Skip to main content

Lung Nodule Detection Using PET/MRI

  • Chapter
  • First Online:
PET/MRI in Oncology

Abstract

Techniques for lung nodule examination are strongly dependent on the size of the suspected lesion. In patients without risk factors for malignancy, lung nodules of ≤6 mm are regarded as unspecific. CT examinations are usually performed in pulmonary nodules ≤5 mm surrounded by lung parenchyma, since PET and MRI examinations are more reasonable in lesions of ≥7 mm. CT findings describing benign lesions are calcifications within the lesion, density values ≤10 HU, and the absence of changes in size over 2 years. As stated by the Fleischner Society, the need for further investigations of lung nodules is dependent on nodule diameter and on patients’ risk factors. The presence of risk factors might result in additional contrast-enhanced CT examinations, PET examinations, or biopsies. In this chapter we explore the use of PET/CT in this clinical indication and introduce the possible use of PET/MRI in future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. MacMahon H, Austin JHM, Gamsu G, Herold CJ, Jett JR, Naidich DP, Patz EF, Swensen SJ. Fleischner society guidelines for management of small pulmonary nodules detected on CT scans: a statement from the Fleischner society. Radiology. 2005;237:395–400.

    PubMed  Google Scholar 

  2. Khan A. ACR appropriateness criteria on solitary pulmonary nodule. J Am Coll Radiol. 2007;4:152–5.

    PubMed  Google Scholar 

  3. Matsuguma H, Nakahara R, Kondo T, Kamiyama Y, Mori K, Yokoi K. Risk of pleural recurrence after needle biopsy in patients with resected early stage lung cancer. Ann Thorac Surg. 2005;80:2026–31.

    PubMed  Google Scholar 

  4. Christensen JA, Nathan MA, Mullan BP, Hartman TE, Swensen SJ, Lowe VJ. Characterization of the solitary pulmonary nodule: 18F-FDG PET versus nodule-enhancement CT. AJR Am J Roentgenol. 2006;187:1361–7.

    PubMed  Google Scholar 

  5. Naalsund A, Maublant J. The solitary pulmonary nodule--is it malignant or benign? Diagnostic performance of Tc-depreotide SPECT. Respiration. 2006;73:634–41.

    PubMed  Google Scholar 

  6. Orlacchio A, Schillaci O, Antonelli L, D’Urso S, Sergiacomi G, Nicolì P, Simonetti G. Solitary pulmonary nodules: morphological and metabolic characterisation by FDG-PET-MDCT. Radiol Med. 2007;112:157–73.

    CAS  PubMed  Google Scholar 

  7. Gould MK, Maclean CC, Kuschner WG, Rydzak CE, Owens DK. Accuracy of positron emission tomography for diagnosis of pulmonary nodules and mass lesions: a meta-analysis. JAMA. 2001;285:914–24.

    CAS  PubMed  Google Scholar 

  8. Fletcher JW, Kymes SM, Gould M, Alazraki N, Coleman RE, Lowe VJ, Marn C, Segall G, Thet LA, Lee K. VA SNAP cooperative studies group a comparison of the diagnostic accuracy of 18F-FDG PET and CT in the characterization of solitary pulmonary nodules. J Nucl Med. 2008;49:179–85.

    PubMed  Google Scholar 

  9. Werner MK, Parker JA, Kolodny GM, English JR, Palmer MR. Respiratory gating enhances imaging of pulmonary nodules and measurement of tracer uptake in FDG PET/CT. AJR Am J Roentgenol. 2009;193:1640–5.

    PubMed  Google Scholar 

  10. Lan X-L, Zhang Y-X, Wu Z-J, Jia Q, Wei H, Gao Z-R. The value of dual time point (18)F-FDG PET imaging for the differentiation between malignant and benign lesions. Clin Radiol. 2008;63:756–64.

    PubMed  Google Scholar 

  11. Dimitrakopoulou-Strauss A, Georgoulias V, Eisenhut M, Herth F, Koukouraki S, Mäcke HR, Haberkorn U, Strauss LG. Quantitative assessment of SSTR2 expression in patients with non-small cell lung cancer using(68)Ga-DOTATOC PET and comparison with (18)F-FDG PET. Eur J Nucl Med Mol Imaging. 2006;33:823–30.

    PubMed  Google Scholar 

  12. Halley A, Hugentobler A, Icard P, Porret E, Sobrio F, Lerochais J-P, Bouvard G, Zalcman G, Agostini D. Efficiency of 18F-FDG and 99mTc-depreotide SPECT in the diagnosis of malignancy of solitary pulmonary nodules. Eur J Nucl Med Mol Imaging. 2005;32:1026–32.

    PubMed  Google Scholar 

  13. Menda Y, Kahn D. Somatostatin receptor imaging of non-small cell lung cancer with 99mTc depreotide. Semin Nucl Med. 2002;32:92–6.

    PubMed  Google Scholar 

  14. Wielpütz M, Kauczor H-U. MRI of the lung: state of the art. Diagn Interv Radiol. 2012;18:344–53.

    PubMed  Google Scholar 

  15. Kim HS, Lee KS, Ohno Y, van Beek EJR, Biederer J. PET/CT versus MRI for diagnosis, staging, and follow-up of lung cancer. J Magn Reson Imaging. 2015;42:247–60.

    PubMed  Google Scholar 

  16. Huellner MW, Appenzeller P, Kuhn FP, Husmann L, Pietsch CM, Burger IA, Porto M, Delso G, von Schulthess GK, Veit-Haibach P. Whole-body nonenhanced PET/MR versus PET/CT in the staging and restaging of cancers: preliminary observations. Radiology. 2014;273:859–69.

    PubMed  Google Scholar 

  17. Stolzmann P, Veit-Haibach P, Chuck N, Rossi C, Frauenfelder T, Alkadhi H, von Schulthess G, Boss A. Detection rate, location, and size of pulmonary nodules in trimodality PET/CT-MR: comparison of low-dose CT and Dixon-based MR imaging. Investig Radiol. 2013;48:241–6.

    Google Scholar 

  18. Rauscher I, Eiber M, Fürst S, Souvatzoglou M, Nekolla SG, Ziegler SI, Rummeny EJ, Schwaiger M, Beer AJ. PET/MR imaging in the detection and characterization of pulmonary lesions: technical and diagnostic evaluation in comparison to PET/CT. J Nucl Med. 2014;55:724–9.

    CAS  PubMed  Google Scholar 

  19. Schaarschmidt BM, Grueneisen J, Metzenmacher M, Gomez B, Gauler T, Roesel C, Heusch P, Ruhlmann V, Umutlu L, Antoch G, Buchbender C. Thoracic staging with (18)F-FDG PET/MR in non-small cell lung cancer - does it change therapeutic decisions in comparison to (18)F-FDG PET/CT? Eur Radiol. 2017;27:681–8.

    PubMed  Google Scholar 

  20. Lee SM, Goo JM, Park CM, Yoon SH, Paeng JC, Cheon GJ, Kim YT, Park YS. Preoperative staging of non-small cell lung cancer: prospective comparison of PET/MR and PET/CT. Eur Radiol. 2016;26:3850–7.

    PubMed  Google Scholar 

  21. Ishii S, Shimao D, Hara T, Miyajima M, Kikuchi K, Takawa M, Kumamoto K, Ito H, Shishido F. Comparison of integrated whole-body PET/MR and PET/CT: is PET/MR alternative to PET/CT in routine clinical oncology? Ann Nucl Med. 2016;30:225–33.

    CAS  PubMed  Google Scholar 

  22. Huellner MW, de Galiza Barbosa F, Husmann L, Pietsch CM, Mader CE, Burger IA, Stolzmann P, Delso G, Frauenfelder T, von Schulthess GK, Veit-Haibach P. TNM staging of non-small cell lung cancer: comparison of PET/MR and PET/CT. J Nucl Med. 2016;57:21–6.

    CAS  PubMed  Google Scholar 

  23. Flechsig P, Kunz J, Heussel C-P, Bozorgmehr F, Schnabel P, Dienemann H, Kauczor H-U, Sedlaczek O. Invasive lung cancer staging: influence of CT-guided core needle biopsy on onset of pleural carcinomatosis. Clin Imaging. 2015;39:56–61.

    PubMed  Google Scholar 

  24. Inoue M, Honda O, Tomiyama N, Minami M, Sawabata N, Kadota Y, Shintani Y, Ohno Y, Okumura M. Risk of pleural recurrence after computed tomographic-guided percutaneous needle biopsy in stage I lung cancer patients. Ann Thorac Surg. 2011;91:1066–71.

    PubMed  Google Scholar 

  25. Asakura K, Izumi Y, Yamauchi Y, Nakatsuka S, Inoue M, Yashiro H, Abe T, Sato Y, Nomori H. Incidence of pleural recurrence after computed tomography-guided needle biopsy in stage I lung cancer. PLoS One. 2012;7:e42043.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Wisnivesky JP, Henschke CI, Yankelevitz DF. Diagnostic percutaneous transthoracic needle biopsy does not affect survival in stage I lung cancer. Am J Respir Crit Care Med. 2006;174:684–8.

    PubMed  Google Scholar 

  27. Flechsig P, Mehndiratta A, Haberkorn U, Kratochwil C, Giesel FL. PET/MRI and PET/CT in lung lesions and thoracic malignancies. Semin Nucl Med. 2015;45:268–81.

    PubMed  Google Scholar 

  28. Kwee TC, Torigian DA, Alavi A. Oncological applications of positron emission tomography for evaluation of the thorax. J Thorac Imaging. 2013;28:11–24.

    PubMed  Google Scholar 

  29. Nailon WH. Texture analysis methods for medical image characterisation. Rijeka: InTech; 2004.

    Google Scholar 

  30. Haralick RM. Statistical and structural approaches to texture. Proc. IEEE. 1979;67:786–804.

    Google Scholar 

  31. Benoit B. Mandelbrot fractals: form, chance and dimension. New York: W.H. Freeman & Company; 1977.

    Google Scholar 

  32. Turcotte DL. Fractals and chaos in geology and geophysics. 2nd ed. New York: Cambridge university press; 1997.

    Google Scholar 

  33. Haralick RM, Shanmugam K, Dinstein I. Texture features for image classification. IEEE Trans Syst Man Cybern. 1973;SMC-3:610–21.

    Google Scholar 

  34. Galloway MM. Texture analysis using grey-level run lengths. Comput Graphics Image Process. 1975;4:172–9.

    Google Scholar 

  35. Rosenfeld A, Weszka J. In: Fu K, editor. Picture recognition in digital pattern recognition. Berlin: Springer-Verlag; 1980.

    Google Scholar 

  36. Bovik AC, Clark M, Geisler WS. Multichannel texture analysis using localized spatial filters. IEEE Trans Pattern Anal Mach Intell. 1990;12:55–73.

    Google Scholar 

  37. Mallat SG. Multifrequency Channel decomposition of images and wavelet models. IEEE Trans Acoust Speech Signal Process. 1989;37:2091–110.

    Google Scholar 

  38. Laine A, Jian F. Texture classification by wavelet packet signatures. IEEE Trans Pattern Anal Mach Intell. 1993;15:1186–91.

    Google Scholar 

  39. Sahiner I, Vural GU. Positron emission tomography/computerized tomography in lung cancer. Quant Imaging Med Surg. 2014;4:195–206.

    PubMed  PubMed Central  Google Scholar 

  40. Petkovska I, Shah SK, McNitt-Gray MF, Goldin JG, Brown MS, Kim HJ, Brown K, Aberle DR. Pulmonary nodule characterization: a comparison of conventional with quantitative and visual semi-quantitative analyses using contrast enhancement maps original research. Eur J Radiol. 2006;59:244–52.

    PubMed  PubMed Central  Google Scholar 

  41. Son JY, Lee HY, Lee KS, Kim J, Han J, Jeong JY, Kwon OJ. Quantitative CT analysis of pulmonary ground-glass opacity nodules for the distinction of invasive adenocarcinoma from pre-invasive or minimally invasive adenocarcinoma. PLoS One. 2014;9:e104066.

    PubMed  PubMed Central  Google Scholar 

  42. Adenocarcinomas P, Park CM, Lee SM. Computerized texture analysis of persistent part-solid ground- glass Nodules : differentiation of Preinvasive lesions from invasive pulmonary adenocarcinomas. Radiology. 2014;273:285–93.

    Google Scholar 

  43. Ganeshan B, Abaleke S, Young RCD, Chatwin CR, Miles KA, Imaging C, Centre S, Imaging C, Centre S. Texture analysis of non-small cell lung cancer on unenhanced computed tomography : initial evidence for a relationship with tumour glucose metabolism and stage. Cancer Imaging. 2010;10:137–43.

    PubMed  PubMed Central  Google Scholar 

  44. Ganeshan B, Panayiotou E, Burnand K, Dizdarevic S, Miles K. Tumour heterogeneity in non-small cell lung carcinoma assessed by CT texture analysis: a potential marker of survival. Eur Radiol. 2011;22(4):796–802.

    PubMed  Google Scholar 

  45. Andersen MB, Harders SW, Ganeshan B, Thygesen J, Henrik H, Madsen T. CT texture analysis can help differentiate between malignant and benign lymph nodes in the mediastinum in patients suspected for lung cancer. Acta Radiol. 2016;57:669–76.

    PubMed  Google Scholar 

  46. Ravanelli M, Farina D, Morassi M, Roca E. Texture analysis of advanced non-small cell lung cancer ( NSCLC ) on contrast-enhanced computed tomography: prediction of the response to the first-line chemotherapy. Eur Radiol. 2013;23:3450–5.

    PubMed  Google Scholar 

  47. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, Rubinstein L, Shankar L, Dodd L. New response evaluation criteria in solid tumours: revised RECIST guideline ( version 1. 1 ). Eur J Cancer. 2008;45:228–47.

    Google Scholar 

  48. Wu H, Sun T, Wang J, Li X, Wang W. Combination of radiological and gray level co-occurrence matrix textural features used to distinguish solitary pulmonary nodules by computed tomography. J Digit Imaging. 2013;26:797–802.

    PubMed  PubMed Central  Google Scholar 

  49. Dhara AK, Mukhopadhyay S, Khandelwal N. 3D texture analysis of solitary pulmonary nodules using co-occurrence matrix from volumetric lung CT images 3D texture analysis of solitary pulmonary nodules using co-occurrence matrix from volumetric lung CT images. In: Proceedings of SPIE - The International Society for Optical Engineering. 2012.

    Google Scholar 

  50. Ramalho GLB, Filho PPR, De FNS, Cortez PC. Lung disease detection using feature extraction and extreme learning machine. Braz J Biomed Eng. 2014;30:207–14.

    Google Scholar 

  51. Liu Y, Kim J, Balagurunathan Y, Li Q, Garcia AL, String O, Ye Z, Gillies RJ. Radiomic features are associated with EGFR mutation status in lung adenocarcinomas. Clin Lung Cancer. 2016;17:441–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Dennie C, Thornhill R, Sethi-virmani V, Souza CA, Bayanati H, Gupta A, Maziak D. Role of quantitative computed tomography texture analysis in the differentiation of primary lung cancer and granulomatous nodules. Quant Imaging Med Surg. 2016;6:6–15.

    PubMed  PubMed Central  Google Scholar 

  53. Lennon FE, Cianci GC, Cipriani NA, Hensing TA, Zhang HJ, Chen C, Murgu SD, Vokes EE, Vannier MW, Salgia R. Lung cancer — a fractal viewpoint. Nat Publ Group. 2015;12:664–75.

    Google Scholar 

  54. Kido S, Kuriyama K, Higashiyama M, Kasugai T, Kuroda C. Fractal analysis of small peripheral pulmonary nodules in thin-section CT evaluation of the lung-nodule interfaces. J Comput Assist Tomogr. 2002;26:573–8.

    PubMed  Google Scholar 

  55. Al-kadi OS, Watson D. Texture analysis of aggressive and nonaggressive lung tumor CE CT images. IEEE Trans Biomed Eng. 2008;55:1822–30.

    PubMed  Google Scholar 

  56. Miwa K, Inubushi M, Wagatsuma K, Nagao M, Murata T, Koyama M, Koizumi M, Sasaki M. FDG uptake heterogeneity evaluated by fractal analysis improves the differential diagnosis of pulmonary nodules. Eur J Radiol. 2014;83:715–9.

    PubMed  Google Scholar 

  57. Parmar C, Leijenaar RTH, Grossmann P, Rios E, Bussink J, Rietveld D, Rietbergen MM, Haibe- B, Lambin P, Aerts HJWL. Radiomic feature clusters and prognostic signatures specific for lung and head & neck cancer. Sci Rep Nat Publ Group. 2015;5:1–10.

    Google Scholar 

  58. Leung AN, Rubin DL. Predicting adenocarcinoma recurrence using computational texture models of nodule components in lung CT. Med Phys. 2015;42:2054–63.

    PubMed  PubMed Central  Google Scholar 

  59. Bagci U, Bray M, Caban J, Yao J, Mollura DJ. Computer-assisted detection of infectious lung diseases: a review. Comput Med Imaging Graph. 2012;36:72–84.

    PubMed  Google Scholar 

  60. El-baz A, Beache GM, Gimel G, Suzuki K, Okada K, Elnakib A, Soliman A, Abdollahi B. Computer-aided diagnosis systems for lung cancer: challenges and methodologies. Int J Biomed Imaging. 2013;2013:1–46.

    Google Scholar 

  61. Yan P, Suzuki K, Wang F, Shen D. Machine learning in medical imaging. In:Machine vision and applications. Berlin Heidelberg: Springer; 2013. p. 1327–9.

    Google Scholar 

  62. Firmino M, Angelo G, Morais H, Dantas MR, Valentim R. Computer - aided detection (CADe) and diagnosis (CADx) system for lung cancer with likelihood of malignancy. Biomed Eng Online. 2016;15:2.

    Google Scholar 

  63. McNitt-Gray MF, Wyckoff N, Sayre JW, Goldin JG, Aberle DR. The effects of co-occurrence matrix based texture parameters on the classification of solitary pulmonary nodules imaged on computed tomography. Comput Med Imaging Graph. 1999;23:339–48.

    CAS  PubMed  Google Scholar 

  64. Wang H, Guo X, Jia Z, Li H, Liang Z, Li K, He Q. Multilevel binomial logistic prediction model for malignant pulmonary nodules based on texture features of CT image. Eur J Radiol. 2010;74:124–9.

    PubMed  Google Scholar 

  65. Raicu DS, Varutbangkul E, Cisneros JG, Furst JD, Channin DS, Armato SG. Semantics and image content integration for pulmonary nodule interpretation in thoracic computed tomography. In: Proceedings of the SPIE, vol. 6512. SPIE--The International Society for Optical Engineering; 2007.

    Google Scholar 

  66. Lam M, Disney T, Pham M, Raicu D, Furst J, Susomboon R. Content-based image retrieval for pulmonary computed tomography nodule images. In: Medical imaging 2007: PACS and imaging informatics, SPIE proceedings, vol. 6516; 2007.

    Google Scholar 

  67. Bashir U, Siddique MM, Mclean E, Goh V, Cook GJ. Imaging heterogeneity in lung cancer: techniques, applications, and challenges. AJR. 2016;207(3):534–43.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederik L. Giesel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Flechsig, P., Kayal, E.B., Mehndiratta, A., Giesel, F.L. (2018). Lung Nodule Detection Using PET/MRI. In: Iagaru, A., Hope, T., Veit-Haibach, P. (eds) PET/MRI in Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-68517-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68517-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68516-8

  • Online ISBN: 978-3-319-68517-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics