Skip to main content

MR Pulse Sequences for PET/MRI

  • Chapter
  • First Online:
PET/MRI in Oncology

Abstract

PET/MRI systems have unique requirements for the MRI scan components, which consist of various MR pulse sequences. These unique requirements include performing whole-body scanning, estimating the photon attenuation for accurate PET reconstructions, diffusion-weighted imaging as an important contrast in many tumor types, and lung imaging for pulmonary nodule screening. Attenuation estimation, whole-body diffusion imaging, and lung imaging are particularly challenging for MRI, but recent technological advances are demonstrating great success for these requirements. This chapter describes the MR pulse sequence concepts and considerations for each of these PET/MRI requirements as well as summarizes the state-of-the-art techniques being used today.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Plewes DB, Kucharczyk W. Physics of MRI: a primer. J Magn Reson Imaging. 2012;35(5):1038–54.

    PubMed  Google Scholar 

  2. Martinez-Möller A, Eiber M, Nekolla SG, et al. Workflow and scan protocol considerations for integrated whole-body PET/MRI in oncology. J Nucl Med. 2012;53:1415–26.

    PubMed  Google Scholar 

  3. Semelka RC, Kelekis NL, Thomasson D, Brown MA, Laub GA. HASTE MR imaging: description of technique and preliminary results in the abdomen. J Magn Reson Imaging. 1996;6:698–9.

    CAS  PubMed  Google Scholar 

  4. Dixon WT. Simple proton spectroscopic imaging. Radiology. 1984;153:189–94.

    CAS  PubMed  Google Scholar 

  5. Loening AM, Litwiller DV, Saranathan M, Vasanawala SS. Increased speed and image quality for pelvic single-shot fast spin-echo imaging with variable refocusing flip angles and full-fourier acquisition. Radiology. 2016;282:561–8.

    PubMed  Google Scholar 

  6. Bydder GM, Young IR. MR imaging: clinical use of the inversion recovery sequence. J Comput Assist Tomogr. 1985;9:659–75.

    CAS  PubMed  Google Scholar 

  7. Pipe JG. Motion correction with PROPELLER MRI: application to head motion and free-breathing cardiac imaging. Magn Reson Med. 1999;42:963–9.

    CAS  PubMed  Google Scholar 

  8. Pipe JG, Zwart N. Turboprop: Improved PROPELLER imaging. Magn Reson Med. 2006;55:380–5.

    PubMed  Google Scholar 

  9. Hargreaves BA. Rapid gradient-echo imaging. J Magn Reson Imaging. 2012;36:1300–13.

    PubMed  PubMed Central  Google Scholar 

  10. Feng L, Axel L, Chandarana H, Block KT, Sodickson DK, Otazo R. XD-GRASP: golden-angle radial MRI with reconstruction of extra motionstate dimensions using compressed sensing. Magn Reson Med. 2015. https://doi.org/10.1002/mrm.25665.

  11. Griswold MA, Jakob PM, Heidemann RM, et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med. 2002;47:1202–10.

    PubMed  Google Scholar 

  12. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med. 1999;42:952–62.

    CAS  PubMed  Google Scholar 

  13. Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med. 2007;58:1182–95.

    PubMed  Google Scholar 

  14. Ma J. Dixon techniques for water and fat imaging. J Magn Reson Imaging. 2008;28:543–58.

    PubMed  Google Scholar 

  15. Reeder SB, Brittain JH, Grist TM, Yen Y-F. Least-squares chemical shift separation for (13)C metabolic imaging. J Magn Reson Imaging. 2007;26:1145–52.

    PubMed  Google Scholar 

  16. Glover GH. Multipoint dixon technique for water and fat proton and susceptibility imaging. J Magn Reson Imaging. 1991;1:521–30.

    CAS  PubMed  Google Scholar 

  17. Wollenweber SD, Ambwani S, Lonn AHR, et al. Comparison of 4-class and continuous fat/water methods for whole-body, mr-based PET attenuation correction. IEEE Trans Nucl Sci. 2013;60:3391–8.

    Google Scholar 

  18. Du J, Carl M, Bydder M, Takahashi A, Chung CB, Bydder GM. Qualitative and quantitative ultrashort echo time (UTE) imaging of cortical bone. J Magn Reson. 2010;207:304–11.

    CAS  PubMed  Google Scholar 

  19. Horch RA, Nyman JS, Gochberg DF, Dortch RD, Does MD. Characterization of 1H NMR signal in human cortical bone for magnetic resonance imaging. Magn Reson Med. 2010;64:680–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Krug R, Larson PEZ, Wang C, et al. Ultrashort echo time MRI of cortical bone at 7 tesla field strength: a feasibility study. J Magn Reson Imaging. 2011;34:691–5.

    PubMed  PubMed Central  Google Scholar 

  21. Mehranian A, Zaidi H. Impact of time-of-flight PET on quantification errors in MR imaging-based attenuation correction. J Nucl Med. 2015;56:635–41.

    PubMed  Google Scholar 

  22. Ouyang J, Chun SY, Petibon Y, Bonab AA, Alpert N, Fakhri GE. Bias atlases for segmentation-based PET attenuation correction using PET-CT and MR. IEEE Trans Nucl Sci. 2013;60:3373–82.

    PubMed  PubMed Central  Google Scholar 

  23. Samarin A, Burger C, Wollenweber SD, et al. PET/MR imaging of bone lesions–implications for PET quantification from imperfect attenuation correction. Eur J Nucl Med Mol Imaging. 2012;39:1154–60.

    PubMed  Google Scholar 

  24. Pauly JM, Conolly SM, Nishimura DG, Macovski A. Slice-selective excitation for very short T2 species. Proceedings of the SMRM, 8th Annual Meeting; 1989. p. 28.

    Google Scholar 

  25. Du J, Bydder M, Takahashi AM, Chung CB. Two-dimensional ultrashort echo time imaging using a spiral trajectory. Magn Reson Imaging. 2008;26:304–12.

    PubMed  Google Scholar 

  26. Gurney PT, Hargreaves BA, Nishimura DG. Design and analysis of a practical 3D cones trajectory. Magn Reson Med. 2006;55:575–82.

    PubMed  Google Scholar 

  27. Larson PEZ, Han M, Krug R, et al. Ultrashort echo time and zero echo time MRI at 7T. MAGMA. 2015. https://doi.org/10.1007/s10334-015-0509-0.

  28. Leynes AP, Yang J, Shanbhag DD, et al. Hybrid ZTE/Dixon MR-based attenuation correction for quantitative uptake estimation of pelvic lesions in PET/MRI. Med Phys. 2017. https://doi.org/10.1002/mp.12122.

  29. Wiesinger F, Sacolick LI, Menini A, et al. Zero TE MR bone imaging in the head. Magn Reson Med. 2015. https://doi.org/10.1002/mrm.25545.

  30. Berker Y, Franke J, Salomon A, et al. MRI-based attenuation correction for hybrid PET/MRI systems: a 4-class tissue segmentation technique using a combined ultrashort-echo-time/Dixon MRI sequence. J Nucl Med. 2012;53:796–804.

    PubMed  Google Scholar 

  31. Cabello J, Lukas M, Förster S, Pyka T, Nekolla SG, Ziegler SI. MR-based attenuation correction using ultrashort-echo-time pulse sequences in dementia patients. J Nucl Med. 2015;56:423–9.

    PubMed  Google Scholar 

  32. Delso G, Carl M, Wiesinger F, et al. Anatomic evaluation of 3-dimensional ultrashort-echo-time bone maps for PET/MR attenuation correction. J Nucl Med. 2014;55:780–5.

    PubMed  Google Scholar 

  33. Juttukonda MR, Mersereau BG, Chen Y, et al. MR-based attenuation correction for PET/MRI neurological studies with continuous-valued attenuation coefficients for bone through a conversion from R2* to CT-Hounsfield units. NeuroImage. 2015;112:160–8.

    PubMed  Google Scholar 

  34. Keereman V, Fierens Y, Broux T, De Deene Y, Lonneux M, Vandenberghe S. MRI-based attenuation correction for PET/MRI using ultrashort echo time sequences. J Nucl Med. 2010;51:812–8.

    PubMed  Google Scholar 

  35. Navalpakkam BK, Braun H, Kuwert T, Quick HH. Magnetic resonance-based attenuation correction for PET/MR hybrid imaging using continuous valued attenuation maps. Investig Radiol. 2013;48:323–32.

    Google Scholar 

  36. Le Bihan D. Looking into the functional architecture of the brain with diffusion MRI. Nat Rev Neurosci. 2003;4:469–80.

    PubMed  Google Scholar 

  37. Mansfield P. Multiplanar image formation using NMR spin-echoes. J Phys Chem Solid State Phys. 1977;10:L55.

    CAS  Google Scholar 

  38. Le Bihan D, Poupon C, Amadon A, Lethimonnier F. Artifacts and pitfalls in diffusion MRI. J Magn Reson Imaging: JMRI. 2006;24:478–88.

    PubMed  Google Scholar 

  39. Xu D, Maier JK, King KF, et al. Prospective and retrospective high order eddy current mitigation for diffusion weighted echo planar imaging. Magn Reson Med. 2013;70:1293–305.

    PubMed  Google Scholar 

  40. Takahara T, Imai Y, Yamashita T, Yasuda S, Nasu S, Van Cauteren M. Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display. Radiat Med. 2004;22:275–82.

    PubMed  Google Scholar 

  41. Fung M, Gaohong, Wu, Xu, Dan, Hinks, Scott, Bayram, Ersin. Realtime B0 Inhomogeneity Correction in Multi-Station Diffusion Imaging. Proceedings of the 23rd Annual Meeting of the ISMRM; 2015. p. 1606.

    Google Scholar 

  42. Lee S-K, Hancu I. Patient-to-patient variation of susceptibility-induced B0 field in bilateral breast MRI. J Magn Reson Imaging: JMRI. 2012;36:873–80.

    PubMed  Google Scholar 

  43. Mori S, Muro I, Moriguchi H, et al. Distortion correction of body diffusion weighted images using three point-dixon method. Proceedings of the 18th Annual Meeting of the ISMRM; 2010. p. 4718.

    Google Scholar 

  44. Ohno Y, Koyama H, Yoshikawa T, et al. T2* measurements of 3-T MRI with ultrashort TEs: capabilities of pulmonary function assessment and clinical stage classification in smokers. AJR Am J Roentgenol. 2011;197:W279–85.

    PubMed  Google Scholar 

  45. Stock KW, Chen Q, Hatabu H, Edelman RR. Magnetic resonance T2* measurements of the normal human lung in vivo with ultra-short echo times. Magn Reson Imaging. 1999;17:997–1000.

    CAS  PubMed  Google Scholar 

  46. Theilmann RJ, Arai TJ, Samiee A, et al. Quantitative MRI measurement of lung density must account for the change in T(2) (*) with lung inflation. J Magn Reson Imaging. 2009;30:527–34.

    PubMed  PubMed Central  Google Scholar 

  47. Yu J, Xue Y, Song HK. Comparison of lung T2* during free-breathing at 1.5 T and 3.0 T with ultrashort echo time imaging. Magn Reson Med. 2011;66:248–54.

    PubMed  PubMed Central  Google Scholar 

  48. Johnson KM, Fain SB, Schiebler ML, Nagle S. Optimized 3D ultrashort echo time pulmonary MRI. Magn Reson Med. 2013;70:1241–50.

    PubMed  Google Scholar 

  49. Burris NS, Johnson KM, Larson PEZ, et al. Detection of small pulmonary nodules with ultrashort echo time sequences in oncology patients by using a PET/MR system. Radiology. 2015:150489. https://doi.org/10.1148/radiol.2015150489.

Download references

Acknowledgments

We would like to thank Florian Wiesinger, Andrew Leynes, Nicholas Burris, Maggie Fung, Shreyas Vasanawala, and Hongyu An for providing figures for this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peder E. Z. Larson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Larson, P.E.Z., Taviani, V. (2018). MR Pulse Sequences for PET/MRI. In: Iagaru, A., Hope, T., Veit-Haibach, P. (eds) PET/MRI in Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-68517-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68517-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68516-8

  • Online ISBN: 978-3-319-68517-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics