Skip to main content

PET System Technology Designs for Achieving Simultaneous PET/MRI

  • Chapter
  • First Online:
Book cover PET/MRI in Oncology

Abstract

The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) shows promise to be a powerful tool for disease characterization as it enables the simultaneous measurement of molecular, physiological, and anatomical information of the patient. Recently, PET and MR systems have been integrated for preclinical and clinical uses.

Due to the distinct and potentially mutually interfering physical characteristics of the separate systems, the development of an integrated PET/MRI system is technically challenging. The integration requires the PET detectors to not be magnetically susceptible as well as not interfere with the gradient and radiofrequency (RF) fields of the MRI system.

In this chapter, we present PET system design concepts for achieving simultaneous PET/MRI, interferences that can occur between the PET and MRI subsystems, and strategies to solve these potential challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Townsend DW. Combined PET/CT: the historical perspective. Semin Ultrasound CT MR. 2008;29(4):232–5.

    PubMed  PubMed Central  Google Scholar 

  2. Beyer T, Townsend DW, Brun T, Kinahan PE, Charron M, Roddy R, Jerin J, Young J, Byars L, Nutt R. A Combined PET/CT Scanner for Clinical Oncology. J Nucl Med. 2000;41:1369–79.

    CAS  PubMed  Google Scholar 

  3. Townsend DW. Positron emission tomography/computed tomography. Semin Nucl Med. 2008;38:152–66.

    PubMed  Google Scholar 

  4. Hammer BE, Christensen NL, Heil BG. Use of a magnetic field to increase the spatial resolution of positron emission tomography. Med Phys. 1994;21:1917–20.

    CAS  PubMed  Google Scholar 

  5. Zaidi H, Ojha N, Morich M, Griesmer J, Hu Z, Maniawski P, Ratib O, Izquierdo-Garcia D, Fayad ZA, Shao L. Design and performance evaluation of a whole-body Ingenuity TF PET-MRI system. Phys Med Biol. 2011;56:3091–106.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Levin CS, Maramraju SH, Khalighi MM, Deller TW, Delso G, Jansen F. Design features and mutual compatibility studies of the time-of-flight PET capable GE SIGNA PET/MR system. IEEE Trans Med Imaging. 2016;35:1907–14.

    PubMed  Google Scholar 

  7. Grant AM, Deller TW, Khalighi MM, Maramraju SH, Delso G, Levin CS. NEMA NU 2-2012 performance studies for the SiPM-based ToF-PET component of the GE SIGNA PET/MR system. Med Phys. 2016;43:2334–43.

    PubMed  Google Scholar 

  8. Delso G, Furst S, Jakoby B, Ladebeck R, Ganter C, Nekolla SG, Schwaiger M, Ziegler SI. Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J Nucl Med. 2011;52:1914–22.

    PubMed  Google Scholar 

  9. Schug D, Wehner J, Dueppenbecker PM, Weissler B, Gebhardt P, Goldschmidt B, Salomon A, Kiessling F, Schulz V. PET performance and MRI compatibility evaluation of a digital, ToF- capable PET/MRI insert equipped with clinical scintillators. Phys Med Biol. 2015;60:7045.

    PubMed  Google Scholar 

  10. Jihoon K, Choi Y, Hong KJ, Hu W, Jung JH, Huh Y, Kim B-T. A small animal PET based on GAPDs and charge signal transmission approach for hybrid PET-MR imaging. J Instrum. 2011;6:P08012.

    Google Scholar 

  11. Mollet P, Keereman V, Clementel E, Vandenberghe S. Simultaneous MR-compatible emission and transmission imaging for PET using time-of-flight information. IEEE Trans Med Imaging. 2012;31:1734–42.

    PubMed  Google Scholar 

  12. Kolb A, Wehrl HF, Hofmann M, Judenhofer MS, Eriksson L, Ladebeck R, Lichy MP, Byars L, Michel C, Schlemmer H-P, Schmand M, Claussen CD, Sossi V, Pichler BJ. Technical performance evaluation of a human brain PET/MRI system. Eur Radiol. 2012;22:1776–88.

    PubMed  Google Scholar 

  13. Hong SJ, Kang HG, Ko GB, Song IC, Rhee JT, Lee JS. SiPM-PET with a short optical fiber bundle for simultaneous PET-MR imaging. Phys Med Biol. 2012;57:3869–83.

