Skip to main content

Total-Body PET/MRI in Oncological Applications

  • Chapter
  • First Online:
  • 1474 Accesses

Abstract

One potential advantage of adding PET to MRI is that PET in oncology is the fact that it is routinely a whole-body (skull base to mid-thighs) and sometimes a total-body (vertex to toes) examination. Total-body indications include sarcomas, melanoma, multiple myeloma, cutaneous lymphomas, and evaluation of skeletal metastases [1, 2]. Hybrid positron emission tomography/magnetic resonance imaging (PET/MRI) is one of the multimodality technologies that provides both biological and morphological information of lesions [3, 4]. Compared to PET/CT, advantages of PET/MRI include reduction of radiation exposure, use of MRI to assess organ function, and improvement of diagnostic ability due to better contrast of MRI [5–7].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Fletcher JW, Djulbegovic B, Soares HP, et al. Recommendations on the use of 18F-FDG PET in oncology. J Nucl Med. 2008;49(3):480–508.

    PubMed  Google Scholar 

  2. Boellaard R, Delgado-Bolton R, Oyen WJG, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42(2):328–54.

    CAS  PubMed  Google Scholar 

  3. Iagaru A, Mittra E, Minamimoto R, et al. Simultaneous whole-body time-of-flight 18F-FDG PET/MRI: a pilot study comparing SUVmax with PET/CT and assessment of MR image quality. Clin Nucl Med. 2015;40(1):1–8.

    PubMed  PubMed Central  Google Scholar 

  4. Pichler BJ, Kolb A, Nägele T, Schlemmer H-P. PET/MRI: paving the way for the next generation of clinical multimodality imaging applications. J Nucl Med. 2010;51(3):333–6.

    PubMed  Google Scholar 

  5. Buchbender C, Heusner TA, Lauenstein TC, Bockisch A, Antoch G. Oncologic PET/MRI, part 2: bone tumors, soft-tissue tumors, melanoma, and lymphoma. J Nucl Med. 2012;53(8):1244–52.

    PubMed  Google Scholar 

  6. Drzezga A, Souvatzoglou M, Eiber M, et al. First clinical experience with integrated whole-body PET/MR: comparison to PET/CT in patients with oncologic diagnoses. J Nucl Med. 2012;53(6):845–55.

    PubMed  Google Scholar 

  7. Quick HH, von Gall C, Zeilinger M, et al. Integrated whole-body PET/MR hybrid imaging: clinical experience. Investig Radiol. 2013;48(5):280–9.

    Google Scholar 

  8. Shellock FG, Spinazzi A. MRI safety update 2008: part 2, screening patients for MRI. Am J Roentgenol. 2008;191(4):1140–9.

    Google Scholar 

  9. Coit DG, Thompson JA, Algazi A, et al. Melanoma, version 2.2016, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2016;14(4):450–73.

    Google Scholar 

  10. Gershenwald JE, Soong SJ, Balch CM. 2010 TNM staging system for cutaneous melanoma…and beyond. Ann Surg Oncol. 2010;17(6):1475–7.

    PubMed  Google Scholar 

  11. Xing Y, Bronstein Y, Ross MI, et al. Contemporary diagnostic imaging modalities for the staging and surveillance of melanoma patients: a meta-analysis. JNCI J Natl Cancer Inst. 2011;103(2):129–42.

    PubMed  Google Scholar 

  12. Clark PB, Soo V, Kraas J, Shen P, Levine EA. Futility of fluorodeoxyglucose F 18 positron emission tomography in initial evaluation of patients with t2 to t4 melanoma. Arch Surg. 2006;141(3):284–8.

    PubMed  Google Scholar 

  13. Wagner JD, Schauwecker D, Davidson D, et al. Inefficacy of F-18 fluorodeoxy-D-glucose-positron emission tomography scans for initial evaluation in early-stage cutaneous melanoma. Cancer. 2005;104(3):570–9.

    PubMed  Google Scholar 

  14. Wagner JD, Schauwecker D, Davidson D, et al. Prospective study of fluorodeoxyglucose–positron emission tomography imaging of lymph node basins in melanoma patients undergoing sentinel node biopsy. J Clin Oncol. 1999;17(5):1508.

    CAS  PubMed  Google Scholar 

  15. Wagner JD, Davidson D, Coleman JJ, et al. Lymph node tumor volumes in patients undergoing sentinel lymph node biopsy for cutaneous melanoma. Ann Surg Oncol. 1999;6(4):398–404.

    CAS  PubMed  Google Scholar 

  16. Dummer R, Hauschild A, Lindenblatt N, Pentheroudakis G, Keilholz U. Cutaneous melanoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015;26(suppl_5):v126–32.

    PubMed  Google Scholar 

  17. Horn J, Lock-Andersen J, Sjøstrand H, Loft A. Routine use of FDG-PET scans in melanoma patients with positive sentinel node biopsy. Eur J Nucl Med Mol Imaging. 2006;33(8):887–92.

    PubMed  Google Scholar 

  18. Müller-Horvat C, Radny P, Eigentler TK, et al. Prospective comparison of the impact on treatment decisions of whole-body magnetic resonance imaging and computed tomography in patients with metastatic malignant melanoma. Eur J Cancer. 2006;42(3):342–50.

    PubMed  Google Scholar 

  19. Pfannenberg C, Aschoff P, Schanz S, et al. Prospective comparison of 18F-fluorodeoxyglucose positron emission tomography/computed tomography and whole-body magnetic resonance imaging in staging of advanced malignant melanoma. Eur J Cancer. 2007;43(3):557–64.

    PubMed  Google Scholar 

  20. Laurent V, Trausch G, Bruot O, Olivier P, Felblinger J, Régent D. Comparative study of two whole-body imaging techniques in the case of melanoma metastases: advantages of multi-contrast MRI examination including a diffusion-weighted sequence in comparison with PET-CT. Eur J Radiol. 2010;75(3):376–83.

    PubMed  Google Scholar 

  21. Schwenzer NF, Pfannenberg AC. PET/CT, MR, and PET/MR in lymphoma and melanoma. Semin Nucl Med. 2015;45(4):322–31.

    PubMed  Google Scholar 

  22. Jouvet JC, Thomas L, Thomson V, et al. Whole-body MRI with diffusion-weighted sequences compared with 18 FDG PET-CT, CT and superficial lymph node ultrasonography in the staging of advanced cutaneous melanoma: a prospective study. J Eur Acad Dermatol Venereol. 2014;28(2):176–85.

    CAS  PubMed  Google Scholar 

  23. The Collaborative Ocular Melanoma Study Group. Assessment of metastatic disease status at death in 435 patients with large choroidal melanoma in the collaborative ocular melanoma study (coms): coms report no. 15. Arch Ophthalmol. 2001;119(5):670–6.

    Google Scholar 

  24. Burris NS, Johnson KM, Larson PEZ, et al. Detection of small pulmonary nodules with ultrashort echo time sequences in oncology patients by using a PET/MR system. Radiology. 2016;278(1):239–46.

    PubMed  Google Scholar 

  25. Nakai T, Okuyama C, Kubota T, et al. Pitfalls of FDG-PET for the diagnosis of osteoblastic bone metastases in patients with breast cancer. Eur J Nucl Med Mol Imaging. 2005;32(11):1253–8.

    PubMed  Google Scholar 

  26. Strobel K, Dummer R, Steinert HC, et al. Chemotherapy response assessment in stage IV melanoma patients—comparison of 18F-FDG-PET/CT, CT, brain MRI, and tumormarker S-100B. Eur J Nucl Med Mol Imaging. 2008;35(10):1786.

    PubMed  Google Scholar 

  27. Servois V, Mariani P, Malhaire C, et al. Preoperative staging of liver metastases from uveal melanoma by magnetic resonance imaging (MRI) and fluorodeoxyglucose-positron emission tomography (FDG-PET). Eur J Surg Oncol. 2010;36(2):189–94.

    CAS  PubMed  Google Scholar 

  28. Francken AB, Fulham MJ, Millward MJ, Thompson JF. Detection of metastatic disease in patients with uveal melanoma using positron emission tomography. Eur J Surg Oncol. 2006;32(7):780–4.

    CAS  PubMed  Google Scholar 

  29. Gulec SA, Faries MB, Lee CC, et al. The role of fluorine-18 deoxyglucose positron emission tomography in the management of patients with metastatic melanoma: impact on surgical decision making. Clin Nucl Med. 2003;28(12):961–5.

    PubMed  Google Scholar 

  30. Beyer T, Bockisch A, Kühl H, Martinez M-J. Whole-body 18F-FDG PET/CT in the presence of truncation artifacts. J Nucl Med. 2006;47(1):91–9.

    PubMed  Google Scholar 

  31. Delso G, Martinez-Möller A, Bundschuh RA, Nekolla SG, Ziegler SI. The effect of limited MR field of view in MR/PET attenuation correction. Med Phys. 2010;37(6):2804–12.

    PubMed  Google Scholar 

  32. Mehranian A, Zaidi H. Impact of time-of-flight PET on quantification errors in MR imaging–based attenuation correction. J Nucl Med. 2015;56(4):635–41.

    PubMed  Google Scholar 

  33. Minamimoto R, Levin C, Jamali M, et al. Improvements in PET image quality in time of flight (TOF) simultaneous PET/MRI. Mol Imaging Biol. 2016;18(5):776–81.

    PubMed  Google Scholar 

  34. Partovi S, Chalian M, Fergus N, et al. Magnetic resonance/positron emission tomography (MR/PET) oncologic applications: bone and soft tissue sarcoma. Semin Roentgenol. 2014;49(4):345–52.

    PubMed  Google Scholar 

  35. Pisters PW, Harrison LB, Leung DH, Woodruff JM, Casper ES, Brennan MF. Long-term results of a prospective randomized trial of adjuvant brachytherapy in soft tissue sarcoma. J Clin Oncol. 1996;14(3):859–68.

    CAS  PubMed  Google Scholar 

  36. Yang JC, Chang AE, Baker AR, et al. Randomized prospective study of the benefit of adjuvant radiation therapy in the treatment of soft tissue sarcomas of the extremity. J Clin Oncol. 1998;16(1):197–203.

    CAS  PubMed  Google Scholar 

  37. Schwarzbach MHM, Dimitrakopoulou-Strauss A, Willeke F, et al. Clinical value of [18-F] fluorodeoxyglucose positron emission tomography imaging in soft tissue sarcomas. Ann Surg. 2000;231(3):380–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Eary JF, Conrad EU. Imaging in sarcoma. J Nucl Med. 2011;52(12):1903–13.

    PubMed  Google Scholar 

  39. Hicks RJ, Toner GC, Choong PFM. Clinical applications of molecular imaging in sarcoma evaluation. Cancer Imaging. 2005;5(1):66–72.

    PubMed  PubMed Central  Google Scholar 

  40. Folpe AL, Lyles RH, Sprouse JT, Conrad EU, Eary JF. (F-18) fluorodeoxyglucose positron emission tomography as a predictor of pathologic grade and other prognostic variables in bone and soft tissue sarcoma. Clin Cancer Res. 2000;6(4):1279–87.

    CAS  PubMed  Google Scholar 

  41. Benz MR, Tchekmedyian N, Eilber FC, Federman N, Czernin J, Tap WD. Utilization of positron emission tomography in the management of patients with sarcoma. Curr Opin Oncol. 2009;21(4):345–51.

    PubMed  Google Scholar 

  42. Benz MR, Czernin J, Allen-Auerbach MS, et al. FDG-PET/CT imaging predicts histopathologic treatment responses after the initial cycle of Neoadjuvant chemotherapy in high-grade soft-tissue sarcomas. Clin Cancer Res. 2009;15(8):2856–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Tateishi U, Kawai A, Chuman H, et al. PET/CT allows stratification of responders to neoadjuvant chemotherapy for high-grade sarcoma: a prospective study. Clin Nucl Med. 2011;36(7):526–32.

    PubMed  Google Scholar 

  44. Iagaru A, Masamed R, Chawla SP, Menendez LR, Fedenko A, Conti PS. F-18 FDG PET and PET/CT evaluation of response to chemotherapy in bone and soft tissue sarcomas. Clin Nucl Med. 2008;33(1):8–13.

    PubMed  Google Scholar 

  45. Schwarzbach MHM, Hinz U, Dimitrakopoulou-Strauss A, et al. Prognostic significance of preoperative [18-F] fluorodeoxyglucose (FDG) positron emission tomography (PET) imaging in patients with resectable soft tissue sarcomas. Ann Surg. 2005;241(2):286–94.

    PubMed  PubMed Central  Google Scholar 

  46. Tateishi U, Yamaguchi U, Seki K, Terauchi T, Arai Y, Kim EE. Bone and soft-tissue sarcoma: preoperative staging with fluorine 18 fluorodeoxyglucose PET/CT and conventional imaging. Radiology. 2007;245(3):839–47.

    PubMed  Google Scholar 

  47. Franzius C, Daldrup-Link HE, Wagner-Bohn A, et al. FDG–PET for detection of recurrences from malignant primary bone tumors: comparison with conventional imaging. Ann Oncol. 2002;13(1):157–60.

    CAS  PubMed  Google Scholar 

  48. Piperkova E, Mikhaeil M, Mousavi A, et al. Impact of PET and CT in PET/CT studies for staging and evaluating treatment response in bone and soft tissue sarcomas. Clin Nucl Med. 2009;34(3):146–50.

    PubMed  Google Scholar 

  49. Sinha S, Peach AHS. Diagnosis and management of soft tissue sarcoma. BMJ. 2010;341:c7170.

    PubMed  Google Scholar 

  50. Berquist TH, Ehman RL, King BF, Hodgman CG, Ilstrup DM. Value of MR imaging in differentiating benign from malignant soft-tissue masses: study of 95 lesions. Am J Roentgenol. 1990;155(6):1251–5.

    CAS  Google Scholar 

  51. Kransdorf MJ, Murphey MD. Radiologic evaluation of soft-tissue masses. Am J Roentgenol. 2000;175(3):575–87.

    CAS  Google Scholar 

  52. Doganay S, Altinok T, Alkan A, Kahraman B, Karakas HM. The role of MRS in the differentiation of benign and malignant soft tissue and bone tumors. Eur J Radiol. 2011;79(2):e33–e7.

    PubMed  Google Scholar 

  53. Schnapauff D, Zeile M, Niederhagen MB, et al. Diffusion-weighted echo-planar magnetic resonance imaging for the assessment of tumor cellularity in patients with soft-tissue sarcomas. J Magn Reson Imaging. 2009;29(6):1355–9.

    PubMed  Google Scholar 

  54. Tateishi U, Hosono A, Makimoto A, et al. Comparative study of FDG PET/CT and conventional imaging in the staging of rhabdomyosarcoma. Ann Nucl Med. 2009;23(2):155–61.

    PubMed  Google Scholar 

  55. Yokouchi M, Terahara M, Nagano S, et al. Clinical implications of determination of safe surgical margins by using a combination of CT and 18FDG-positron emission tomography in soft tissue sarcoma. BMC Musculoskelet Disord. 2011;12(1):166.

    PubMed  PubMed Central  Google Scholar 

  56. Völker T, Denecke T, Steffen I, et al. Positron emission tomography for staging of pediatric sarcoma patients: results of a prospective multicenter trial. J Clin Oncol. 2007;25(34):5435–41.

    PubMed  Google Scholar 

  57. Arush MWB, Israel O, Postovsky S, et al. Positron emission tomography/computed tomography with 18fluoro-deoxyglucose in the detection of local recurrence and distant metastases of pediatric sarcoma. Pediatr Blood Cancer. 2007;49(7):901–5.

    PubMed  Google Scholar 

  58. Kneisl JS, Patt JC, Johnson JC, Zuger JH. Is PET useful in detecting occult nonpulmonary metastases in pediatric bone sarcomas? Clin Orthop Relat Res. 2006;450:101–4.

    PubMed  Google Scholar 

  59. Potter DA, Glenn J, Kinsella T, et al. Patterns of recurrence in patients with high-grade soft-tissue sarcomas. J Clin Oncol. 1985;3(3):353–66.

    CAS  PubMed  Google Scholar 

  60. Sawicki LM, Grueneisen J, Buchbender C, et al. Comparative performance of 18F-FDG PET/MRI and 18F-FDG PET/CT in detection and characterization of pulmonary lesions in 121 oncologic patients. J Nucl Med. 2016;57(4):582–6.

    CAS  PubMed  Google Scholar 

  61. Schuler MK, Richter S, Beuthien-Baumann B, et al. PET/MRI imaging in high-risk sarcoma: first findings and solving clinical problems. Case Rep Oncol Med. 2013;2013:793927.

    PubMed  PubMed Central  Google Scholar 

  62. Partovi S, Kohan AA, Zipp L, et al. Hybrid PET/MR imaging in two sarcoma patients – clinical benefits and implications for future trials. Int J Clin Exp Med. 2014;7(3):640–8.

    PubMed  PubMed Central  Google Scholar 

  63. Dudeck O, Zeile M, Pink D, et al. Diffusion-weighted magnetic resonance imaging allows monitoring of anticancer treatment effects in patients with soft-tissue sarcomas. J Magn Reson Imaging. 2008;27(5):1109–13.

    PubMed  Google Scholar 

  64. Evilevitch V, Weber WA, Tap WD, et al. Reduction of glucose metabolic activity is more accurate than change in size at predicting histopathologic response to neoadjuvant therapy in high-grade soft-tissue sarcomas. Clin Cancer Res. 2008;14(3):715–20.

    CAS  PubMed  Google Scholar 

  65. Hirsch FW, Sattler B, Sorge I, et al. PET/MR in children. Initial clinical experience in paediatric oncology using an integrated PET/MR scanner. Pediatr Radiol. 2013;43(7):860–75.

    PubMed  PubMed Central  Google Scholar 

  66. Röllig C, Knop S, Bornhäuser M. Multiple myeloma. Lancet. 2014;385(9983):2197–208.

    PubMed  Google Scholar 

  67. Raab MS, Podar K, Breitkreutz I, Richardson PG, Anderson KC. Multiple myeloma. Lancet. 2009;374(9686):324–39.

    PubMed  Google Scholar 

  68. Durie BGM, Salmon SE. A clinical staging system for multiple myeloma correlation of measured myeloma cell mass with presenting clinical features, response to treatment, and survival. Cancer. 1975;36(3):842–54.

    CAS  PubMed  Google Scholar 

  69. Durie BGM. The role of anatomic and functional staging in myeloma: description of Durie/Salmon plus staging system. Eur J Cancer. 2006;42(11):1539–43.

    PubMed  Google Scholar 

  70. Schirrmeister H, Bommer M, Buck A, et al. Initial results in the assessment of multiple myeloma using 18F-FDG PET. Eur J Nucl Med Mol Imaging. 2002;29(3):361–6.

    CAS  PubMed  Google Scholar 

  71. Durie BGM, Waxman AD, D’Agnolo A, Williams CM. Whole-body 18F-FDG PET identifies high-risk myeloma. J Nucl Med. 2002;43(11):1457–63.

    PubMed  Google Scholar 

  72. van Lammeren-Venema D, Regelink JC, Riphagen II, Zweegman S, Hoekstra OS, Zijlstra JM. 18F-fluoro-deoxyglucose positron emission tomography in assessment of myeloma-related bone disease: a systematic review. Cancer. 2012;118(8):1971–81.

    PubMed  Google Scholar 

  73. Baur A, Bartl R, Pellengahr C, Baltin V, Reiser M. Neovascularization of bone marrow in patients with diffuse multiple myeloma. Cancer. 2004;101(11):2599–604.

    PubMed  Google Scholar 

  74. Walker R, Barlogie B, Haessler J, et al. Magnetic resonance imaging in multiple myeloma: diagnostic and clinical implications. J Clin Oncol. 2007;25(9):1121–8.

    PubMed  Google Scholar 

  75. Gleeson TG, Moriarty J, Shortt CP, et al. Accuracy of whole-body low-dose multidetector CT (WBLDCT) versus skeletal survey in the detection of myelomatous lesions, and correlation of disease distribution with whole-body MRI (WBMRI). Skelet Radiol. 2009;38(3):225–36.

    CAS  Google Scholar 

  76. Lütje S, de Rooy JWJ, Croockewit S, Koedam E, Oyen WJG, Raymakers RA. Role of radiography, MRI and FDG-PET/CT in diagnosing, staging and therapeutical evaluation of patients with multiple myeloma. Ann Hematol. 2009;88(12):1161.

    PubMed  PubMed Central  Google Scholar 

  77. Giles SL, Messiou C, Collins DJ, et al. Whole-body diffusion-weighted MR imaging for assessment of treatment response in myeloma. Radiology. 2014;271(3):785–94.

    PubMed  Google Scholar 

  78. Vij R, Fowler KJ, Shokeen M. New approaches to molecular imaging of multiple myeloma. J Nucl Med. 2016;57(1):1–4.

    CAS  PubMed  Google Scholar 

  79. Sachpekidis C, Hillengass J, Goldschmidt H, et al. Comparison of (18)F-FDG PET/CT and PET/MRI in patients with multiple myeloma. Am J Nucl Med Mol Imaging. 2015;5(5):469–78.

    PubMed  PubMed Central  Google Scholar 

  80. Nanni C, Zamagni E, Farsad M, et al. Role of 18F-FDG PET/CT in the assessment of bone involvement in newly diagnosed multiple myeloma: preliminary results. Eur J Nucl Med Mol Imaging. 2006;33(5):525–31.

    PubMed  Google Scholar 

  81. Martinez-Möller A, Souvatzoglou M, Delso G, et al. Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. J Nucl Med. 2009;50(4):520–6.

    PubMed  Google Scholar 

  82. Aznar MC, Sersar R, Saabye J, et al. Whole-body PET/MRI: the effect of bone attenuation during MR-based attenuation correction in oncology imaging. Eur J Radiol. 2014;83(7):1177–83.

    CAS  PubMed  Google Scholar 

  83. Marshall HR, Patrick J, Laidley D, Prato FS, Butler J, Théberge J, Thompson RT, Stodilka RZ. Description and assessment of a registration-based approach to include bones for attenuation correction of whole-body PET/MRI. Med Phys. 2013;40(8):082509.

    PubMed  Google Scholar 

  84. Teras LR, DeSantis CE, Cerhan JR, Morton LM, Jemal A, Flowers CR. 2016 US lymphoid malignancy statistics by World Health Organization subtypes. CA Cancer J Clin. 2016;66(6):443–59.

    PubMed  Google Scholar 

  85. Kempf W, Kazakov DV, Kerl K. Cutaneous lymphomas: an update. Part 1: T-cell and natural killer/T-cell lymphomas and related conditions. Am J Dermatopathol. 2014;36(2):105–23.

    PubMed  Google Scholar 

  86. Jawed SI, Myskowski PL, Horwitz S, Moskowitz A, Querfeld C. Primary cutaneous T-cell lymphoma (mycosis fungoides and Sézary syndrome): part II. Prognosis, management, and future directions. J Am Acad Dermatol. 2014;70(2):223.e1–e17.

    PubMed  Google Scholar 

  87. Jacobson AF, Fogelman I. Bone scanning in clinical oncology: does it have a future? Eur J Nucl Med. 1998;25(9):1219–23.

    CAS  PubMed  Google Scholar 

  88. Even-Sapir E. Imaging of malignant bone involvement by morphologic, scintigraphic, and hybrid modalities. J Nucl Med. 2005;46(8):1356–67.

    PubMed  Google Scholar 

  89. Hsu WK, Virk MS, Feeley BT, Stout DB, Chatziioannou AF, Lieberman JR. Characterization of osteolytic, osteoblastic, and mixed lesions in a prostate cancer mouse model using 18F-FDG and 18F-fluoride PET/CT. J Nucl Med. 2008;49(3):414–21.

    PubMed  Google Scholar 

  90. Cook GJ, Houston S, Rubens R, Maisey MN, Fogelman I. Detection of bone metastases in breast cancer by 18FDG PET: differing metabolic activity in osteoblastic and osteolytic lesions. J Clin Oncol. 1998;16(10):3375–9.

    CAS  PubMed  Google Scholar 

  91. Chua S, Gnanasegaran G, Cook GJR. Miscellaneous cancers (lung, thyroid, renal cancer, myeloma, and neuroendocrine tumors): role of SPECT and PET in imaging bone metastases. Semin Nucl Med. 2009;39(6):416–30.

    PubMed  Google Scholar 

  92. Yang H-L, Liu T, Wang X-M, Xu Y, Deng S-M. Diagnosis of bone metastases: a meta-analysis comparing 18FDG PET, CT, MRI and bone scintigraphy. Eur Radiol. 2011;21(12):2604–17.

    PubMed  Google Scholar 

  93. Schmidt GP, Schoenberg SO, Schmid R, et al. Screening for bone metastases: whole-body MRI using a 32-channel system versus dual-modality PET-CT. Eur Radiol. 2007;17(4):939–49.

    PubMed  Google Scholar 

  94. Reischauer C, Froehlich JM, Koh D-M, et al. Bone metastases from prostate cancer: assessing treatment response by using diffusion-weighted imaging and functional diffusion maps—initial observations. Radiology. 2010;257(2):523–31.

    PubMed  Google Scholar 

  95. Even-Sapir E, Metser U, Mishani E, Lievshitz G, Lerman H, Leibovitch I. The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med. 2006;47(2):287–97.

    PubMed  Google Scholar 

  96. Even-Sapir E, Mishani E, Flusser G, Metser U. 18F-fluoride positron emission tomography and positron emission tomography/computed tomography. Semin Nucl Med. 2007;37(6):462–9.

    PubMed  Google Scholar 

  97. Blake GM, Park-Holohan S-J, Cook GJR, Fogelman I. Quantitative studies of bone with the use of 18F-fluoride and 99mTc-methylene diphosphonate. Semin Nucl Med. 2001;31(1):28–49.

    CAS  PubMed  Google Scholar 

  98. Iagaru A, Mittra E, Dick DW, Gambhir SS. Prospective evaluation of 99mTc MDP scintigraphy, 18F NaF PET/CT, and 18F FDG PET/CT for detection of skeletal metastases. Mol Imaging Biol. 2012;14(2):252–9.

    PubMed  Google Scholar 

  99. Withofs N, Grayet B, Tancredi T, et al. 18F-fluoride PET/CT for assessing bone involvement in prostate and breast cancers. Nucl Med Commun. 2011;32(3):168–76.

    PubMed  Google Scholar 

  100. Mosavi F, Johansson S, Sandberg DT, Turesson I, Sörensen J, Ahlström H. Whole-body diffusion-weighted MRI compared with 18F-NaF PET/CT for detection of bone metastases in patients with high-risk prostate carcinoma. Am J Roentgenol. 2012;199(5):1114–20.

    Google Scholar 

  101. Iagaru A, Mittra E, Yaghoubi SS, et al. Novel strategy for a cocktail 18F-fluoride and 18F-FDG PET/CT scan for evaluation of malignancy: results of the pilot-phase study. J Nucl Med. 2009;50(4):501–5.

    PubMed  Google Scholar 

  102. Lin FI, Rao JE, Mittra ES, et al. Prospective comparison of combined 18F-FDG and 18F-NaF PET/CT vs. 18F-FDG PET/CT imaging for detection of malignancy. Eur J Nucl Med Mol Imaging. 2012;39(2):262–70.

    CAS  PubMed  Google Scholar 

  103. Iagaru A, Mittra E, Mosci C, et al. Combined 18F-fluoride and 18F-FDG PET/CT scanning for evaluation of malignancy: results of an international multicenter trial. J Nucl Med. 2013;54(2):176–83.

    CAS  PubMed  Google Scholar 

  104. Minamimoto R, Loening A, Jamali M, et al. Prospective comparison of 99mTc-MDP scintigraphy, combined 18F-NaF and 18F-FDG PET/CT, and whole-body MRI in patients with breast and prostate cancer. J Nucl Med. 2015;56(12):1862–8.

    PubMed  Google Scholar 

  105. Minamimoto R, Mosci C, Jamali M, et al. Semiquantitative analysis of the biodistribution of the combined 18F-NaF and 18F-FDG administration for PET/CT imaging. J Nucl Med. 2015;56(5):688–94.

    CAS  PubMed  Google Scholar 

  106. Sonni I, Minamimoto R, Loening A, et al. Imaging patients with breast and prostate cancers using combined 18F NaF/18F FDG and TOF simultaneous PET/MRI. J Nucl Med. 2016;57(supplement 2):1416.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Iagaru .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Minamimoto, R., Taviani, V., Vasanawala, S., Iagaru, A. (2018). Total-Body PET/MRI in Oncological Applications. In: Iagaru, A., Hope, T., Veit-Haibach, P. (eds) PET/MRI in Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-68517-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68517-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68516-8

  • Online ISBN: 978-3-319-68517-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics