Skip to main content

Extending the Habitat Concept to the Airspace

  • Chapter
  • First Online:

Abstract

Habitat is one of the most familiar and fundamental concepts in the fields of ecology, animal behavior, and wildlife conservation and management. Humans interact with habitats through their senses and experiences and education to such a degree that their perceptions of habitat have become second nature. For this reason, it may be difficult at first to accept the airspace as habitat, an area that is invisible, untouchable, highly dynamic, and its occupants difficult to see. Nonetheless, the habitat concept, by definition and in practice, applies readily to the airspace. Some ecological and behavioral processes including habitat selection, foraging, and reproduction are operational in the airspace, while others, particularly those mediated by resource limitation such as territoriality, are likely uncommon if present at all. The behaviors of flying animals increasingly expose them to anthropogenic hazards as development of the airspace accelerates. This exacerbates the need to identify approaches for managing these human–wildlife conflicts in aerial habitats, especially where human safety or at-risk populations are concerned. The habitat concept has proven useful in shaping environmental law and policy to help mitigate these conflicts. It remains to be seen whether current law can bend to include a more expansive concept of habitat that includes the airspace.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alerstam T, Lindström A (1990) Optimal bird migration: the relative importance of time, energy, and safety. In: Gwinner E (ed) Bird migration. Springer, Berlin, pp 331–351

    Chapter  Google Scholar 

  • Allan JD, Flecker AS (1989) The mating biology of a mass-swarming mayfly. Anim Behav 37:361–371

    Article  Google Scholar 

  • Andersson S, Rydell J, Swensson GE (1998) Light, predation and the lekking behavior of the ghost swift Hepialus humuli (L.) (Lepidoptera: Hepialidae). Proc R Soc Lond B 264:1345–1351

    Article  Google Scholar 

  • Aralimarad P, Reynolds AM, Lim KS, Reynolds DR, Chapman JW (2011) Flight altitude selection increases orientation performance in high-flying nocturnal insect migrants. Anim Behav 82:1221–1225

    Article  Google Scholar 

  • Arnett EB, Huso MM, Schirmacher MR, Hayes JP (2010) Altering turbine speed reduces bat mortality at wind-energy facilities. Front Ecol Environ 9:209–214

    Article  Google Scholar 

  • Arroyo B, Mougeot F, Bretagnolle V (2013) Characteristics and sexual functions of sky-dancing displays in a semi-colonial raptor, the Montagu’s Harrier (Circus Pygargus). J Raptor Res 47:185–196

    Article  Google Scholar 

  • Bachmann S, Zrnić DS (2007) Spectral density of polarimetric variables separating biological scatterers in the VAD display. J Atmos Ocean Technol 24:1186–1198

    Article  Google Scholar 

  • Belnap J, Hawkes CV, Firestone MK (2003) Boundaries in miniature: two examples from soil. Bioscience 53:739–749

    Article  Google Scholar 

  • Bevanger K (1998) Biological and conservation aspects of bird mortality caused by electricity power lines: a review. Biol Conserv 86:67–76

    Article  Google Scholar 

  • Bowers RM, McLetchie S, Knight R, Fierer N (2011) Spatial variability in airborne bacterial communities across land-use types and their relationship to the bacterial communities of potential source environments. ISME J 5:601–612

    Article  CAS  PubMed  Google Scholar 

  • Bowlin MS, Enstrom DA, Murphy BJ, Plaza E, Jurich P, Cochran J (2015) Unexplained altitude changes in a migrating thrush: Long-flight altitude data from radio-telemetry. Auk 132:808–816

    Article  Google Scholar 

  • Boyles JG, Cryan PM, McCracken GF, Kunz TH (2011) Economic importance of bats in agriculture. Science 332:41–42

    Article  PubMed  Google Scholar 

  • Bridge ES, Thorup K, Bowlin MS, Chilson PB, Diehl RH, Fleron RW, Hartl P, Kays R, Kelly JF, Robinson WD, Wikelski M (2011) Technology on the move: recent and forthcoming innovations for tracking migratory birds. Bioscience 61:689–698

    Article  Google Scholar 

  • Brodie EL, DeSantis TZ, Parker JPM, Zubietta IX, Piceno YM, Andersen GL (2007) Urban aerosols harbor diverse and dynamic bacterial populations. Proc Natl Acad Sci 104:299–304

    Article  CAS  PubMed  Google Scholar 

  • Brower LP, Malcolm SB (1991) Animal migrations: endangered phenomena. Am Zool 31:265–276

    Article  Google Scholar 

  • Burrows SM, Elbert W, Lawrence MG, Pöschl U (2009) Bacteria in the global atmosphere–Part 1: review and synthesis of literature data for different ecosystems. Atmos Chem Phys 9:9263–9280

    Article  CAS  Google Scholar 

  • Cadenasso ML, Pickett STA, Weathers KC, Bell SS, Benning TL, Carreiro MM, Dawson TE (2003) An interdisciplinary and synthetic approach to ecological boundaries. Bioscience 53:717–722

    Article  Google Scholar 

  • Chilson PB, Frick WF, Kelly JF, Howard KW, Larkin RP, Diehl RH, Westbrook JK, Kelly TA, Kunz TH (2012a) Partly cloudy with a chance of migration: weather, radars, and aeroecology. Bull Am Meteorol Soc 93:669–686

    Article  Google Scholar 

  • Chilson PB, Frick WF, Stepanian PM, Shipley JR, Kunz TH, Kelly JK (2012b) Estimating animal densities in the aerosphere using weather radar: To Z or not to Z? Ecosphere 3:72

    Article  Google Scholar 

  • Collins CT (2015) Food habits and resource partitioning in a guild of Neotropical swifts. Wilson J Ornithol 127:239–248

    Article  Google Scholar 

  • Corkum LD, Ciborowski JJH, Dolan DM (2006) Timing of Hexagenia (Ephemeridae: Ephemeroptera) mayfly swarms. Can J Zool 84:1616–1622

    Article  Google Scholar 

  • Cox RR, Afton AD (1996) Evening flights of female northern pintails from a major roost site. Condor 89:810–819

    Article  Google Scholar 

  • Cryan PM, Brown AC (2007) Migration of bats past a remote island offers clues toward the problem of bat fatalities at wind turbines. Biol Conserv 139:1–11

    Article  Google Scholar 

  • Cryan PM, Veilleux JP (2007) Migration and use of autumn, winter, and spring roosts by tree bats. In: Lacki MJ, Hayes HJP, Kurta A (eds) Bats in forests: conservation and management. The Johns Hopkins University Press, Baltimore, pp 153–175

    Google Scholar 

  • Cryan PM, Gorrensen PM, Hein CD, Schirmacher MR, Diehl RH, Huso MM, Hayman DTS, Fricker PD, Bonaccorso FJ, Johnson DH, Heist K, Dalton DC (2014) Behavior of bats at wind turbines. PNAS 111:15126–15131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davidai N, Westbrook JK, Lessard J, Hallam TG, McCracken GF (2015) The importance of natural habitats to Brazilian free-tailed bats in intensive agricultural landscapes in the Winter Garden region of Texas, United States. Biol Conserv 190:107–114

    Article  Google Scholar 

  • Davy CM, Ford AT, Fraser KC (2017) Aeroconservation for the fragmented skies. Conserv Lett. https://doi.org/10.1111/conl.12347

  • Dennis RLH, Shreeve TG, Van Dyck H (2003) Towards a functional resource-based concept of habitat: a butterfly biology viewpoint. Oikos 102:417–426

    Article  Google Scholar 

  • Dennis RLH, Shreeve TG, van Dyck H (2006) Habitats and resources: the need for a resource-based definition to conserve butterflies. Biodivers Conserv 15:1943–1966

    Article  Google Scholar 

  • Deprés VR, Huffman JA, Burrows SM, Hoose C, Safatov AS, Buryak G, Fröhlich-Nowoisky J, Elbert W, Andreae MO, Pöschl U, Jaenicke R (2012) Primary biological aerosol particles in the atmosphere: a review. Tellus B 64. https://doi.org/10.3402/tellusb.v64i0.15598

  • Dial KP, Vaughan TA (1987) Opportunistic predation on alate termites in Kenya. Biotropica 19:185–187

    Article  Google Scholar 

  • Diehl RH (2013) The airspace is habitat. Trends Ecol Evol 28:377–379

    Article  PubMed  Google Scholar 

  • Dingle H (2014) Migration: the biology of life on the move, 2nd edn. Oxford University Press, Oxford

    Book  Google Scholar 

  • Dolbeer RA, Wright S (2008) Wildlife strikes to civil aircraft in the United States 1990–2007. Bird Strike Committee Proceedings

    Google Scholar 

  • Drake VA, Reynolds DR (2012) Radar entomology: observing insect flight and migration. CABI, Wallingford

    Book  Google Scholar 

  • Drewitt AL, Langston RHW (2006) Assessing the impacts of wind farms on birds. Ibis 148:29–42

    Article  Google Scholar 

  • Dublon IAN, Sumpter DJT (2014) Flying insect swarms. Curr Biol 24:R828–R830

    Article  CAS  PubMed  Google Scholar 

  • Duerr AE, Miller TA, Lanzone M, Brandes D, Cooper J, O’Malley K, Maisonneuve C, Tremblay J, Katzner T (2012) Testing an emerging paradigm in migration ecology shows surprising differences in efficiency between flight modes. PLoS One 7:e35548. https://doi.org/10.1371/journal.pone.0035548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elton CS (1966) The pattern of animal communities. Chapman and Hall, London

    Google Scholar 

  • Everaert J, Stienen EWM (2007) Impact of wind turbines on birds in Zeebrugge (Belgium): significant effect on breeding tern colony due to collisions. Biodivers Conserv 16:3345–3359

    Article  Google Scholar 

  • Federal Aviation Administration (2015a) Notice JO 7210.882. Unmanned aircraft operations in the national airspace system (NAS)

    Google Scholar 

  • Federal Aviation Administration (2015b) 14 CFR Chapter I. Clarification of the applicability of aircraft registration requirements for unmanned aircraft systems (UAS) and request for information regarding electronic registration for UAS

    Google Scholar 

  • Fukui D, Dewa H, Katsuta S, Sato A (2013) Bird predation by the birdlike noctule in Japan. J Mammal 94:657–661

    Article  Google Scholar 

  • Gehring J, Kerlinger P, Manville AM (2009) Communication towers, lights, and birds: successful methods of reducing the frequency of avian collisions. Ecol Appl 19:505–514

    Article  PubMed  Google Scholar 

  • Gehring JL, Kerlinger P, Manville AM (2011) The role of tower height and guy wires on avian collisions with communication towers. J Wildl Manage 75:848–855

    Article  Google Scholar 

  • Gill RE Jr, Tibbitts TL, Douglas DC, Handel CM, Mulcahy DM, Gottschalck JC, Warnock N, McCaffery BJ, Battley PF, Piersma T (2009) Extreme endurance flights by landbirds crossing the Pacific Ocean: ecological corridor rather than barrier? Proc R Soc Lond B 276:447–457

    Article  Google Scholar 

  • Gonzalez-Toril E, Amils R, Delmas RJ, Petit J-R, Komarek J, Elster J (2009) Bacterial diversity of autotrophic enriched cultures from remote, glacial Antarctic, Alpine and Andean aerosol, snow and soil samples. Biogeosciences 6:33–44

    Article  CAS  Google Scholar 

  • Goodwin SE, Podos J (2013) Shift of song frequencies in response to masking tones. Anim Behav 85:435–440

    Article  Google Scholar 

  • Gorresen PM, Cryan PM, Dalton DC, Wolf S, Johnson JA, Todd CM, Bonaccorso FJ (2015) Dim ultraviolet light as a means of deterring activity by the Hawaiian hoary bat Lasiurus cinereus semotus. Endanger Species Res 28:249–257

    Article  Google Scholar 

  • Hall LS, Krausman PR, Morrison ML (1997) The habitat concept and a plea for a standard terminology. Wildl Soc Bull 25:173–182

    Google Scholar 

  • Harrison RM, Jones AM, Biggins PD, Pomeroy N, Cox CS, Kidd SP, Hobman JL, Brown NL, Beswick A (2005) Climate factors influencing bacterial count in background air samples. Int J Biometeorol 49:167–178

    Article  PubMed  Google Scholar 

  • Hawkes LA, Balachandran S, Batbayar N, Butler PJ, Frappell PB, Milsom WK, Tseveenmyadag N, Newman SH, Scott GR, Sathiyaselvam P, Takekawa JY, Wikelski M, Bishop CM (2011) The trans-Himalayan flights of bar-headed geese (Anser indicus). Proc Natl Acad Sci 108:9516–9519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawkes LA, Balachandran S, Batbayar N, Butler PJ, Chua B, Douglas DC, Frappell PB, Hou Y, Milsom WK, Newman SH, Prosser DJ, Sathiyaselvam P, Scott GR, Takekawa JY, Natsagdorj T, Wikelski M, Witt MJ, Yan B, Bishop CM (2013) The paradox of extreme high-altitude migration in bar-headed geese Anser indicus. Proc R Soc Lond B: Biol Sci 280. https://doi.org/10.1098/rspb.2012.2114

  • Hedenström A, Norevik G, Warfvinge K, Anderson A, Bäckman J, Åkesson S (2016) Annual 10-month aerial life phase in the common swift Apus apus. Curr Biol 26. https://doi.org/10.1016/j.cub.2016.1009.1014

  • Helms JA, Godfrey AP, Ames T, Bridge ES (2016) Predator foraging altitudes reveal the structure of aerial insect communities. Sci Rep 6:28670. https://doi.org/10.1038/srep28670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoodless AN, Inglis JG, Doucet J-P, Aebischer NJ (2008) Vocal individuality in the roding calls of woodcock Scolopax rusticola and their use to validate a survey method. Ibis 150:80–89

    Article  Google Scholar 

  • Jaenike J, Holt RD (1991) Genetic variation for habitat preference: evidence and explanations. Am Nat 137:S67–S90

    Article  Google Scholar 

  • Joly M, Amato P, Sancelme M, Vinatier V, Abrantes M, Deguilluame L, Delort A-M (2015) Survival of microbial isolates from clouds towards simulated atmospheric stress factors. Atmos Environ 117:92–98

    Article  CAS  Google Scholar 

  • Jones J (2001) Habitat selection studies in avian ecology: a critical review. Auk 118:557–562

    Article  Google Scholar 

  • Kirsch EM, Wellik MJ, Suarez M, Diehl RH, Lutes J, Woyczik W, Krapfl J, Sojda R (2015) Observation of sandhill cranes’ (Grus canadensis) flight behavior in heavy fog. Wilson J Ornithol 127:281–288

    Article  Google Scholar 

  • Klem D Jr (1990) Collisions between birds and windows: mortality and prevention. J Field Ornithol 61:120–130

    Google Scholar 

  • Klem D Jr (2009) Avian mortality at windows: the second largest human source of bird mortality on Earth. Tundra to tropics: connecting birds, habitats and people. In: Proceedings of the 4th international partners in flight conference: Tundra to Tropics. USDA, Forest Service, McAllen, Texas, pp 244–251

    Google Scholar 

  • Kunz TH, Arnett EB, Erickson WP, Hoar AR, Johnson GD, Larkin RP, Strickland MD, Thresher RW, Tuttle MD (2007) Ecological impacts of wind energy development on bats: questions, research, needs, and hypotheses. Front Ecol Environ 5:315–324

    Article  Google Scholar 

  • Kunz TH, Gauthreaux SA Jr, Hristov NI, Horn JW, Jones G, Kalko EK, Larkin RP, McCracken GF, Swartz SM, Srygley RB, Dudley R, Westbrook JK, Wikelski M (2008) Aeroecology: probing and modeling the aerosphere. Integr Comp Biol 48:1–11

    Article  PubMed  Google Scholar 

  • Lambertucci SA, Shepard ELC, Wilson RP (2015) Human-wildlife conflicts in a crowded airspace. Science 348:502–504

    Article  CAS  PubMed  Google Scholar 

  • Langwig KE, Frick WF, Reynolds R, Parise KL, Drees KP, Hoyt JR, Cheng TL, Kunz TH, Foster JT, Kilpatrick AM (2015) Host and pathogen ecology drive the seasonal dynamics of a fungal disease, white-nose syndrome. Proc R Soc Lond B: Biol Sci 282. https://doi.org/10.1098/rspb.2014.2335

  • Lanzone M, Miller TA, Turk P, Brandes D, Halverson C, Maisonneuve C, Tremblay J, Cooper J, O’Malley K, Brooks RP, Katzner T (2012) Flight responses by a migratory soaring raptor to changing meteorological conditions. Biol Lett 8:710–713

    Article  PubMed  PubMed Central  Google Scholar 

  • Larkin RP, Frase BA (1988) Circular paths of birds flying near a broadcasting tower in cloud. J Comp Psychol 102:90–93

    Article  Google Scholar 

  • Laybourne RC (1974) Collision between a vulture and an aircraft at an altitude of 37,000 feet. Wilson Bull 86:461–462

    Google Scholar 

  • Lee Y, Kuo Y (2001) Predation on Mexican free-tailed bats by peregrine falcons and red-tailed hawks. J Raptor Res 35:115–123

    Google Scholar 

  • Liechti F, Klaasen M, Bruderer B (2000) Predicting migratory flight altitudes by physiological migration models. Auk 117:205–214

    Article  Google Scholar 

  • Liechti F, Witvliet W, Weber R, Bachler E (2013) First evidence of a 200-day non-stop flight in a bird. Nat Commun 4. https://doi.org/10.1038/ncomms3554

  • Lindow S, Brandl M (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69:1875–1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linnæus C (1754) Genera plantarum, 5th edn

    Google Scholar 

  • Loss SR, Will T, Loss SS, Marra PP (2014) Bird–building collisions in the United States: estimates of annual mortality and species vulnerability. Condor: Ornithol Appl 116:8–23

    Article  Google Scholar 

  • Marra PP, Dove CJ, Dolbeer RA, Dahlan N, Heacker M, Whatton J, Diggs N, France C, Henkes G (2009) Migratory Canada geese cause crash of US Airways Flight 1549. Front Ecol Environ 7:297–301

    Article  Google Scholar 

  • Martin GR (2011) Understanding bird collisions with man-made objects: a sensory ecology approach. Ibis 153:239–254

    Article  Google Scholar 

  • Mateos-Rodríguez M, Liechti F (2012) How do diurnal long-distance migrants select flight altitude in relation to wind? Behav Ecol 23:403–409

    Article  Google Scholar 

  • McCracken GF (2003) Estimates of population sizes in summer colonies of Brazilian free-tailed bats (Tadarida brasiliensis). Monitoring trends in bat populations of the US and territories: problems and prospects. In: O’Shea TJ, Bogan MA (eds) US geological survey, biological resources discipline, information and technology report, USGS/BRD/ITR-2003-003, 21–30

    Google Scholar 

  • McCracken GF, Gillam EH, Westbrook JK, Lee Y, Jensen ML, Balsley BB (2008) Brazilian free-tailed bats (Tadarida brasiliensis: Molossidae, Chiroptera) at high altitude: links to migratory insect populations. Integr Comp Biol 48:107–118

    Article  PubMed  Google Scholar 

  • Mehlman DW, Mabey SE, Ewert DN, Duncan C, Abel B, Cimprich DA, Sutter RD, Woodrey MS (2005) Conserving stopover sites for forest-dwelling migratory landbirds. Auk 122:1281–1290

    Article  Google Scholar 

  • Meola M, Lazzaro A, Zeyer J (2015) Bacterial composition and survival on Sahara dust particles transported to the European Alps. Front Microbiol 6:1454

    Article  PubMed  PubMed Central  Google Scholar 

  • Mills AM (1986) The influence of moonlight on the behavior of goatsuckers (Caprimulgidae). Auk 103:370–378

    Google Scholar 

  • Morrison ML, Marcot BG, Mannan RW (2006) Wildlife-habitat relationships: concepts and applications, 3rd edn. Island Press, Washington, DC

    Google Scholar 

  • Morton ES (1975) Ecological sources of selection on avian sounds. Am Nat 109:17–34

    Article  Google Scholar 

  • Nelson DA, Marler P (1990) The perception of birdsong and an ecological concept of signal space. In: Stebbins WC, Berkley MA (eds) Comparative perception, Complex signals, vol 2. Wiley, New York, pp 443–478

    Google Scholar 

  • O’Neal BJ, Stafford JD, Larkin RP (2010) Waterfowl on weather radar: applying ground-truth to classify and quantify bird movements. J Field Ornithol 81:71–82

    Article  Google Scholar 

  • Odum EP (1959) Fundamentals of ecology, 2nd edn. W. B. Saunders, Philadelphia

    Google Scholar 

  • Park H, Ryzhkov AV, Zrnic DS, Kim K-E (2009) The hydrometeor classification algorithm for the polarimetric WSR-88D: description and application to an MCS. Weather Forecast 24:730–748

    Article  Google Scholar 

  • Pennisi LA, Holland SM, Stein TV (2004) Achieving bat conservation through tourism. J Ecotour 3:195–207

    Article  Google Scholar 

  • Pennycuick CJ (1998) Field observations of thermals and thermal streets, and the theory of cross-country soaring flight. J Avian Biol 29:33–43

    Article  Google Scholar 

  • Popa-Lisseanu AG, Delgado-Huertas A, Forero MG, Rodríguez A, Arlettaz R, Ibáňez C (2007) Bats’ conquest of a formidable foraging niche: the myriads of nocturnally migrating songbirds. PLoS One 2. https://doi.org/10.1371/journal.pone.0000205

  • Razgour O, Korine C, Saltz D (2011) Does interspecific competition drive patterns of habitat use in desert bat communities? Oecologia 167:493–502

    Article  PubMed  Google Scholar 

  • Robertson BA, Hutto RL (2006) A framework for understanding ecological traps and an evaluation of the existing evidence. Ecology 87:1075–1085

    Article  PubMed  Google Scholar 

  • Robinson WDBM, Bisson IA, Shamoun-Baranes J, Thorup K, Diehl RH, Kunz TH, Mabey SE, Winkler DW (2009) Integrating concepts and technologies at the frontiers of bird migration. Front Ecol Environ 8:354–361

    Article  Google Scholar 

  • Sachs G (2016) In-flight measurement of upwind dynamic soaring in albatrosses. Prog Oceanogr. https://doi.org/10.1016/j.pocean.2016.01.003

  • Sattler B, Puxbaum H, Psenner R (2001) Bacterial growth in supercooled cloud droplets. Geophys Res Lett 28:239–242

    Article  Google Scholar 

  • Schlaepfer MA, Runge MC, Sherman PW (2002) Ecological and evolutionary traps. Trends Ecol Evol 17:474–480

    Article  Google Scholar 

  • Scott JA (1972) Mating of butterflies. J Res Lepid 11:99–127

    Google Scholar 

  • Shamoun-Baranes J, Bouten W, Buurma L, Defusco RP, Dekker A, Sierdsema H, Sluiter F, van Belle J, van Gasteren H, van Loon E (2008) Avian information systems: developing web-based bird avoidance models. Ecol Soc 13:38

    Article  Google Scholar 

  • Shields WM, Bildstein KL (1979) Birds versus bats: behavioral interactions at a localized food source. Ecology 60:468–474

    Article  Google Scholar 

  • Shipley JR, Kelly JF, Frick WF (2017) Toward integrating citizen science and radar data for migrant bird conservation. Remote Sens Ecol Conserv. https://doi.org/10.1002/rse2.62

  • Sinclair K, DeGeorge E (2016) Wind energy industry eagle detection and deterrents: research gaps and solutions workshop summary report. National Renewable Energy Laboratory, Golden, CO, Technical report NREL/TP-5000-65735

    Google Scholar 

  • Southwood TRE (1977) Habitat, the templet for Ecological strategies? J Anim Ecol 46:337–365

    Article  Google Scholar 

  • Sporer MK, Dwyer JF, Gerber BD, Harness RE, Pandey AK (2013) Marking power lines to reduce avian collision near the Audubon National Wildlife Refuge, North Dakota. Wildl Soc Bull. https://doi.org/10.1002/wsb.329

  • Stiles FG (1982) Aggressive and courtship displays of the male Anna’s hummingbird. Condor 84:208–225

    Article  Google Scholar 

  • Sullivan R (1981) Insect swarming and mating. Fla Entomol 64:44–65

    Article  Google Scholar 

  • Sweeney BW, Vannote RL (1982) Population synchrony in mayflies: a predation satiation hypothesis. Evolution 36:810–821

    Article  PubMed  Google Scholar 

  • Vaïtilingom M, Attard E, Gaiani N, Sancelme M, Deguillaume L, Flossmann AI, Amato P, Delort AM (2012) Long-term features of cloud microbiology at the puy de Dôme (France). Atmos Environ 56:88–100

    Article  Google Scholar 

  • Van Doren BM, Horton KG, Dokter AM, Klinck H, Elbin SB, Farnsworth A (2017) High-intensity urban light installation dramatically alters nocturnal bird migration. PNAS 114:11175–11180

    Article  PubMed  Google Scholar 

  • Wallace P (2007) The nature of habitat. NZ J Environ Law 11:211–240

    Google Scholar 

  • Westbrook JK (2008) Noctuid migration in Texas within the nocturnal aeroecological boundary layer. Integr Comp Biol 48:99–106

    Article  PubMed  Google Scholar 

  • Westbrook JK, Isard SA (1999) Atmospheric scales of biotic dispersal. Agric For Meteorol 97:263–274

    Article  Google Scholar 

  • Wilkins KT (1989) Tadarida brasiliensis. In: Best TL, Anderson S (eds) Mammalian species, no 331. American Society of Mammalogists, pp 1–10

    Google Scholar 

  • Wink M, Ristow D (2000) Biology and molecular genetics of Eleonora’s falcon (Falco eleonorae), a colonial raptor of Mediterranean Islands. In: Chancellor, Meyburg (eds) Raptors at risk. Hancock House, Blaine, pp 653–668

    Google Scholar 

  • Womack AM, Bohannan BJM, Green JL (2010) Biodiversity and biogeography of the atmosphere. Philos Trans R Soc Lond B 365:3645–3653

    Article  Google Scholar 

  • Wright GA, Schiestl FP (2009) The evolution of floral scent: the influence of olfactory learning by insect pollinators on the honest signaling of floral rewards. Funct Ecol 23:841–851

    Article  Google Scholar 

  • Yang LH, Bastow JL, Spence KO, Wright AN (2008) What can we learn from resource pulses. Ecology 89:621–634

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Soileau, H. Hoffmann, and the editors for helpful input on this chapter. The USGS Northern Rocky Mountain Science Center Ecolunch group provided valuable feedback as the concept of aerial habitat was developed. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert H. Diehl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Diehl, R.H., Peterson, A.C., Bolus, R.T., Johnson, D.H. (2017). Extending the Habitat Concept to the Airspace. In: Chilson, P., Frick, W., Kelly, J., Liechti, F. (eds) Aeroecology. Springer, Cham. https://doi.org/10.1007/978-3-319-68576-2_3

Download citation

Publish with us

Policies and ethics