    PubMed  Google Scholar 

  14. Wehner J, Weissler B, Dueppenbecker P, Gebhardt P, Schug D, Ruetten W, Kiessling F, Schulz V. PET/MRI insert using digital SiPMs: investigation of MR-compatibility. Nucl Instrum Methods Phys Res A. 2014;734(Part B):116–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Weissler B, Gebhardt P, Lerche CW, Wehner J, Solf T, Goldschmidt B, Mackewn JE, Marsden PK, Kiessling F, Perkuhn M, Heberling D, Schulz V. MR compatibility aspects of a silicon photomultiplier-based PET/RF insert with integrated digitisation. Phys Med Biol. 2014;59:5119.

    PubMed  Google Scholar 

  16. Nagy K, Tóth M, Major P, Patay G, Egri G, Hggkvist J, Varrone A, Farde L, Halldin C, Gulys B. Performance evaluation of the small-animal nanoScan PET/MRI system. J Nucl Med. 2013;54:1825–32.

    PubMed  Google Scholar 

  17. Wehrl HF, Judenhofer MS, Thielscher A, Martirosian P, Schick F, Pichler BJ. Assessment of MR compatibility of a PET insert developed for simultaneous multi-parametric PET/MR imaging on an animal system operating at 7 T. Magn Reson Med. 2011;65:269–79.

    PubMed  PubMed Central  Google Scholar 

  18. Maramraju SH, Smith SD, Junnarkar SS, Schulz D, Stoll S, Ravindranath B, Purschke ML, Rescia S, Southekal S, Pratte JF, Vaska P, Woody CL, Schlyer DJ. Small animal simultaneous PET/MRI: initial experiences in a 9.4 T microMRI. Phys Med Biol. 2011;56:2459–80.

    PubMed  Google Scholar 

  19. Yamamoto S, Imaizumi M, Kanai Y, Tatsumi M, Aoki M, Sugiyama E, Kawakami M, Shimosegawa E, Hatazawa J. Design and performance from an integrated PET/MRI system for small animals. Ann Nucl Med. 2010;24:89–98.

    PubMed  Google Scholar 

  20. Mackewn JE, Halsted P, Charles-Edwards G, Page R, Totman JJ, Sunassee K, Strul D, Hallett WA, Jauregui-Osoro M, Liepins P, Williams SCR, Schaeffter T, Keevil SF, Marsden PK. Performance evaluation of an MRI-compatible pre-clinical PET system using long optical fibers. IEEE Trans Nucl Sci. 2010;57:1052.

    Google Scholar 

  21. Judenhofer MS, Catana C, Swann BK, Siegel SB, Jung WI, Nutt RE, Cherry SR, Claussen CD, Pichler BJ. PET/MR images acquired with a compact MR-compatible PET detector in a 7-T magnet. Radiology. 2007;244:807–14.

    PubMed  Google Scholar 

  22. Raylman RR, Majewski S, Lemieux SK, Velan SS, Kross B, Popov V, Smith MF, Weisenberger AG, Zorn C, Marano GD. Simultaneous MRI and PET imaging of a rat brain. Phys Med Biol. 2006;51:6371–9.

    PubMed  Google Scholar 

  23. Pichler BJ, Lorentz E, Mirzoyan R, Pimpl W, Roder F, Schwaiger M, Ziegler SI. Performance test of a LSO-APD PET module in a 9.4 Tesla magnet. IEEE Nucl Sci Symp. 1997;2:1237–9.

    CAS  Google Scholar 

  24. Olcott PD, Kim E, Hong KJ, Lee BJ, Grant AM, Chang C-M, Glover G, Levin CS. Prototype positron emission tomography insert with electro-optical signal transmission for simultaneous operation with MRI. Phys Med Biol. 2015;60:3459.

    PubMed  Google Scholar 

  25. Chang C-M, Grant A, Lee B, Levin C. Preliminary PET performance evaluation of an RF field-penetrable brain-sized PET insert for simultaneous PET/MR imaging. J Nucl Med. 2015;56:99.

    Google Scholar 

  26. Yamamoto S, Watabe H, Kanai Y, Aoki M, Sugiyama E, Watabe T, Imaizumi M, Shimosegawa E, Hatazawa J. Interference between PET and MRI sub-systems in a silicon-photomultiplier-based PET/MRI system. Phys Med Biol. 2011;56:4147.

    PubMed  Google Scholar 

  27. Peng BJ, Walton JH, Cherry SR, Willig-Onwuachi J. Studies of the interactions of an MRI system with the shielding in a combined PET/MRI scanner. Phys Med Biol. 2010;55:265–80.

    PubMed  PubMed Central  Google Scholar 

  28. Vandenberghe S, Marsden PK. PET-MRI: a review of challenges and solutions in the development of integrated multimodality imaging. Phys Med Biol. 2015;60:R115–54.

    PubMed  Google Scholar 

  29. Wehrl HF, Sauter AW, Divine MR, Pichler BJ. Combined PET/MR: a technology becomes mature. J Nucl Med. 2015;56:165–8.

    PubMed  Google Scholar 

  30. Kolb A, Sauter AW, Eriksson LA, Vandenbrouke A, Liu C-C, Levin CS, Pichler BJ, Rafecas M. Shine-through in PET/MRI: effects of the magnetic field on positron range and subsequent image artifacts. J Nucl Med. 2015;56:951.

    PubMed  Google Scholar 

  31. Bailey DL, Pichler BJ, Gckel B, Barthel H, Beer AJ, Bremerich J, Czernin J, Drzezga A, Franzius C, Goh V, Hartenbach M, Iida H, Kjaer A, la Fougre C, Ladefoged CN, Law I, Nikolaou K, Quick HH, Sabri O, Schfer J, Schfers M, Wehrl HF, Beyer T. Combined PET/MRI: multi-modality multi-parametric imaging is here. Mol Imaging Biol. 2015;17:595–608.

    CAS  PubMed  Google Scholar 

  32. Chang AE, Matory YL, Dwyer AJ, Hill SC, Girton ME, Steinberg SM, Knop RH, Frank JA, Hyams D, Doppman JL. Magnetic resonance imaging versus computed tomography in the evaluation of soft tissue tumors of the extremities. Ann Surg. 1987;205(4):340–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Aisen AM, Martel W, Braunstein EM, McMillin KI, Phillips WA, Kling T. MRI and CT evaluation of primary bone and soft-tissue tumors. Am J Roentgenol. 1986;146(4):749–56.

    CAS  Google Scholar 

  34. Daftary A. PET-MRI: challenges and new directions. Ind J Nucl Med. 2010;25:3–5.

    Google Scholar 

  35. de Rosales RTM. Potential clinical applications of bimodal PET-MRI or SPECT-MRI agents. J Label Compd Radiopharm. 2014;57:298–303.

    CAS  Google Scholar 

  36. Torigian DA, Zaidi H, Kwee TC, Saboury B, Udupa JK, Cho Z-H, Alavi A. PET/MR Imaging: Technical Aspects and Potential Clinical Applications. Radiology. 2013;267:26–44.

    PubMed  Google Scholar 

  37. Logothetis NK. What we can do and what we cannot do with fMRI. Nature. 2008;453(7197):869–78.

    CAS  PubMed  Google Scholar 

  38. Wehrl HF, Hossain M, Lankes K, Liu C-C, Bezrukov I, Martirosian P, Schick F, Reischl G, Pichler BJ. Simultaneous PET-MRI reveals brain function in activated and resting state on metabolic, hemodynamic and multiple temporal scales. Nat Med. 2013;19(9):1184–9.

    CAS  PubMed  Google Scholar 

  39. Schenck JF. The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys. 1996;23:815–50.

    CAS  PubMed  Google Scholar 

  40. Peng BJ, Wu Y, Cherry SR, Walton JH. New shielding configurations for a simultaneous PET/MRI scanner at 7T. J Magn Reson. 2014;239:50–6.

    CAS  PubMed  Google Scholar 

  41. Eclov N, Kim H, Chen HT, Chin-Tu C, Ronzhin A, Ramberg E, Los S, Murat P, Wyrwicz AM, Limin L, et al. Notch filtering of RF interference in PET data for simultaneous PET-MR acquisition. In: 2014 IEEE nuclear science symposium and medical imaging conference (NSS/MIC), 8–15 Nov 2014. IEEE; 2014. p. 1–3.

    Google Scholar 

  42. Stevenson RA. Electromagnetic interference (emi) filter and process for providing electro-magnetic compatibility of an electronic device while in the presence of an electromagnetic emitter operating at the same frequency. Google Patents. 2002.

    Google Scholar 

  43. Huh YS, Choi Y, Hong KJ, Jung JH, Hu W, Kang JH, Min BJ, Shin SH, Lim HK, Song MS, et al. Development of filtering methods for PET signals contaminated by RF pulses for combined PET-MRI. In: 2009 IEEE nuclear science symposium conference record (NSS/MIC). IEEE; 2009. p. 3812–5.

    Google Scholar 

  44. Chung DDL. Materials for electromagnetic interference shielding. J Mater Eng Perform. 2000;9:350–4.

    CAS  Google Scholar 

  45. Preault V, Corcolle R, Daniel L, Pichon L. Influence of skin effect on the effective shielding effectiveness of composite materials. J Appl Phys. 2014;115:154904.

    Google Scholar 

  46. Camacho CR, Plewes DB, Henkelman RM. Nonsusceptibility artifacts due to metallic objects in MR imaging. J Magn Reson Imaging. 1995;5:75–88.

    CAS  PubMed  Google Scholar 

  47. Ramilli M. Characterization of SiPM: temperature dependencies. In: nuclear science symposium conference record, 2008. NSS ’08. IEEE; 2008. p. 2467–70.

    Google Scholar 

  48. Raylman RR, Stolin A, Majewski S, Proffitt J. A large area, silicon photomultiplier-based PET detector module. Nucl Instrum Methods Phys Res A. 2014;735:602.

    CAS  Google Scholar 

  49. Morich MA, DeMeester GD, Griesmer JJ, Solf TJ, Schulz V, Weissler B. Thermally stabilized pet detector for hybrid PET-MR system. Google Patents. 2013.

    Google Scholar 

  50. Schug D, Lerche C, Dueppenbecker P, Gebhardt P, Goldschmidt B, Salomon A, Wehner J, Weissler B, Kiessling F, Schulz V. PET performance evaluation of a preclinical digital PET/MRI insert. EJNMMI Phys. 2014;1(1):1–2.

    Google Scholar 

  51. Hayes CE, Edelstein WA, Schenck JF, Mueller OM, Eash M. An efficient, highly homogeneous radiofrequency coil for whole-body NMR imaging at 1.5 T. J Magn Reson. 1969;63(3):622–8.

    Google Scholar 

  52. Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM. The NMR phased array. Magn Reson Med. 1990;16(2):192–225.

    CAS  PubMed  Google Scholar 

  53. van der Zwaag W, Marques JP, Lei H, Just N, Kober T, Gruetter R. Minimization of Nyquist ghosting for echo-planar imaging at ultra-high fields based on a negative readout gradient strategy. J Magn Reson Imaging. 2009;30:1171–8.

    PubMed  Google Scholar 

  54. Jezzard P, Barnett AS, Pierpaoli C. Characterization of and correction for eddy current artifacts in echo planar diffusion imaging. Magn Reson Med. 1998;39:801–12.

    CAS  PubMed  Google Scholar 

  55. Dharma Raj C, Ramyasree MVSL, Sravan Kumar V. Analysis of wire mesh screen for shielding effectiveness in different frequency ranges. In: 2011 international conference on computer, communication and electrical technology (ICCCET). IEEE; 2011. p. 198–203.

    Google Scholar 

  56. Frederick PS, Zimmermann WA, Roemer PB. Double-sided RF shield for RF coil contained within gradient coils used in high speed NMR imaging. General Electric Company. 5,680,046. 1994.

    Google Scholar 

  57. Chung DDL. Electromagnetic interference shielding effectiveness of carbon materials. Carbon. 2001;39:279–85.

    CAS  Google Scholar 

  58. Kinahan PE, Townsend DW, Beyer T, Sashin D. Attenuation correction for a combined 3D PET/CT scanner. Med Phys. 1998;25:2046–53.

    CAS  PubMed  Google Scholar 

  59. Turkington TG. Attenuation correction in hybrid positron emission tomography. Semin Nucl Med. 2000;30:255–67.

    CAS  PubMed  Google Scholar 

  60. Lucas AJ, Hawkes RJ, Ansorge RE, Williams GB, Nutt RE, Clark JC, Fryer TD, Carpenter TA. Development of a combined microPET-MR system. Technol Cancer Res Treat. 2006;5(4):337–41.

    CAS  PubMed  Google Scholar 

  61. Gilbert KM, Handler WB, Scholl TJ, Odegaard JW, Chronik BA. Design of field-cycled magnetic resonance systems for small animal imaging. Phys Med Biol. 2006;51(11):2825.

    CAS  PubMed  Google Scholar 

  62. Grazioso R, Zhang N, Corbeil J, Schmand M, Ladebeck R, Vester M, Schnur G, Renz W, Fischer H. APD-based PET detector for simultaneous PET/MR imaging. Nucl Instrum Methods Phys Res Sect A. 2006;569(2):310–05.

    Google Scholar 

  63. Pichler BJ, Judenhofer MS, Catana C, Walton JH, Kneilling M, Nutt RE, Siegel SB, Claussen CD, Cherry SR. Performance test of an LSO-APD detector in a 7-T MRI scanner for simultaneous PET/MRI. J Nucl Med. 2006;47(4):639–47.

    PubMed  Google Scholar 

  64. Schulz V, Weissler B, Gebhardt P, Solf T, Lerche CW, Fischer P, Ritzert M, Mlotok V, Piemonte C, Goldschmidt B, Vandenberghe S, Salomon A, Schaeffter T, Marsden PK. SiPM based preclinical PET/MR insert for a human 3T MR: first imaging experiments. In: IEEE nuclear science symposium conference record, Valencia. IEEE; 2011. p. 4467–9.

    Google Scholar 

  65. Cherry SR, Sorenson JA, Phelps ME. Physics in nuclear medicine. Philadelphia: Elsevier; 2012.

    Google Scholar 

  66. Yamamoto S, Kuroda K, Senda M. Scintillator selection for MR-compatible gamma detectors. IEEE Trans Nucl Sci. 2003;50:1683–5.

    CAS  Google Scholar 

  67. Slates RB, Cherry SR, Boutefnouchet A, Shao YP, Dahlbom M, Farahani K. Design of a small animal MR compatible PET scanner. IEEE Trans Nucl Sci. 1999;46:565–70.

    Google Scholar 

  68. Shao YP, Cherry SR, Farahani K, Meadors K, Siegel S, Silverman RW, Marsden PK. Simultaneous PET and MR imaging. Phys Med Biol. 1997;42:1965–70.

    CAS  PubMed  Google Scholar 

  69. Catana C, Wu Y, Judenhofer MS, Jinyi Q, Pichler BJ, Cherry SR. Simultaneous acquisition of multislice PET and MR images: initial results with a MR-compatible PET scanner. J Nucl Med. 2006;47:1968–76.

    PubMed  Google Scholar 

  70. Buzhan P, Dolgoshein B, Filatov L, Ilyin A, Kantzerov V, Kaplin V, Karakash A, Kayumov F, Klemin S, Popova E, Smirnov S. Silicon photomultiplier and its possible applications. Nucl Instrum Methods Phys Res Sect A. 2003;504:48–52.

    CAS  Google Scholar 

  71. Frach T, Preshcer G, Degenhardt C, de Gruyter R, Schmit A, Ballizany R. The digital silicon photomultiplier - principle of operation and intrinsic detector performance. In: IEEE nuclear science symposium conference record. IEEE; 2009. p. 1959–65.

    Google Scholar 

  72. Cates JW, Levin CS. Advances in coincidence time resolution for PET. Phys Med Biol. 2016;61:2255–64.

    CAS  PubMed  Google Scholar 

  73. Goertzen AL, Stortz G, Jonathan JD, Bishop D, Khan MS, Kozlowski P, Retiere F, Schellenberg G, Shams E, Sossi V, Thompson CJ. First results from a high-resolution small animal SiPM PET insert for PET/MR imaging at 7T. IEEE Trans Nucl Sci. 2016;63:2424–33.

    CAS  Google Scholar 

  74. Yoon HS, Ko GB, Kwon SI, Lee CM, Ito M, Song IC, Lee DS, Hong SJ, Lee JS. Initial results of simultaneous PET/MRI experiments with an MRI-compatible silicon photomultiplier PET scanner. J Nucl Med. 2012;53:608–14.

    CAS  PubMed  Google Scholar 

  75. Schulz V, Solf T, Weissler B, Gebhardt P, Fischer P, Ritzert M, Mlotok V Piemonte C, Zorzi N, Melchiorri M, Vandenberghe S, Keereman V, Schaeffter T, Marsden PK. A preclinical PET/MR insert for a human 3T MR scanner. In: 2009 IEEE nuclear science symposium conference record (NSS/MIC). IEEE; 2009. p. 2577–9.

    Google Scholar 

  76. Yamamoto S, Watabe T, Watabe H, Aoki M, Sugiyama E, Imaizumi M, Kanai Y, Shimosegawa E, Hatazawa J. Simultaneous imaging using Si-PM-based PET and MRI for development of an integrated PET/MRI system. Phys Med Biol. 2012;57:N1–N13.

    PubMed  Google Scholar 

  77. Hong K, Choi Y, Jung JH, Kang J, Hu W, Lim HK, Huh Y, Kim S, Jung JW, Kim KB, Song MS, Park HW. A prototype MR insertable brain PET using tileable GAPD arrays. Med Phys. 2013;40:042503-1–12.

    Google Scholar 

  78. Yamaya T, Obata T, Shimizu K, Suga M, Inadama N, Tachibana A, Yoshida E, Ito H, Yamaya T. Feasibility of a brain-dedicated PET-MRI system using four-layer DOI detectors integrated with an RF head coil. Nucl Instrum Methods Phys Res Sect A. 2014;756:6–13.

    Google Scholar 

  79. Knoll GF. Radiation detection and measurement. Hoboken: Wiley; 2010.

    Google Scholar 

  80. Karp JS, Surti S, Daube-Witherspoon ME, Muehllehner G. Benefit of time-of-flight in PET: experimental and clinical results. J Nucl Med. 2008;49:462–70.

    PubMed  Google Scholar 

  81. Anger HO. Scintillation camera with multichannel collimators. J Nucl Med. 1964;5:515–31.

    CAS  PubMed  Google Scholar 

  82. Siegmund OHW, Zaninovich J, Tremsin AS, Hull JS. Cross strip anodes for MCP imaging detectors. Proc SPIE. 2009;3445:397–406.

    Google Scholar 

  83. Chang CM, Grant AM, Lee BJ, Kim E, Hong K, Levin CS. Performance characterization of compressed sensing positron emission tomography detectors and data acquisition system. Phys Med Biol. 2015;60:6407–21.

    PubMed  Google Scholar 

  84. Chinn G, Olcott PD, Levin CS. Sparse signal recovery methods for multiplexing PET detector readout. IEEE Trans Med Imaging. 2013;32:932–42.

    PubMed  Google Scholar 

  85. Weissler B, Gebhardt P, Duppenbecker PM, Wehner J, Schug D, Lerche CW, Gold-schmidt B, Salomon A, Verel I, Heijman E, Perkuhn M, Heberling D, Botnar RM, Kiessling F, Schulz V. A digital preclinical PET/MRI insert and initial results. IEEE Trans Med Imaging. 2015;34:2258–70.

    PubMed  Google Scholar 

  86. Grant AM, Lee BJ, Chang C-M, Levin CS. Simultaneous PET/MR imaging with a radio frequency-penetrable PET insert. Med Phys. 2017;44(1):11220.

    Google Scholar 

  87. Jung JH, Choi Y, Jung J, Kim S, Lim HK, Im KC, Oh CH, Park HW, Kim KM, Kim JG, et al. Med Phys. 2015;42(5):2354–63.

    PubMed  Google Scholar 

  88. Quick HH, Ladebeck R, Georgi J-C. Whole-body MR/PET hybrid imaging: technical considerations, clinical workflow, and initial results. MAGNETOM Flash, vol. 1. p. 88–100. 2011.

    Google Scholar 

  89. Mediso. nanoScan PET, retrieved from http://www.mediso.com/uploaded/ NPMPCB_0816_web.pdf.

  90. Bruker. PET Insert brochure, retrieved from https://www.bruker.com/ fileadmin/user_upload/8- PDF- Docs/PreclinicalImaging/ Brochures/PET_Insert_T161857.pdf.

  91. MR Solutions. Simultaneous and sequential acquisition of PET & MR-MRS-PET, retrieved from http://www.mrsolutions.com/products/imaging-systems/petmr/.

  92. Bailey DL, Meikle SR. A convolution-subtractions scatter correction method for 3DPET. Phys Med Biol. 1994;39:411–24.

    CAS  PubMed  Google Scholar 

  93. Bentourkia M, Msaki P, Cadorette J, Lecomte R. Assessment of scatter components in high-resolution PET: correction by nonstationary convolution subtraction. J Nucl Med. 1995;36:121–30.

    CAS  PubMed  Google Scholar 

  94. Levin CS, Dahlbomand M, Hoffman EJ. A Monte-Carlo correction for the effect of Compton scattering in 3-D PET brain imaging. IEEE Trans Nucl Sci. 1995;42(4):1181–5.

    Google Scholar 

  95. Cherry SR, Meikleand SR, Hoffman EJ. Correction and Characterisation of Scattered Events in three-dimensional PET using scanners with retractable septa. J Nucl Med. 1993;34:671–8.

    CAS  PubMed  Google Scholar 

  96. Shao L, Freifelder R, Karp JS. Triple energy window scatter correction technique in PET. IEEE Trans Med Imaging. 1994;13(4):641–8.

    CAS  PubMed  Google Scholar 

  97. Grootoonk S, Spinks TJ, Sashin D, Spryou NM, Jones T. Correction for scatter in 3D brain PET using a dual energy window method. Phys Med Biol. 1996;41:2757–74.

    CAS  PubMed  Google Scholar 

  98. Stearns CW. Scatter correction method for 3D PET using 2D fitted Gaussian functions. J Nucl Med. 1995;36:105P.

    Google Scholar 

  99. Cherry SR, Huang S-C. Effects of scatter on model parameter estimates in 3D PET studies of the human brain. IEEE Trans Nucl Sci. 1995;42(4):1174–9.

    Google Scholar 

  100. Ollinger JM. Model-based scatter correction for fully 3D PET. Phys Med Biol. 1996;4:1153–76.

    Google Scholar 

  101. Watson CC, Newport D, Casey ME. A single-scatter simulation technique for scatter correction in 3D PET. In Grangeat P, Amans JL, editors. Three-dimensional image reconstruction in radiology and nuclear medicine. Dordrecht: Kluwer Academic; 1996. ISBN:0-7923-4129-5.

    Google Scholar 

  102. Lee BJ, Grant AM, Chang CM, Glover GH, Levin CS. RF-transmissive PET detector insert for simultaneous PET/MRI. In: 2014 IEEE nuclear science symposium and medical imaging conference (NSS/MIC). IEEE; 2014. p. 1–3.

    Google Scholar 

  103. Lee BJ, Olcott PD, Hong KJ, Grant AM, Chang C-M, Levin CS. Studies of electromagnetic interference of PET detector insert for simultaneous PET/MRI. In: nuclear science symposium and medical imaging conference (NSS/MIC), 2013. IEEE; 2013. p. 1–3.

    Google Scholar 

  104. Olcott PD, Peng H, Levin CS. Novel electro-optical coupling technique for magnetic resonance–compatible positron emission tomography detectors. Mol Imaging. 2009;8(2):74–86.

    CAS  PubMed  Google Scholar 

  105. Nishikido F, et al. Feasibility of a brain-dedicated PET-MRI system using four-layer DOI detectors integrated with an RF head coil. Nucl Instrum Methods Phys Res Sect A. 2014;756:6–13.

    CAS  Google Scholar 

  106. Gonzlez AJ, et al. The MINDView brain PET detector, feasibility study based on SiPM arrays. Nucl Instrum Methods Phys Res Sect A. 2016;818:82–90.

    Google Scholar 

  107. Sportellietal G. The TRIMAGE PET data acquisition system: initial results. IEEE Trans Radiat Plasma Med Sci. 2017;1(2):168–77.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig S. Levin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Lee, B.J., Chang, CM., Levin, C.S. (2018). PET System Technology Designs for Achieving Simultaneous PET/MRI. In: Iagaru, A., Hope, T., Veit-Haibach, P. (eds) PET/MRI in Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-68517-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68517-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68516-8

  • Online ISBN: 978-3-319-68517-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics