds and its ecological significance. In: Greenberg R, Marra PP (eds) Birds of two worlds – the ecology and evolution of migration. Johns Hopkins University Press, Baltimore, pp 67–78Google Scholar
  104. Mitchell GW, Woodworth BK, Taylor PD, Norris DR (2015) Automated telemetry reveals age specific differences in flight duration and speed are driven by wind conditions in a migratory songbird. Mov Ecol 3:1–13CrossRefGoogle Scholar
  105. Newton I (2007) Weather-related mass-mortality events in migrants. Ibis 149:453–467CrossRefGoogle Scholar
  106. Newton I (2010) Bird migration. Harper Collins, LondonGoogle Scholar
  107. Nourani E, Yamaguchi NM, Manda A, Higuchi H (2016) Wind conditions facilitate the seasonal water-crossing behaviour of Oriental Honey-buzzards Pernis ptilorhynchus over the East China Sea. Ibis 158:506–518CrossRefGoogle Scholar
  108. O’Neill P (2013) Magnetoreception and baroreception in birds. Dev Growth Differ 55:188–197PubMedCrossRefGoogle Scholar
  109. O’Shea TJ, Bogan MA, Ellison LE (2003) Monitoring trends in bat populations of the United States and territories: status of the science and recommendations for the future. Wildlife Soc B 31:16–29Google Scholar
  110. Paige KN (1995) Bats and barometric pressure: conserving limited energy and tracking insects from the roost. Funct Ecol 9:463–467CrossRefGoogle Scholar
  111. Parsons JG, Blair D, Luly J, Robson SKA (2008) Flying-fox (Megachiroptera: Pteropodidae) flight altitudes determined via an unusual sampling method: aircraft strikes in Australia. Acta Chiropterol 10:377–379CrossRefGoogle Scholar
  112. Pennycuick CJ, Åkesson S, Hedenström A (2013) Air speeds of migrating birds observed by ornithodolite and compared with predictions from flight theory. J R Soc Interface 10:20130419PubMedPubMedCentralCrossRefGoogle Scholar
  113. Pētersons G (2004) Seasonal migrations of north-eastern populations of Nathusius’ bat Pipistrellus nathusii (Chiroptera). Myotis 41–42:29–56Google Scholar
  114. Pettit JL, O’Keefe JM (2017) Day of year, temperature, wind, and precipitation predict timing of bat migration. J Mammal 98(5):1236–1248Google Scholar
  115. Piersma T, Gill RE Jr (1998) Guts don’t fly: small digestive organs in obese bar-tailed godwits. Auk 115:196–203CrossRefGoogle Scholar
  116. Portugal SJ, Green JA, White CR, Giullemette M, Butler PJ (2012) Wild geese do not increase flight behaviour prior to migration. Biol Lett 8:469–472PubMedCrossRefGoogle Scholar
  117. Richardson WJ (1990) Timing of bird migration in relation to weather: updated review. In: Gwinner E (ed) Bird migration. Springer, Berlin, pp 78–101CrossRefGoogle Scholar
  118. Richter HV, Cumming GS (2006) Food availability and annual migration of the straw-colored fruit bat (Eidolon helvum). J Zool 268:35–44CrossRefGoogle Scholar
  119. Rydell J, Bach L, Bach P, Diaz LG, Furmankiewicz J, Hagner-Wahlsten N, Kyheröinen E-M, Lilley T, Masing M, Meyer MM, Pētersons G, Šuba J, Vasko V, Vintulis V, Hedenström A (2014) Phenology of migratory bat activity across the Baltic Sea and south-eastern North Sea. Acta Chiropterol 16:139–147CrossRefGoogle Scholar
  120. Safi K, Kranstauber B, Weinzierl R, Griffin L, Rees EC, Cabot D, Cruz S, Proaño C, Takekawa JY, Newman SH, Waldenström J, Bengtsson D, Kays R, Wikelski M, Bohrer G (2013) Flying with the wind: scale dependency of speed and direction measurements in modelling wind support in avian flight. Mov Ecol 1:1–13CrossRefGoogle Scholar
  121. Sapir N, Horvitz N, Dechmann DKN, Fahr J, Wikelski M (2014) Commuting fruit bats beneficially modulate their flight in relation to wind. Proc R Soc B 281:20140018PubMedPubMedCentralCrossRefGoogle Scholar
  122. Schaub M, Liechti F, Jenni L (2004) Departure of migrating European robins, Erithacus rubecula, from a stopover site in relation to wind and rain. Anim Behav 67:229–237CrossRefGoogle Scholar
  123. Schmaljohann H, Naef-Daenzer B (2011) Body condition and wind support initiate the shift of migratory direction and timing of nocturnal departure in a songbird. J Anim Ecol 80:1115–1122PubMedCrossRefGoogle Scholar
  124. Schmaljohann H, Liechti F, Bruderer B (2009) Trans-Sahara migrants select flight altitudes to minimize energy costs rather than water loss. Behav Ecol Sociobiol 63:1609–1619CrossRefGoogle Scholar
  125. Schmaljohann H, Becker PJJ, Karaardic H, Liechti F, Naef-Daenzer B, Grandío JM (2010) Nocturnal exploratory flights, departure time, and direction in a migratory songbird. J Ornithol 152:439–452CrossRefGoogle Scholar
  126. Shamoun-Baranes J, Leyrer J, van Loon E, Bocher P, Robin F, Meunier F, Piersma T (2010) Stochastic atmospheric assistance and the use of emergency staging sites by migrants. Proc R Soc B 277:1505–1511PubMedPubMedCentralCrossRefGoogle Scholar
  127. Shamoun-Baranes J, Liechti F, Vansteelant WMG (2017) Atmospheric conditions create freeways, detours and tailbacks for migrating birds. J Comp Physiol A 203(6–7):509–529CrossRefGoogle Scholar
  128. Sillett TS, Holmes RT (2002) Variation in survivorship of a migratory songbird throughout its annual cycle. J Anim Ecol 71:296–308CrossRefGoogle Scholar
  129. Sjöberg S, Alerstam T, Åkesson S, Schulz A, Weidauer A, Coppack T, Muheim R (2015) Weather and fuel reserves determine departure and flight decisions in passerines migrating across the Baltic Sea. Anim Behav 104:59–68CrossRefGoogle Scholar
  130. Smith NG (1980) Hawk and vulture migrations in the Neotropics. In: Keast A, Morton ES (eds) Migrant birds in the Neotropics. Smithsonian Institution Press, Washington, pp 51–65Google Scholar
  131. Sterbing-D’Angelo S, Chadha M, Chiu C, Falk B, Xian W, Barcelo J, Zook JM, Moss CF (2011) Bat wing sensors support flight control. Proc Natl Acad Sci USA 108:11291–11296PubMedPubMedCentralCrossRefGoogle Scholar
  132. Suter E (1957) Radar Beobachtungen über den Verlauf des nächtlichen Vogelzuges. Rev Suisse Zool 64:294–303CrossRefGoogle Scholar
  133. Taylor PD, Crewe TL, Mackenzie SA, Lepage D, Aubry Y, Crysler Z, Finney G, Francis CM, Guglielmo CG, Hamilton DJ, Holberton RL, Loring PH, Mitchell GW, Ryan Norris D, Paquet J, Ronconi RA, Smetzer JR, Smith PA, Welch LJ, Woodworth BK (2017) The Motus Wildlife Tracking System: a collaborative research network to enhance the understanding of wildlife movement. Avian Conservation and Ecology 12(1):8CrossRefGoogle Scholar
  134. Torre-Bueno JR (1978) Evaporative cooling and evaporative water loss in the flying birds. J Exp Biol 75:231–236PubMedGoogle Scholar
  135. Tøttrup AP, Pedersen L, Onrubia A, Klaassen RHG, Thorup K (2017) Migration of red-backed shrikes from the Iberian Peninsula: optimal or sub-optimal detour? J Avian Biol 48(1):149–154CrossRefGoogle Scholar
  136. Tøttrup AP, Thorup K, Rainio K, Yosef R, Lehikoinen E, Rahbek C (2008) Avian migrants adjust migration in response to environmental conditions en roue. Biol Lett 4:685–688PubMedPubMedCentralCrossRefGoogle Scholar
  137. Van Gelder RG, Wingate DB (1961) The taxonomy and status of bats in Bermuda. Am Mus Novit 2029:1–9Google Scholar
  138. Vansteelant WMG, Shamoun-Baranes J, McLaren J, van Diermen J, Bouten W (2017) Soaring across continents: decision-making of a soaring migrant under changing atmospheric conditions along an entire flyway. J Avian Biol 48(6):887–896CrossRefGoogle Scholar
  139. Vitali G (1911) Di un interessante deivato della prima fessura branchiale nel passero. Anat Anz 39:219–224Google Scholar
  140. Voigt CC, Schneeberger K, Voigt-Heucke SL, Lewanzik D (2011) Rain increases the energy cost of bat flight. Biol Lett 7:793–795PubMedPubMedCentralCrossRefGoogle Scholar
  141. von Bartheld CS, Giannessi F (2011) The paratympanic organ: a barometer and altimeter in the middle ear of birds? J Exp Zool 316B:402–408CrossRefGoogle Scholar
  142. Weber TP, Hedenström A (2000) Optimal stopover decisions under wind influence: the effects of correlated winds. J Theor Biol 205:95–104PubMedCrossRefGoogle Scholar
  143. Weimerskirch H, Bishop C, Jeanniard-du-Dot T, Prudor A, Sachs G (2016) Frigate birds track atmospheric conditions over months-long transoceanic flights. Science 353:74–78PubMedCrossRefGoogle Scholar
  144. Wikelski M, Tarlow EM, Raim A, Diehl RH, Larkin RP, Visser GH (2003) Costs of migration in free-flying songbirds. Nature 423:704PubMedCrossRefGoogle Scholar
  145. Williams TC, Williams JM, Ireland LC, Teal JM (1977) Autumnal bird migration over the western North Atlantic Ocean. Am Birds 31:251–267Google Scholar
  146. Williams TC, Ireland LC, Williams JM (1973) High altitude flights of the free-tailed bat, Tadarida brasiliensis, Observed with Radar. J Mammal 54(4):807–821CrossRefGoogle Scholar
  147. Wright PA (1995) Nitrogen excretion: three end products, many physiological roles. J Exp Biol 198:273–281PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Swiss Ornithological InstituteSempachSwitzerland
  2. 2.Department of Biological SciencesTexas Tech UniversityLubbockUSA

Personalised recommendations