Skip to main content

Linking Animals Aloft with the Terrestrial Landscape

  • Chapter
  • First Online:
Aeroecology

Abstract

Despite using the aerosphere for many facets of their life, most flying animals (i.e., birds, bats, some insects) are still bound to terrestrial habitats for resting, feeding, and reproduction. Comprehensive broad-scale observations by weather surveillance radars of animals as they leave terrestrial habitats for migration or feeding flights can be used to map their terrestrial distributions either as point locations (e.g., communal roosts) or as continuous surface layers (e.g., animal densities in habitats across a landscape). We discuss some of the technical challenges to reducing measurement biases related to how radars sample the aerosphere and the flight behavior of animals. We highlight a recently developed methodological approach that precisely and quantitatively links the horizontal spatial structure of birds aloft to their terrestrial distributions and provides novel insights into avian ecology and conservation across broad landscapes. Specifically, we present case studies that (1) elucidate how migrating birds contend with crossing ecological barriers and extreme weather events, (2) identify important stopover areas and habitat use patterns of birds along their migration routes, and (3) assess waterfowl response to wetland habitat management and restoration. These studies aid our understanding of how anthropogenic modification of the terrestrial landscape (e.g., urbanization, habitat management), natural geographic features, and weather (e.g., hurricanes) can affect the terrestrial distributions of flying animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Able KP (1972) Fall migration in coastal Louisiana and the evolution of migration patterns in the Gulf region. Wilson Bull 84:231–242

    Google Scholar 

  • Able KP (1989) Skylight polarization patterns and the orientation of migratory birds. J Exp Biol 141:241–256

    Google Scholar 

  • Åkesson S, Alerstam T, Hedenström A (1996) Flight initiation of nocturnal passerine migrants in relation to celestial orientation conditions at twilight. J Avian Biol 27:95–102

    Article  Google Scholar 

  • Åkesson S, Walinder G, Karlsson L, Ehnbom S (2001) Reed warbler orientation: initiation of nocturnal migratory flights in relation to visibility of celestial cues at dusk. Anim Behav 61:181–189

    Article  PubMed  Google Scholar 

  • Alerstam T (1993) Bird migration. Cambridge University Press, New York

    Google Scholar 

  • Alerstam T, Chapman JW, Bäckman J, Smith AD, Karlsson H, Nilsson C, Reynolds DR, Klaassen RHG, Hill JK (2011) Convergent patterns of long-distance nocturnal migration in noctuid moths and passerine birds. Proc R Soc B Biol Sci 278:3074–3080

    Article  Google Scholar 

  • Baldassarre GA, Bolen EG (1984) Field-feeding ecology of waterfowl wintering on the southern high plains of Texas. J Wildl Manag 48:63–71

    Article  Google Scholar 

  • Barrow WCJ, Buler JJ, Couvillion B, Diehl RH, Faulkner S, Moore FR, Randall L (2007) Broad-scale response of landbird migration to the immediate effects of hurricane Katrina. In: Farris GS, Smith GJ, Crane MP, Demas CR, Robbins LL, Lavoire DL (eds) Science and the storms – the USGS response to the hurricanes of 2005. Circular 1306. U.S. Geological Survey, Reston, pp 131–136

    Google Scholar 

  • Bech J, Codina B, Lorente J, Bebbington D (2003) The sensitivity of single polarization weather radar beam blockage correction to variability in the vertical refractivity gradient. J Atmos Ocean Technol 20:845–855

    Article  Google Scholar 

  • Beekman JH, Nolet BA, Klaassen M (2002) Skipping swans: fuelling rates and wind conditions determine differential use of migratory stopover sites of Bewick’s Swans Cygnus bewickii. Ardea 90:437–460

    Google Scholar 

  • Bellrose FC, Crompton RD (1970) Migrational behavior of mallards and black ducks as determined from banding. Ill Nat Hist Surv Bull 30(3):167–234

    Google Scholar 

  • Bellrose FC, Paveglio F, Steffeck DW (1979) Waterfowl populations and the changing environment of the Illinois River valley. Ill Nat Hist Surv Bull 32(1):1–54

    Google Scholar 

  • Bonter DN, Gauthreaux SA, Donovan TM (2009) Characteristics of important stopover locations for migrating birds: remote sensing with radar in the Great Lakes Basin. Conserv Biol 23:440–448

    Article  PubMed  Google Scholar 

  • Bowlin MS, Enstrom DA, Murphy BJ, Plaza E, Jurich P, Cochran J (2015) Unexplained altitude changes in a migrating thrush: long-flight altitude data from radio-telemetry. Auk 132:808–816

    Article  Google Scholar 

  • Bridge ES, Thorup K, Bowlin MS, Chilson PB, Diehl RH, Fleron RW, Hartl P, Roland K, Kelly JF, Robinson WD, Wikelski M (2011) Technology on the move: recent and forthcoming innovations for tracking migratory birds. Bioscience 61:689–698

    Article  Google Scholar 

  • Bridge ES, Pletschet SM, Fagin T, Chilson PB, Horton KG, Broadfoot KR, Kelly JF (2016) Persistence and habitat associations of Purple Martin roosts quantified via weather surveillance radar. Landsc Ecol 31(1):43–53

    Article  Google Scholar 

  • Brigham RM, Grindal SD, Firman MC, Morissette JL (1997) The influence of structural clutter on activity patterns of insectivorous bats. Can J Zool 75:131–136

    Article  Google Scholar 

  • Brittain JE (1982) Biology of mayflies. Annu Rev Entomol 27:119–147

    Article  Google Scholar 

  • Buler JJ, Dawson DK (2014) Radar analysis of fall bird migration stopover sites in the northeastern U.S. Condor 116:357–370

    Article  Google Scholar 

  • Buler JJ, Diehl RH (2009) Quantifying bird density during migratory stopover using weather surveillance radar. IEEE Trans Geosci Remote Sens 47:2741–2751

    Article  Google Scholar 

  • Buler JJ, Moore FR (2011) Migrant–habitat relationships during stopover along an ecological barrier: extrinsic constraints and conservation implications. J Ornithol 152:S101–S112

    Article  Google Scholar 

  • Buler JJ, Barrow WC, Randall LA (2012a) Wintering waterfowl respond to wetlands reserve program lands in California’s Central Valley. USDA NRCS CEAP Conservation Insight

    Google Scholar 

  • Buler JJ, Randall LA, Fleskes JP, Barrow WC, Bogart T, Kluver D (2012b) Mapping wintering waterfowl distributions using weather surveillance radar. PLoS One 7:e41571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caccamise DF, Lyon LA, Fischl J (1983) Seasonal patterns in roosting flocks of starlings and common grackles. Condor 85:474–481

    Article  Google Scholar 

  • Callo PA, Morton ES, Stutchbury BJ (2013) Prolonged spring migration in the Red-eyed Vireo (Vireo olivaceus). Auk 130:240–246

    Article  Google Scholar 

  • Carlisle JD, Skagen SK, Kus BE, Riper CV III, Paxtons KL, Kelly JF (2009) Landbird migration in the American West: recent progress and future research directions. Condor 111:211–225

    Article  Google Scholar 

  • Chambers JQ, Fisher JI, Zeng H, Chapman EL, Baker DB, Hurtt GC (2007) Hurricane Katrina’s carbon footprint on US Gulf coast forests. Science 318:1107–1107

    Article  CAS  PubMed  Google Scholar 

  • Chapman EL, Chambers JQ, Ribbeck KF, Baker DB, Tobler MA, Zeng H, White DA (2008) Hurricane Katrina impacts on forest trees of Louisiana’s Pearl River basin. For Ecol Manag 256:883–889

    Article  Google Scholar 

  • Chilson PB, Frick WF, Stepanian PM, Shipley JR, Kunz TH, Kelly JF (2012) Estimating animal densities in the aerosphere using weather radar: to Z or not to Z? Ecosphere 3:art72

    Article  Google Scholar 

  • Cleveland CJ, Betke M, Federico P, Frank JD, Hallam TG, Horn J, López JD, McCracken GF, Medellín RA, Moreno-Valdez A, Sansone CG, Westbrook JK, Kunz TH (2006) Economic value of the pest control service provided by Brazilian free-tailed bats in south-central Texas. Front Ecol Environ 4:238–243

    Article  Google Scholar 

  • Cochran WW (1987) Orientation and other migratory behaviours of a Swainson’s thrush followed for 1500 km. Anim Behav 35:927–929

    Article  Google Scholar 

  • Cochran WW, Montgomery GG, Graber RR (1967) Migratory flights of Hylocichla thrushes in spring: a radiotelemetry study. Living Bird 6:213–225

    Google Scholar 

  • Corkum LD (2010) Spatial-temporal patterns of recolonizing adult mayflies in Lake Erie after a major disturbance. J Great Lakes Res 36:338–344

    Article  Google Scholar 

  • Cox RR, Afton AD (1996) Evening flights of female northern pintails from a major roost site. Condor 98:810–819

    Article  Google Scholar 

  • Cronin TW, Warrant EJ, Greiner B (2006) Celestial polarization patterns during twilight. Appl Opt 45:5582–5589

    Article  PubMed  Google Scholar 

  • Crossett KM, Culliton TJ, Wiley PC, Goodspeed TR (2004) Population trends along the coastal United States: 1980–2008. National Oceanic and Atmospheric Administration, Silver Spring, MD

    Google Scholar 

  • Crum TD, Alberty RL, Burgess DW (1993) Recording, archiving, and using WSR-88D data. Bull Am Meteorol Soc 74:645–653

    Article  Google Scholar 

  • Cryan PM (2003) Seasonal distribution of migratory tree bats (Lasiurus and Lasionycteris) in North America. J Mammal 84:579–593

    Article  Google Scholar 

  • Deppe JL, Ward MP, Bolus RT, Diehl RH, Celis-Murillo A, Zenzal TJ, Moore FR, Benson TJ, Smolinsky JA, Schofield LN, Enstrom DA, Paxton EH, Bohrer G, Beveroth TA, Raim A, Obringer RL, Delaney D, Cochran WW (2015) Fat, weather, and date affect migratory songbirds’ departure decisions, routes, and time it takes to cross the Gulf of Mexico. Proc Natl Acad Sci 112:E6331–E6338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diehl RH, Larkin RP (2005) Introduction to the WSR-88D (NEXRAD) for ornithological research. In: Ralph CJ, Rich TD (eds) Bird conservation implementation and integration in the Americas: proceedings of the third international partners in flight conference. USDA Forest Service, General Technical Report PSW-GTR-191, pp 876–888

    Google Scholar 

  • Dingle H, Drake VA (2007) What is migration? Bioscience 57:113–121

    Article  Google Scholar 

  • Dokter AM, Åkesson S, Beekhuis H, Bouten W, Buurma L, van Gasteren H, Holleman I (2013) Twilight ascents by common swifts, Apus apus, at dawn and dusk: acquisition of orientation cues? Anim Behav 85:545–552

    Article  Google Scholar 

  • Doviak RJ, Zrnic DS (1993) Doppler radar and weather observations. Academic, San Diego

    Google Scholar 

  • Drake V, Gatehouse A (1996) Population trajectories through space and time: a holistic approach to insect migration. In: Floyd RB, Sheppard AW, De Barro PI (eds) Frontiers of population ecology. Collingwood, CSIRO, pp 399–408

    Google Scholar 

  • Eastwood E (1967) Radar ornithology. Methuen, London

    Google Scholar 

  • Eastwood E, Isted GA, Rider GC (1962) Radar ring angels and the roosting behaviour of starlings. Proc R Soc Lond B Biol Sci 156:242–267

    Article  Google Scholar 

  • Edwards J, Houghton EW (1959) Radar echoing area polar diagrams of birds. Nature 184:1059–1059

    Article  Google Scholar 

  • Elder FC (1957) Some persistent ring echoes on high powered radar. In: Proceedings of the sixth weather radar conference. Cambridge, pp 281–286

    Google Scholar 

  • Ely CR (1992) Time allocation by greater white-fronted geese: influence of diet, energy reserves and predation. Condor 94:857–870

    Article  Google Scholar 

  • Faaborg J, Holmes RT, Anders AD, Bildstein KL, Dugger KM, Gauthreaux SA, Heglund P, Hobson KA, Jahn AE, Johnson DH, Latta SC, Levey DJ, Marra PP, Merkord CL, Nol E, Rothstein SI, Sherry TW, Sillett TS, Thompson FR, Warnock N (2010) Recent advances in understanding migration systems of New World land birds. Ecol Monogr 80:3–48

    Article  Google Scholar 

  • Fink D, Hochachka WM, Zuckerberg B, Winkler DW, Shaby B, Munson MA, Hooker G, Riedewald M, Sheldon D, Kelling S (2010) Spatiotemporal exploratory models for broad-scale survey data. Ecol Appl 20:2131–2147

    Article  PubMed  Google Scholar 

  • Fleming TH, Eby P (2003) Ecology of bat migration. In: Kunz TH, Fenton MB (eds) Bat ecology. The University of Chicago Press, Chicago, pp 156–208

    Google Scholar 

  • Fleskes JP, Yee JL, Casazza ML, Miller MR, Takekawa JY, Orthmeyer DL (2005) Waterfowl distribution, movements, and habitat use relative to recent habitat changes in the Central Valley of California: a cooperative project to investigate impacts of the Central Valley joint venture and changing agricultural practices on the ecology of wintering waterfowl. Final report. U.S. Geological Survey – Western Ecological Research Center, Dixon Field Station, Dixon, CA

    Google Scholar 

  • Fraser KC, Silverio C, Kramer P, Mickle N, Aeppli R, Stutchbury BJ (2013) A trans-hemispheric migratory songbird does not advance spring schedules or increase migration rate in response to record-setting temperatures at breeding sites. PLoS One 8:e64587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fremling CR (1973) Factors influencing the distribution of burrowing mayflies along the Mississippi River. In: Proceedings of the first international conference on Ephemeroptera. EJ Brill, Leiden, pp 12–15

    Google Scholar 

  • Frick WF, Stepanian PM, Kelly JF, Howard KW, Kuster CM, Kunz TH, Chilson PB (2012) Climate and weather impact timing of emergence of bats. PLoS One 7:e42737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gagnon F, Ibarzabal J, Savard J-PL, Bélisle M, Vaillancourt P (2011) Autumnal patterns of nocturnal passerine migration in the St. Lawrence estuary region, Quebec, Canada: a weather radar study. Can J Zool 89:31–46

    Article  Google Scholar 

  • Gauthreaux SA (1971) A radar and direct visual study of passerine spring migration in southern Louisiana. Auk 88:343–365

    Article  Google Scholar 

  • Gauthreaux SA (1975) Coastal hiatus of spring trans-Gulf bird migration. A rationale for determining Louisiana’s coastal zone: Baton Rouge, Louisiana State University, Center for Wetland Resources, Coastal Zone Management Series report no 1, pp 85–91

    Google Scholar 

  • Gauthreaux SA (1980) The influences of long-term and short-term climatic changes on the dispersal and migration of organisms. In: Gauthereaux SA (ed) Animal migration, orientation, and navigation. Academic, New York, pp 103–174

    Google Scholar 

  • Gauthreaux SA, Belser CG (1998) Displays of bird movements on the WSR-88D: patterns and quantification. Weather Forecast 13:453–464

    Article  Google Scholar 

  • Gauthreaux SA, Belser CG (1999) Bird migration in the region of the Gulf of Mexico. In: Adams NJ, Slotow RH (eds) Proceedings of the 22nd international ornithological congress. Birdlife South Africa, Durban, pp 1931–1947

    Google Scholar 

  • Gauthreaux SA, Belser CG (2003) Radar ornithology and biological conservation. Auk 120:266–277

    Article  Google Scholar 

  • Gauthreaux SA, Belser CG (2006) Effects of artificial night lighting on migrating birds. In: Rich C, Longcore T (eds) Ecological consequences of artificial night lighting. Island Press, Washington, DC, pp 67–93

    Google Scholar 

  • Gauthreaux SA, Livingston JW (2006) Monitoring bird migration with a fixed-beam radar and a thermal-imaging camera. J Field Ornithol 77:319–328

    Article  Google Scholar 

  • Gauthreaux SA, Belser CG, Blaricom DV (2003) Using a network of WSR-88D weather surveillance radars to define patterns of bird migration at large spatial scales. In: Berthold P, Gwinner E, Sonnenschein E (eds) Avian migration. Springer, Berlin, pp 335–346

    Google Scholar 

  • Gauthreaux SA, Michi JE, Belser CG (2005) The temporal and spatial structure of the atmosphere and its influence on bird migration strategies. In: Greenberg R, Marra PP (eds) Birds of two worlds. Smithsonian Institution, Washington, DC, pp 182–196

    Google Scholar 

  • Haig SM, Mehlman DW, Oring LW (1998) Avian movements and wetland connectivity in landscape conservation. Conserv Biol 12:749–758

    Article  Google Scholar 

  • Harper WG (1959) Roosting movements of birds and migration departures from roosts as seen by radar. Ibis 101:201–208

    Article  Google Scholar 

  • Harper DGC (1982) Competitive foraging in mallards: “Ideal free” ducks. Anim Behav 30:575–584

    Article  Google Scholar 

  • Hassell MP, Southwood TRE (1978) Foraging strategies of insects. Annu Rev Ecol Syst 9:75–98

    Article  Google Scholar 

  • Hebrard JJ (1971) The nightly initiation of passerine migration in spring: a direct visual study. Ibis 113:8–18

    Article  Google Scholar 

  • Heffernan JB, Soranno PA, Angilletta MJ Jr, Buckley LB, Gruner DS, Keitt TH, Kellner JR, Kominoski JS, Rocha AV, Xiao J (2014) Macrosystems ecology: understanding ecological patterns and processes at continental scales. Front Ecol Environ 12:5–14

    Google Scholar 

  • Helbig AJ (1990) Depolarization of natural skylight disrupts orientation of an avian nocturnal migrant. Experientia 46:755–758

    Article  Google Scholar 

  • Helbig AJ, Wiltschko W (1989) The skylight polarization patterns at dusk affect the orientation behavior of Blackcaps, Sylvia atricapilla. Naturwissenschaften 76:227–229

    Article  Google Scholar 

  • Hodgkison R, Balding ST, Zubaid A, Kunz TH (2004) Habitat structure, wing morphology, and the vertical stratification of Malaysian fruit bats (Megachiroptera: Pteropodidae). J Trop Ecol 20:667–673

    Article  Google Scholar 

  • Holleman I, Delobbe L, Zgonc A (2008) Update on the European weather radar network (OPERA). In: Proceedings of the 5th European conference on radar in meteorology and hydrology, Helsinki, 30 June–4 July 2008

    Google Scholar 

  • Horn JW, Kunz TH (2008) Analyzing NEXRAD doppler radar images to assess nightly dispersal patterns and population trends in Brazilian free-tailed bats (Tadarida brasiliensis). Integr Comp Biol 48:24–39

    Article  PubMed  Google Scholar 

  • Hutto RL (2000) On the importance of en route periods to the conservation of migratory landbirds. Stud Avian Biol 20:109–114

    Google Scholar 

  • Janes SW (1985) Habitat selection in raptorial birds. In: Cody ML (ed) Habitat selection in birds. Academic, New York, pp 159–188

    Google Scholar 

  • Jones G, Rydell J (1994) Foraging strategy and predation risk as factors influencing emergence time in echolocating bats. Philos Trans R Soc B Biol Sci 346:445–455

    Article  Google Scholar 

  • Kelly JF, Shipley JR, Chilson PB, Howard KW, Frick WF, Kunz TH (2012) Quantifying animal phenology in the aerosphere at a continental scale using NEXRAD weather radars. Ecosphere 3:art16

    Article  Google Scholar 

  • Kerlinger P, Moore F (1989) Atmospheric structure and avian migration. Curr Ornithol 6:109–142

    Google Scholar 

  • Kranstauber B, Weinzierl R, Wikelski M, Safi K (2015) Global aerial flyways allow efficient travelling. Ecol Lett 18:1338–1345

    Article  CAS  PubMed  Google Scholar 

  • Kucera PA, Krajewski WF, Young CB (2004) Radar beam occultation studies using GIS and DEM technology: an example study of Guam. J Atmos Ocean Technol 21:995–1006

    Article  Google Scholar 

  • Kuenzi AJ, Moore FR (1991) Stopover of Neotropical landbird migrants on East Ship Island following trans-Gulf migration. Condor 93:869–883

    Article  Google Scholar 

  • La Sorte FA, Fink D, Hochachka WM, Farnsworth A, Rodewald AD, Rosenberg KV, Sullivan BL, Winkler DW, Wood C, Kelling S (2014a) The role of atmospheric conditions in the seasonal dynamics of North American migration flyways. J Biogeogr 41:1685–1696

    Article  Google Scholar 

  • La Sorte FA, Tingley MW, Hurlbert AH (2014b) The role of urban and agricultural areas during avian migration: an assessment of within-year temporal turnover. Glob Ecol Biogeogr 23:1225–1234

    Article  Google Scholar 

  • Lack D, Varley GC (1945) Detection of birds by radar. Nature 156:446–446

    Article  Google Scholar 

  • LaFleur JM, Buler JJ, Moore FR (2016) Geographic position and landscape composition explain regional patterns of migrating landbird distributions during spring stopover along the northern coast of the Gulf of Mexico. Landsc Ecol 31:1–13

    Article  Google Scholar 

  • Larkin RP (1991) Flight speeds observed with radar, a correction: slow “birds” are insects. Behav Ecol Sociobiol 29:221–224

    Article  Google Scholar 

  • Larkin RP (2006) Locating bird roosts with Doppler radar. In: Timm R, O’Brien J (eds) Proceedings of the 22nd vertebrate pest conference. University of California, Davis, pp 244–249

    Google Scholar 

  • Larkin RP, Diehl RH (2012) Radar techniques for wildlife biology. In: Silvy NJ (ed) The wildlife techniques manual. Research, vol 1, 7th edn. Johns Hopkins University Press, Baltimore, pp 319–335

    Google Scholar 

  • Laughlin AJ, Taylor CM, Bradley DW, Leclair D, Clark RC, Dawson RD, Dunn PO, Horn A, Leonard M, Sheldon DR (2013) Integrating information from geolocators, weather radar, and citizen science to uncover a key stopover area of an aerial insectivore. Auk 130:230–239

    Article  Google Scholar 

  • Laughlin AJ, Sheldon DR, Winkler DW, Taylor CM (2014) Behavioral drivers of communal roosting in a songbird: a combined theoretical and empirical approach. Behav Ecol 25:734–743

    Article  Google Scholar 

  • Laughlin AJ, Sheldon DR, Winkler DW, Taylor CM (2016) Quantifying non-breeding season occupancy patterns and the timing and drivers of autumn migration for a migratory songbird using Doppler radar. Ecography 39(10):1017–1024

    Article  Google Scholar 

  • Lee L, Helsel D (2005) Statistical analysis of water-quality data containing multiple detection limits: S-language software for regression on order statistics. Comput Geosci 31:1241–1248

    Article  CAS  Google Scholar 

  • Liechti F, Witvliet W, Weber R, Bachler E (2013) First evidence of a 200-day non-stop flight in a bird. Nat Commun 4:art2554

    Article  CAS  Google Scholar 

  • Ligda MG (1958) Radar observations of blackbird flights. Tex J Sci 10:255–265

    Google Scholar 

  • Lowery GH (1945) Trans-Gulf migration of birds and the coastal hiatus. Wilson Bull 57:92–121

    Google Scholar 

  • Masteller EC, Obert EC (2000) Excitement along the shores of Lake Erie – Hexagenia – Echoes from the past. Great Lakes Res Rev 5:25

    Google Scholar 

  • McCracken GF, Westbrook JK (2002) Bat patrol. Natl Geogr 201:14–23

    Google Scholar 

  • McLaren JD, Buler JJ, Schreckengost T, Smolinsky JA, Boone M, Dawson DK, Walters EL (2018) Artificial light confounds broad-scale habitat use by migrating birds. Ecol Lett (in press)

    Google Scholar 

  • McLaren JD, Shamoun-Baranes J, Bouten W (2013) Stop early to travel fast: modelling risk-averse scheduling among nocturnally migrating birds. J Theor Biol 316:90–98

    Article  PubMed  Google Scholar 

  • Mehlman DW, Mabey SE, Ewert DN, Duncan C, Abel B, Cimprich D, Sutter RD, Woodrey MS (2005) Conserving stopover sites for forest-dwelling migratory landbirds. Auk 122:1281–1290

    Article  Google Scholar 

  • Mills AM, Thurber BG, Mackenzie SA, Taylor PD (2011) Passerines use nocturnal flights for landscape-scale movements during migration stopover. Condor 113:597–607

    Article  Google Scholar 

  • Moore FR, Kerlinger P (1989) Atmospheric structure and avian migration. Curr Ornithol 6:109–142

    Google Scholar 

  • Moore FR, Phillips JB (1988) Sunset, skylight polarization and the migratory orientation of yellow-rumped warblers, Dendroica coronata. Anim Behav 36:1770–1778

    Article  Google Scholar 

  • Moore FR, Kerlinger P, Simons TR (1990) Stopover on a Gulf Coast barrier island by spring trans-gulf migrants. Wilson Bull 102:487–500

    Google Scholar 

  • Moore FR, Gauthreaux SA, Kerlinger P, Simons TR (1995) Habitat requirements during migration: important link in conservation. In: Martin TE, Finch DM (eds) Ecology and management of neotropical migratory birds. Oxford University Press, New York, pp 121–144

    Google Scholar 

  • Muheim R (2011) Behavioural and physiological mechanisms of polarized light sensitivity in birds. Philos Trans R Soc Lond B Biol Sci 366:763–771

    Article  PubMed  PubMed Central  Google Scholar 

  • Muheim R, Åkesson S, Phillips J (2007) Magnetic compass of migratory Savannah sparrows is calibrated by skylight polarization at sunrise and sunset. J Ornithol 148:485–494

    Article  Google Scholar 

  • O’Neal BJ, Stafford JD, Larkin RP (2010) Waterfowl on weather radar: applying ground-truth to classify and quantify bird movements. J Field Ornithol 81:71–82

    Article  Google Scholar 

  • O’Neal BJ, Stafford J, Larkin RP (2012) Stopover duration of fall-migrating dabbling ducks. J Wildl Manag 76:285–293

    Article  Google Scholar 

  • Randall LA, Diehl RH, Wilson BC, Barrow WC, Jeske CW (2011) Potential use of weather radar to study movements of wintering waterfowl. J Wildl Manag 75:1324–1329

    Article  Google Scholar 

  • Rappole JH, Ramos MA (1994) Factors affecting migratory bird routes over the Gulf of Mexico. Bird Conserv Int 4:251–262

    Article  Google Scholar 

  • Raveling DG, Crews WE, Klimstra WD (1972) Activity patterns of Canada geese during winter. Wilson Bull 84:278–295

    Google Scholar 

  • Reynolds DR, Riley JR (1979) Radar observations of concentrations of insects above a river in Mali, West Africa. Ecol Entomol 4:161–174

    Article  Google Scholar 

  • Riley JR, Reynolds DR (1979) Radar-based studies of the migratory flight of grasshoppers in the middle Niger area of Mali. Proc R Soc Lond B Biol Sci 204:67–82

    Article  CAS  PubMed  Google Scholar 

  • Riley JR, Reynolds DR, Farmery MJ (1983) Observations of the flight behaviour of the army worm moth, Spodoptera exempta, at an emergence site using radar and infra-red optical techniques. Ecol Entomol 8:395–418

    Article  Google Scholar 

  • Robinson SK, Holmes RT (1982) Foraging behavior of forest birds: the relationships among search tactics, diet, and habitat structure. Ecology 63:1918–1931

    Article  Google Scholar 

  • Russell RW (2005) Interactions between migrating birds and offshore oil and gas platforms in the northern Gulf of Mexico: final report. U.S. Department of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans

    Google Scholar 

  • Russell KR, Gauthreaux SA (1998) Use of weather radar to characterize movements of roosting purple martins. Wildl Soc Bull 26:5–16

    Google Scholar 

  • Russell KR, Gauthreaux SA Jr (1999) Spatial and temporal dynamics of a purple martin pre-migratory roost. Wilson Bull 111:354–362

    Google Scholar 

  • Russell KR, Mizrahi DS, Gauthreaux SA (1998) Large-scale mapping of purple martin pre-migratory roosts using WSR-88D weather surveillance radar. J Field Ornithol 69:316–325

    Google Scholar 

  • Ruth JM, Diehl RH, Felix RK Jr (2012) Migrating birds’ use of stopover habitat in the Southwestern United States. Condor 114:698–710

    Article  Google Scholar 

  • Ruthi L (1994) Observation of bat emergence from Reed Bat Cave (HR-004) with the WSR-88D radar. Okla Undergr 17:54–56

    Google Scholar 

  • Schmaljohann H, Naef-Daenzer B (2011) Body condition and wind support initiate the shift of migratory direction and timing of nocturnal departure in a songbird. J Anim Ecol 80:1115–1122

    Article  PubMed  Google Scholar 

  • Seewagen CL, Slayton EJ (2008) Mass changes of migratory landbirds during stopovers in a New York City park. Wilson J Ornithol 120:296–303

    Article  Google Scholar 

  • Shamoun-Baranes J, Alves J, Bauer S, Dokter A, Huppop O, Koistinen J, Leijnse H, Liechti F, van Gasteren H, Chapman J (2014) Continental-scale radar monitoring of the aerial movements of animals. Mov Ecol 2:9

    Article  Google Scholar 

  • Sieges ML, Smolinsky JA, Baldwin MJ, Barrow WC, Randall LA, Buler JJ (2014) Assessment of bird response to the migratory bird habitat initiative using weather-surveillance radar. Southeast Nat 13:G36–G65

    Article  Google Scholar 

  • Smolinsky J, Diehl R, Radzio T, Delaney D, Moore F (2013) Factors influencing the movement biology of migrant songbirds confronted with an ecological barrier. Behav Ecol Sociobiol 67:2041–2051

    Article  Google Scholar 

  • Spengler TJ, Leberg PL, Barrow WC (1995) Comparison of condition indices in migratory passerines at a stopover site in coastal Louisiana. Condor 97:438–444

    Article  Google Scholar 

  • Stafford J, Horath M, Yetter A, Smith R, Hine C (2010) Historical and contemporary characteristics and waterfowl use of Illinois River valley wetlands. Wetlands 30:565–576

    Article  Google Scholar 

  • Stanley CQ, McKinnon EA, Fraser KC, Macpherson MP, Casbourn G, Friesen L, Marra PP, Studds C, Ryder TB, Diggs NE, Stutchbury BJM (2015) Connectivity of wood thrush breeding, wintering, and migration sites based on range-wide tracking. Conserv Biol 29:164–174

    Article  PubMed  Google Scholar 

  • Taylor PD, Mackenzie SA, Thurber BG, Calvert AM, Mills AM, McGuire LP, Guglielmo CG (2011) Landscape movements of migratory birds and bats reveal an expanded scale of stopover. PLoS One 6:e27054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vandewoestijne S, Van Dyck H (2011) Flight morphology along a latitudinal gradient in a butterfly: do geographic clines differ between agricultural and woodland landscapes? Ecography 34:876–886

    Article  Google Scholar 

  • Wang F, Xu YJ (2009) Hurricane Katrina-induced forest damage in relation to ecological factors at landscape scale. Environ Monit Assess 156:491–507

    Article  PubMed  Google Scholar 

  • Weber TP, Fransson T, Houston AI (1999) Should I stay or should I go? Testing optimality models of stopover decisions in migrating birds. Behav Ecol Sociobiol 46:280–286

    Article  Google Scholar 

  • Westbrook JK (2008) Noctuid migration in Texas within the nocturnal aeroecological boundary layer. Integr Comp Biol 48:99–106

    Article  PubMed  Google Scholar 

  • Westbrook JK, Eyster RS, Wolf WW (2014) WSR-88D doppler radar detection of corn earworm moth migration. Int J Biometeorol 58:931–940

    Article  CAS  PubMed  Google Scholar 

  • Williams TC, Ireland LC, Williams JM (1973) High altitude flights of the free-tailed bat, Tadarida brasiliensis, observed with radar. J Mammal 54:807–821

    Article  Google Scholar 

  • Wingo S, Knupp K (2014) Multi-platform observations characterizing the afternoon-to-evening transition of the planetary boundary layer in northern Alabama, USA. Bound-Layer Meteorol 155:29–53

    Article  Google Scholar 

  • Winkler DW (2006) Roosts and migrations of swallows. Hornero 21:85–97

    Google Scholar 

  • Winkler H, Leisler B (1985) Morphological aspects of habitat selection in birds. In: Cody ML (ed) Habitat selection in birds. Academic, New York, pp 415–434

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey J. Buler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Buler, J.J. et al. (2017). Linking Animals Aloft with the Terrestrial Landscape. In: Chilson, P., Frick, W., Kelly, J., Liechti, F. (eds) Aeroecology. Springer, Cham. https://doi.org/10.1007/978-3-319-68576-2_14

Download citation

Publish with us

Policies and ethics