Skip to main content

Adaptive Signal Processing of Fetal PCG Recorded by Interferometric Sensor

  • Conference paper
  • First Online:
Proceedings of the Fourth Euro-China Conference on Intelligent Data Analysis and Applications (ECC 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 682))

Abstract

This paper is focused on the design, implementation, and verification of an adaptive system for processing of the fetal phonocardiogram (fPCG) recorded by the novel interferometric sensor. The main interference to be suppressed in the abdominal signal is the maternal phonocardiogram (mPCG). In this article, adaptive methods based on Least Mean Square and Recursive Least Square algorithms are used for the elimination of the maternal component. Evaluation of the filtration quality is provided using the objective parameters (Signal Noise to Ratio, Sensitivity, and Positive Predictive Value).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sartwelle, T.P.: Electronic fetal monitoring: a bridge too far. J. Legal Med. 33, 79–313 (2012). doi:10.1080/01947648.2012.714321

    Article  Google Scholar 

  2. Tan, B.H., Moghavvemi, M.: Real time analysis of fetal phonocardiography. In: Proceedings of the IEEE, Region 10 Annual International Conference, New York, pp. II-135–II-140. IEEE Press (2000)

    Google Scholar 

  3. Adithya, P.C., Sankar, R., Moreno, W.A., Hart, S.: Trends in fetal monitoring through phonocardiography: challenges and future directions. Biomed. Sig. Process. Control 33, 289–305 (2017). doi:10.1016/j.bspc.2016.11.007

    Article  Google Scholar 

  4. Liu, C., Springer, D., Li, Q., Moody, B., Juan, R.A., Chorro, F.J.: An open access database for the evaluation of heart sound algorithms. Physiol. Measur. 37(12), 2181–2213 (2016). doi:10.1088/0967-3334/37/12/2181

    Article  Google Scholar 

  5. Tang, H., Li, T., Qiu, T., Park, Y.: fetal heart rate monitoring from phonocardiograph signal using repetition frequency of heart sounds. J. Electr. Comput. Eng. 2016, 2404267 (2016). doi:10.1155/2016/2404267

    Google Scholar 

  6. Chourasia, V.S., Tiwari, A.K., Gangopadhyay, R.: A novel approach for phonocardiographic signals processing to make possible fetal heart rate evaluations. Digit. Sig. Proc. 30, 165–183 (2014). doi:10.1016/j.dsp.2014.03.009

    Article  Google Scholar 

  7. Jezewski, J., Roj, D., Wrobel, J., Horoba, K.: A novel technique for fetal heart rate estimation from Doppler ultrasound signal. Biomed. Eng. Online 10(1), 92 (2011). doi:10.1186/1475-925X-10-92

    Article  Google Scholar 

  8. Cesarelli, M., Ruffo, M., Romano, M., Bifulco, P.: Simulation of foetal phonocardiographic recordings for testing of FHR extraction algorithms. Comput. Methods Programs Biomed. 107(3), 513–523 (2012). doi:10.1016/j.cmpb.2011.11.008

    Article  Google Scholar 

  9. Martinek, R., Kelnar, M., Koudelka, P., Vanus, J.: A novel LabVIEW-based multi-channel non-invasive abdominal maternal-fetal electrocardiogram signal generator. Physiol. Measur. 37(2), 238–256 (2016). doi:10.1088/0967-3334/37/2/238

    Article  Google Scholar 

  10. Martinek, R., Kelnar, M., Vojcinak, P., Koudelka, P.: Virtual simulator for the generation of patho-physiological foetal ECGs during the prenatal period. Electron. Lett. 51(22), 1738–1740 (2015). doi:10.1049/el.2015.2291

    Article  Google Scholar 

  11. Nedoma, J., Fajkus, M., Vasinek, V.: Influence of PDMS encapsulation on the sensitivity and frequency range of fiber-optic interferometer. In: Optical Materials and Biomaterials in Security and Defence Systems Technology XIII, p. 99940P. SPIE, Edinburgh (2016). doi:10.1117/12.2243170

  12. Nedoma, J., Fajkus, M., Bednarek, L., Frnda, J., Zavadil, J., Vasinek, V.: Encapsulation of FBG sensor into the PDMS and its effect on spectral and temperature characteristics. Adv. Electr. Electron. Eng. 14(4-Special Issue), 460–466 (2016). doi:10.15598/aeee.v14i4.1786

  13. Zazula, D.: Application of fibre-optic interferometry to detection of human vital sign. J. Laser Health Acad. 2012(1), 27–32 (2012). doi:10.13140/2.1.2033.4726

    Google Scholar 

  14. Brandstetter, P., Klein, L.: Second order low-pass and high-pass filter designs using method of synthetic immittance elements. Adv. Electr. Electron. Eng. 11(1), 16–21 (2013). doi:10.15598/aeee.v11i1.800

    Google Scholar 

  15. Donghui, Z.: Wavelet approach for ECG baseline wander correction and noise reduction. In: 27th Annual International Conference of the Engineering in Medicine and Biology Society, Shanghai, pp. 1212–1215. IEEE Press (2005)

    Google Scholar 

  16. Martinek, R., Kahankova, R., Nazeran, H., Konecny, J., Jezewski, J., Janku, P., Fajkus, M.: Non-invasive fetal monitoring: a maternal surface ECG electrode placement-based novel approach for optimization of adaptive filter control parameters using the LMS and RLS algorithms. Sensors 17(5), 1154 (2017). doi:10.3390/s17051154

    Article  Google Scholar 

  17. Fajkus, M., Nedoma, J., Martinek, R., Vasinek, V., Nazeran, H., Siska, P.: A non-invasive multichannel hybrid fiber-optic sensor system for vital sign monitoring. Sensors 17(1), 111 (2017). doi:10.3390/s17010111

    Article  Google Scholar 

  18. Kim, S., Hwang, D.: Murmur-adaptive compression technique for phonocardiogram signals. Electron. Lett. 52(3), 183–184 (2015). doi:10.1049/e1.2015.3449

    Article  Google Scholar 

  19. Naseri, H., Homaeinezhad, M.R.: Detection and boundary identification of phonocardiogram sounds using an expert frequency-energy based metric. Ann. Biomed. Eng. 41(2), 279–292 (2013). doi:10.1007/s10439-012-0645-x

    Article  Google Scholar 

  20. Martinek, R., Nedoma, J., Fajkus, M., Kahankova, R., Konecny, J., Janku, P., Nazeran, H.: A phonocardiographic-based fiber-optic sensor and adaptive filtering system for noninvasive continuous fetal heart rate monitoring. Sensors 17(4), 890 (2017). doi:10.3390/s17040890

    Article  Google Scholar 

Download references

Acknowledgements

This article was supported by the Ministry of Education of the Czech Republic (Projects Nos. SP2017/128 and SP2017/79). This research was partially supported by the Ministry of Education, Youth and Sports of the Czech Republic through Grant Project no. CZ. 1.07/2.3.00/20.0217 within the framework of the Operation Programme Education for Competitiveness financed by the European Structural Funds and from the state budget of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radek Martinek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Martinek, R., Kahankova, R., Nedoma, J., Fajkus, M., Nazeran, H., Nowakova, J. (2018). Adaptive Signal Processing of Fetal PCG Recorded by Interferometric Sensor. In: Krömer, P., Alba, E., Pan, JS., Snášel, V. (eds) Proceedings of the Fourth Euro-China Conference on Intelligent Data Analysis and Applications. ECC 2017. Advances in Intelligent Systems and Computing, vol 682. Springer, Cham. https://doi.org/10.1007/978-3-319-68527-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68527-4_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68526-7

  • Online ISBN: 978-3-319-68527-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics