Aeroecology pp 119-143 | Cite as

Properties of the Atmosphere in Assisting and Hindering Animal Navigation

  • Verner P. Bingman
  • Paul Moore


Airborne birds, bats, and insects carry out some of the animal world’s most spectacular migrations, migrations often supported by complex behavioral-navigational mechanisms. As aerial navigators, these animals must confront potentially disastrous wind conditions that can carry them far from their migratory route. But the same aerial migrators, as well as aerial residents, can also extract spatial information from the atmosphere to support navigation or just locating a goal across a range of spatial scales. The goal of our chapter is to first highlight some of the physical challenges associated with extracting navigational, principally olfactory, information from the air. We then go on to look at the complex role wind plays as a factor influencing navigation in the air and the documented occurrence of both short- and long-distance navigation and goal localization reliant on atmospheric chemicals/odors. The new field of aeroecology offers an exciting opportunity to revisit some of the classic questions examining the relationship among airborne migrations, wind, wind drift, and the need to carry out corrective reorientations, as well as opening up new investigations into the relationship between the properties of atmospheric stimuli and their potential use in supporting navigation.


  1. Able KP (1974) Environmental influences on the orientation of free-flying nocturnal bird migrants. Anim Behav 22(1):224–238CrossRefGoogle Scholar
  2. Able KP (1980) Mechanisms of orientation, navigation and homing. In: Gauthreaux S (ed) Animal migration, orientation and navigation. Academic, New York, pp 283–373CrossRefGoogle Scholar
  3. Able KP (1982) Field studies of avian nocturnal migratory orientation I. Interaction of sun, wind and stars as directional cues. Anim Behav 30(3):761–767CrossRefGoogle Scholar
  4. Able KP (2001) The concepts and terminology of bird navigation. J Avian Biol 32(2):174–183CrossRefGoogle Scholar
  5. Able KP, Bingman VP, Kerlinger P, Gergits W (1982) Field studies of avian nocturnal migratory orientation II. Experimental manipulation of orientation in white-throated sparrows (Zonotrichia albicollis) released aloft. Anim Behav 30(3):768–773CrossRefGoogle Scholar
  6. Åkesson S, Walinder G, Karlsson L, Ehnbom S (2002) Nocturnal migratory flight initiation in reed warblers Acrocephalus scirpaceus: effect of wind on orientation and timing of migration. J Avian Biol 33(4):349–357CrossRefGoogle Scholar
  7. Alerstam T (1976) Do birds use waves for orientation when migrating across the sea? Nature 259:205–207CrossRefGoogle Scholar
  8. Alerstam T (1979) Optimal use of wind by migrating birds: combined drift and overcompensation. J Theor Biol 79(3):341–353PubMedCrossRefGoogle Scholar
  9. Alerstam T (2011) Optimal bird migration revisited. J Ornithol 152(1):5–23CrossRefGoogle Scholar
  10. Alerstam T, Lindström Å (1990) Optimal bird migration: the relative importance of time, energy, and safety. In: Gwinner E (ed) Bird migration. Springer, Berlin, pp 331–351CrossRefGoogle Scholar
  11. Alerstam T, Chapman JW, Bäckman J, Smith AD, Karlsson H, Nilsson C, Reynolds DR, Klaassen RHG, Hill JK (2011) Convergent patterns of long-distance nocturnal migration in noctuid moths and passerine birds. Proc R Soc B Biol Sci 282(1804):rspb20110058Google Scholar
  12. Allison AC (1953) The morphology of the olfactory system in the vertebrates. Biol Rev 28(2):195–244CrossRefGoogle Scholar
  13. Anderson H (1985) The distribution of mechanosensory hair afferents within the locust central nervous system. Brain Res 333(1):97–102PubMedCrossRefGoogle Scholar
  14. Aralimarad P, Reynolds AM, Lim KS, Reynolds DR, Chapman JW (2011) Flight altitude selection increases orientation performance in high-flying nocturnal insect migrants. Anim Behav 82(6):1221–1225CrossRefGoogle Scholar
  15. Atoji Y, Wild JM (2014) Efferent and afferent connections of the olfactory bulb and prepiriform cortex in the pigeon (Columba livia). J Comp Neurol 522(8):1728–1752PubMedCrossRefGoogle Scholar
  16. Bang BG, Cobb S (1968) The size of the olfactory bulb in 108 species of birds. Auk 85(1):55–61CrossRefGoogle Scholar
  17. Benvenuti S, Wallraff HG (1985) Pigeon navigation: site simulation by means of atmospheric odours. J Comp Physiol A 156(6):737–746CrossRefGoogle Scholar
  18. Bingman VP (1980) Inland morning flight behavior of nocturnal passerine migrants in eastern New York. Auk 97(3):465–472Google Scholar
  19. Bingman VP, Cheng K (2005) Mechanisms of animal global navigation: comparative perspectives and enduring challenges. Ethol Ecol Evol 17(4):295–318CrossRefGoogle Scholar
  20. Bingman VP, Able KP, Kerlinger P (1982) Wind drift, compensation, and the use of landmarks by nocturnal bird migrants. Anim Behav 30(1):49–53CrossRefGoogle Scholar
  21. Blakemore R (1975) Magnetotactic bacteria. Science 190(4212):377–379PubMedCrossRefGoogle Scholar
  22. Brower L (1996) Monarch butterfly orientation: missing pieces of a magnificent puzzle. J Exp Biol 199(1):93–103PubMedGoogle Scholar
  23. Bruderer B (1997) The study of bird migration by radar part 2: major achievements. Naturwissenschaften 84(2):45–54CrossRefGoogle Scholar
  24. Campbell SA, Borden JH (2006) Close-range in-flight integration of olfactory and visual information by a host-seeking bark beetle. Entomol Exp Appl 120(2):91–98CrossRefGoogle Scholar
  25. Chapman JW, Reynolds DR, Mouritsen H, Hill JK, Riley JR, Sivell D, Smith AD, Woiwod IP (2008) Wind selection and drift compensation optimize migratory pathways in a high-flying moth. Curr Biol 18(7):514–518PubMedCrossRefGoogle Scholar
  26. Chapman JW, Nesbit RL, Burgin LE, Reynolds DR, Smith AD, Middleton DR, Hill JK (2010) Flight orientation behaviors promote optimal migration trajectories in high-flying insects. Science 327(5966):682–685PubMedCrossRefGoogle Scholar
  27. Chapman JW, Reynolds DR, Wilson K (2015) Long-range seasonal migration in insects: mechanisms, evolutionary drivers and ecological consequences. Ecol Lett 18(3):287–302PubMedCrossRefGoogle Scholar
  28. Combes SA, Dudley R (2009) Turbulence-driven instabilities limit insect flight performance. Proc Natl Acad Sci 106(22):9105–9108PubMedPubMedCentralCrossRefGoogle Scholar
  29. Craven BA, Neuberger T, Paterson EG, Webb AG, Josephson EM, Morrison EE, Settles GS (2007) Reconstruction and morphometric analysis of the nasal airway of the dog (Canis familiaris) and implications regarding olfactory airflow. Anat Rec 290(11):1325–1340CrossRefGoogle Scholar
  30. Craven BA, Paterson EG, Settles GS (2010) The fluid dynamics of canine olfaction: unique nasal airflow patterns as an explanation of macrosmia. J R Soc Interface 7(47):933–943PubMedCrossRefGoogle Scholar
  31. Crimaldi JP, Wiley MB, Koseff JR (2002) The relationship between mean and instantaneous structure in turbulent passive scalar plumes. J Turbul 3(14):1–24Google Scholar
  32. DeBose JL, Nevitt GA (2008) The use of odors at different spatial scales: comparing birds with fish. J Chem Ecol 34(7):867–881PubMedCrossRefGoogle Scholar
  33. Dell’Ariccia G, Bonadonna F (2013) Back home at night or out until morning? Nycthemeral variations in homing of anosmic Cory’s shearwaters in a diurnal colony. J Exp Biol 216(8):1430–1433PubMedCrossRefGoogle Scholar
  34. Dokter AM, Shamoun-Baranes J, Kemp MU, Tijm S, Holleman I (2013) High altitude bird migration at temperate latitudes: a synoptic perspective on wind assistance. PLoS One 8(1):e52300PubMedPubMedCentralCrossRefGoogle Scholar
  35. Dudley R (2002) The biomechanics of insect flight: form, function, evolution. Princeton University Press, PrincetonGoogle Scholar
  36. Dusenbery DB (1992) Sensory ecology: how organisms acquire and respond to information. WH Freeman, New YorkGoogle Scholar
  37. Eikenaar C, Schmaljohann H (2015) Wind conditions experienced during the day predict nocturnal restlessness in a migratory songbird. Ibis 157(1):125–132CrossRefGoogle Scholar
  38. Emlen ST (1967) Migratory orientation in the Indigo Bunting, Passerina cyanea: part I: evidence for use of celestial cues. Auk 84(3):309–342CrossRefGoogle Scholar
  39. Erni B, Liechti F, Bruderer B (2005) The role of wind in passerine autumn migration between Europe and Africa. Behav Ecol 16(4):732–740CrossRefGoogle Scholar
  40. Gagliardo A (2013) Forty years of olfactory navigation in birds. J Exp Biol 216(12):2165–2171PubMedCrossRefGoogle Scholar
  41. Gagliardo A, Ioale P, Savini M, Dell’Omo G, Bingman VP (2009) Hippocampal-dependent familiar area map supports corrective re-orientation following navigational error during pigeon homing: a GPS-tracking study. Eur J Neurosci 29(12):2389–2400PubMedCrossRefGoogle Scholar
  42. Gagliardo A, Bried J, Lambardi P, Luschi P, Wikelski M, Bonadonna F (2013) Oceanic navigation in Cory’s shearwaters: evidence for a crucial role of olfactory cues for homing after displacement. J Exp Biol 216(15):2798–2805PubMedCrossRefGoogle Scholar
  43. Garratt JR (1994) The atmospheric boundary layer. Cambridge University Press, CambridgeGoogle Scholar
  44. Gauthreaux SA (1978) Importance of the daytime flights of nocturnal migrants: redetermined migration following displacement. In: Schmidt-Koenig K, Keeton WT (eds) Animal migration, navigation, and homing. Springer, Berlin, pp 219–227CrossRefGoogle Scholar
  45. Gauthreaux SA, Able KP (1970) Wind and the direction of nocturnal songbird migration. Nature 228:476–477PubMedCrossRefGoogle Scholar
  46. Gibo DL, Pallett MJ (1979) Soaring flight of monarch butterflies, Danaus plexippus (Lepidoptera: Danaidae), during the late summer migration in southern Ontario. Can J Zool 57(7):1393–1401CrossRefGoogle Scholar
  47. Gnatzy W, Tautz J (1980) Ultrastructure and mechanical properties of an insect mechanoreceptor: stimulus-transmitting structures and sensory apparatus of the cereal filiform hairs of Gryllus. Cell Tissue Res 213(3):441–463PubMedGoogle Scholar
  48. Gomez G, Atema J (1996) Temporal resolution in olfaction: stimulus integration time of lobster chemoreceptor cells. J Exp Biol 199(8):1771–1779PubMedGoogle Scholar
  49. Greenewalt CH (1975) The flight of birds: the significant dimensions, their departure from the requirements for dimensional similarity, and the effect on flight aerodynamics of that departure. Trans Am Philos Soc 65(4):1–67CrossRefGoogle Scholar
  50. Griffin DR (1952) Bird navigation. Biol Rev 27(4):359–390CrossRefGoogle Scholar
  51. Grubb TC (1974) Olfactory navigation to the nesting burrow in Leach’s petrel (Oceanodroma leucorrhoa). Anim Behav 22(1):192–202PubMedCrossRefGoogle Scholar
  52. Guerra PA, Reppert SM (2015) Sensory basis of lepidopteran migration: focus on the monarch butterfly. Curr Opin Neurobiol 34:20–28PubMedPubMedCentralCrossRefGoogle Scholar
  53. Guilford T, Åkesson S, Gagliardo A, Holland RA, Mouritsen H, Muheim R, Wiltschko R, Wiltschko W, Bingman VP (2011) Migratory navigation in birds: new opportunities in an era of fast-developing tracking technology. J Exp Biol 214(22):3705–3712PubMedCrossRefGoogle Scholar
  54. Hein CM, Zapka M, Mouritsen H (2011) Weather significantly influences the migratory behaviour of night-migratory songbirds tested indoors in orientation cages. J Ornithol 152(1):27–35CrossRefGoogle Scholar
  55. Henry M, Thomas DW, Vaudry R, Carrier M (2002) Foraging distances and home range of pregnant and lactating little brown bats (Myotis lucifugus). J Mammal 83(3):767–774CrossRefGoogle Scholar
  56. Hershberger WA, Jordan JS (1998) The phantom array: a perisaccadic illusion of visual direction. Psychol Rec 48(1):21–32Google Scholar
  57. Ioalé P, Papi F, Fiaschi V, Baldaccini NE (1978) Pigeon navigation: effects upon homing behaviour by reversing wind direction at the loft. J Comp Physiol 128(4):285–295CrossRefGoogle Scholar
  58. Ioalè P, Nozzolini M, Papi F (1990) Homing pigeons do extract directional information from olfactory stimuli. Behav Ecol Sociobiol 26(5):301–305CrossRefGoogle Scholar
  59. Kerlinger P (1989) Flight strategies of migrating hawks. University of Chicago Press, ChicagoGoogle Scholar
  60. Kerlinger P, Bingman VP, Able KP (1985) Comparative flight behaviour of migrating hawks studied with tracking radar during autumn in central New York. Can J Zool 63(4):755–761CrossRefGoogle Scholar
  61. Kishkinev D, Chernetsov N, Heyers D, Mouritsen H (2013) Migratory reed warblers need intact trigeminal nerves to correct for a 1000 km eastward displacement. PLoS One 8(6):e65847PubMedPubMedCentralCrossRefGoogle Scholar
  62. Kumagai T, Shimozawa T, Baba Y (1998) Mobilities of the cercal wind-receptor hairs of the cricket, Gryllus bimaculatus. J Comp Physiol A 183(1):7–21CrossRefGoogle Scholar
  63. Liechti F, Bruderer B (1998) The relevance of wind for optimal migration theory. J Avian Biol 29:561–568CrossRefGoogle Scholar
  64. Masson C, Mustaparta H (1990) Chemical information processing in the olfactory system of insects. Physiol Rev 70(1):199–245CrossRefGoogle Scholar
  65. Matsumoto SG, Hildebrand JG (1981) Olfactory mechanisms in the moth Manduca sexta: response characteristics and morphology of central neurons in the antennal lobes. Proc R Soc Lond B Biol Sci 213(1192):249–277CrossRefGoogle Scholar
  66. McKeegan DE (2002) Spontaneous and odour evoked activity in single avian olfactory bulb neurones. Brain Res 929(1):48–58PubMedCrossRefGoogle Scholar
  67. Metcalfe J, Schmidt KL, Kerr WB, Guglielmo CG, MacDougall-Shackleton SA (2013) White-throated sparrows adjust behaviour in response to manipulations of barometric pressure and temperature. Anim Behav 86(6):1285–1290CrossRefGoogle Scholar
  68. Moore P, Crimaldi J (2004) Odor landscapes and animal behavior: tracking odor plumes in different physical worlds. J Mar Syst 49(1):55–64CrossRefGoogle Scholar
  69. Mouritsen H, Frost BJ (2002) Virtual migration in tethered flying monarch butterflies reveals their orientation mechanisms. Proc Natl Acad Sci 99(15):10162–10166PubMedPubMedCentralCrossRefGoogle Scholar
  70. Mouritsen H, Derbyshire R, Stalleicken J, Mouritsen OØ, Frost BJ, Norris DR (2013) An experimental displacement and over 50 years of tag-recoveries show that monarch butterflies are not true navigators. Proc Natl Acad Sci 110(18):7348–7353PubMedPubMedCentralCrossRefGoogle Scholar
  71. Murlis J, Elkinton JS, Carde RT (1992) Odor plumes and how insects use them. Annu Rev Entomol 37(1):505–532CrossRefGoogle Scholar
  72. Nevitt GA, Veit RR, Kareiva P (1995) Dimethyl sulphide as a foraging cue for Antarctic procellariiform seabirds. Nature 376(6542):680–682CrossRefGoogle Scholar
  73. Nevitt GA, Losekoot M, Weimerskirch H (2008) Evidence for olfactory search in wandering albatross, Diomedea exulans. Proc Natl Acad Sci 105(12):4576–4581PubMedPubMedCentralCrossRefGoogle Scholar
  74. Newland PL, Rogers SM, Gaaboub I, Matheson T (2000) Parallel somatotopic maps of gustatory and mechanosensory neurons in the central nervous system of an insect. J Comp Neurol 425(1):82–96PubMedCrossRefGoogle Scholar
  75. Nisbet ICT (1955) Atmospheric turbulence and bird flight. Br Birds 48:557–559Google Scholar
  76. Nisbet IC (1970) Autumn migration of the Blackpoll Warbler: evidence for long flight provided by regional survey. Bird-Banding 41(3):207–240CrossRefGoogle Scholar
  77. O’Keefe J, Nadel L (1978) The hippocampus as a cognitive map. Clarendon Press, OxfordGoogle Scholar
  78. Papi F, Ioalé P, Fiaschi V, Benvenuti S, Baldaccini NE (1974) Olfactory navigation of pigeons: the effect of treatment with odorous air currents. J Comp Physiol A 94(3):187–193CrossRefGoogle Scholar
  79. Patzke N, Manns M, Güntürkün O, Ioale P, Gagliardo A (2010) Navigation-induced ZENK expression in the olfactory system of pigeons (Columba livia). Eur J Neurosci 31(11):2062–2072PubMedCrossRefGoogle Scholar
  80. Reynolds AM, Reynolds DR (2009) Aphid aerial density profiles are consistent with turbulent advection amplifying flight behaviours: abandoning the epithet ‘passive. Proc R Soc B Biol Sci 276(1654):137–143CrossRefGoogle Scholar
  81. Reynolds AM, Reynolds DR, Riley JR (2009) Does a ‘turbophoretic’effect account for layer concentrations of insects migrating in the stable night-time atmosphere? J R Soc Interface 6(30):87–95PubMedCrossRefGoogle Scholar
  82. Richardson WJ (1990) Wind and orientation of migrating birds: a review. Experientia 46(4):416–425CrossRefGoogle Scholar
  83. Riley JR, Reynolds DR, Smith AD, Edwards AS, Osborne JL, Williams IH, McCartney HA (1999) Compensation for wind drift by bumble-bees. Nature 400(6740):126CrossRefGoogle Scholar
  84. Rumbo ER, Kaissling KE (1989) Temporal resolution of odour pulses by three types of pheromone receptor cells in Antheraea polyphemus. J Comp Physiol A 165(3):281–291CrossRefGoogle Scholar
  85. Sachs G, Traugott J, Nesterova AP, Bonadonna F (2013) Experimental verification of dynamic soaring in albatrosses. J Exp Biol 216(22):4222–4232PubMedCrossRefGoogle Scholar
  86. Sapir N, Horvitz N, Dechmann DK, Fahr J, Wikelski M (2014) Commuting fruit bats beneficially modulate their flight in relation to wind. Proc R Soc B Biol Sci 281(1782):20140018CrossRefGoogle Scholar
  87. Schmidt-Koenig K (1958) Experimentelle Einflußnahme auf die 24-Stunden-Periodik bei Brieftauben und deren Auswirkungen unter besonderer Berücksichtigung des Heimfindevermögens. Z Tierpsychol 15(3):301–331CrossRefGoogle Scholar
  88. Schneider D (1964) Insect antennae. Annu Rev Entomol 9(1):103–122CrossRefGoogle Scholar
  89. Shöne H (1984) Spatial orientation: the spatial control of behavior in animals and man. Princeton University Press, PrincetonGoogle Scholar
  90. Srygley RB (2001) Compensation for fluctuations in crosswind drift without stationary landmarks in butterflies migrating over seas. Anim Behav 61(1):191–203PubMedCrossRefGoogle Scholar
  91. Srygley RB (2003) Wind drift compensation in migrating dragonflies Pantala (Odonata: Libellulidae). J Insect Behav 16(2):217–232CrossRefGoogle Scholar
  92. Stefanescu C, Alarcon M, AVila A (2007) Migration of the painted lady butterfly, Vanessa cardui, to north-eastern Spain is aided by African wind currents. J Anim Ecol 76(5):888–898PubMedCrossRefGoogle Scholar
  93. Steiger SS, Fidler AE, Valcu M, Kempenaers B (2008) Avian olfactory receptor gene repertoires: evidence for a well-developed sense of smell in birds? Proc R Soc B Biol Sci 275(1649):2309–2317CrossRefGoogle Scholar
  94. Uchida N, Kepecs A, Mainen ZF (2006) Seeing at a glance, smelling in a whiff: rapid forms of perceptual decision-making. Nat Rev Neurosci 7(6):485–491PubMedCrossRefGoogle Scholar
  95. Van Doren BM, Sheldon D, Geevarghese J, Hochachka WM, Farnsworth A (2014) Autumn morning flights of migrant songbirds in the northeastern United States are linked to nocturnal migration and winds aloft. Auk 132(1):105–118CrossRefGoogle Scholar
  96. Vanrullen R, Thorpe SJ (2001) The time course of visual processing: from early perception to decision-making. J Cogn Neurosci 13(4):454–461PubMedCrossRefGoogle Scholar
  97. Vickers NJ (2000) Mechanisms of animal navigation in odor plumes. Biol Bull 198(2):203–212PubMedCrossRefGoogle Scholar
  98. Vogel S (1996) Life in moving fluids: the physical biology of flow. Princeton University Press, PrincetonGoogle Scholar
  99. Wallraff HG (1966) Über die Heimfindeleistungen von Brieftauben nach Haltung in verschiedenartig abgeschirmten Volieren. Z Vgl Physiol 52(3):215–259CrossRefGoogle Scholar
  100. Wallraff HG (2004) Avian olfactory navigation: its empirical foundation and conceptual state. Anim Behav 67(2):189–204CrossRefGoogle Scholar
  101. Wallraff HG (2005) Avian navigation: pigeon homing as a paradigm. Springer, BerlinGoogle Scholar
  102. Wallraff HG (2013) Ratios among atmospheric trace gases together with winds imply exploitable information for bird navigation: a model elucidating experimental results. Biogeosciences 10(11):6929–6943CrossRefGoogle Scholar
  103. Wallraff HG, Andreae MO (2000) Spatial gradients in ratios of atmospheric trace gases: a study stimulated by experiments on bird navigation. Tellus B 52(4):1138–1157CrossRefGoogle Scholar
  104. Walther Y, Bingman VP (1984) Orientierungsverhalten von Trauerschnäppern (Ficedula hyoleuca) während des Frühjahrszuges in Abhängigkeit von Wetterfaktoren. Vogelwarte 32:201–205Google Scholar
  105. Wehner R (1987) ‘Matched filters’—neural models of the external world. J Comp Physiol A 161(4):511–531CrossRefGoogle Scholar
  106. Wiltschko W, Wiltschko R (1972) Magnetic compass of European robins. Science 176:62–64PubMedCrossRefGoogle Scholar
  107. Wiltschko R, Wiltschko W (2003) Avian navigation: from historical to modern concepts. Anim Behav 65(2):257–272CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of PsychologyBowling Green State UniversityBowling GreenUSA
  2. 2.Department of Biological SciencesBowling Green State UniversityBowling GreenUSA
  3. 3.J.P. Scott Center for Neuroscience Mind and BehaviorBowling Green State UniversityBowling GreenUSA

Personalised recommendations