Modeling and Analysis of Ventricular Response in Atrial Fibrillation

  • Valentina D. A. Corino
  • Frida Sandberg
  • Luca T. Mainardi
  • Leif Sörnmo
Part of the Series in BioEngineering book series (SERBIOENG)


This chapter begins with an overview of results reported in clinical studies on RR interval analysis during atrial fibrillation, followed by a brief overview of methods for heuristic assessment of the atrioventricular node. The main part of the chapter reviews several AV node models proposed for simulation as well as for parameter estimation. The chapter concludes with a comparison of atrioventricular node models.


  1. 1.
    K.M. Stein, J. Walden, N. Lippman, B.B. Lerman, Ventricular response in atrial fibrillation: random or deterministic? Am. J. Physiol. 277, H452–458 (1999)Google Scholar
  2. 2.
    V.D.A. Corino, R. Sassi, L.T. Mainardi, S. Cerutti, Signal processing methods for information enhancement in atrial fibrillation: spectral analysis and non-linear parameters. Biomed. Signal Process. Control 1, 271–281 (2006)CrossRefGoogle Scholar
  3. 3.
    P. Kirchhof, S. Benussi, D. Kotecha, A. Ahlsson, D. Atar, B. Casadei, M. Castella, H.C. Diener, H. Heidbuchel, J. Hendriks, G. Hindricks, A.S. Manolis, J. Oldgren, B.A. Popescu, U. Schotten, B. Van Putte, P. Vardas, S. Agewall, J. Camm, G. Baron Esquivias, W. Budts, S. Carerj, F. Casselman, A. Coca, R. De Caterina, S. Deftereos, D. Dobrev, J.M. Ferro, G. Filippatos, D. Fitzsimons, B. Gorenek, M. Guenoun, S.H. Hohnloser, P. Kolh, G.Y. Lip, A. Manolis, J. McMurray, P. Ponikowski, R. Rosenhek, F. Ruschitzka, I. Savelieva, S. Sharma, P. Suwalski, J.L. Tamargo, C.J. Taylor, I.C. Van Gelder, A.A. Voors, S. Windecker, J.L. Zamorano, K. Zeppenfeld, 2016 ESC guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur. Heart J. 37, 2893–2962 (2016)CrossRefGoogle Scholar
  4. 4.
    L. Sörnmo, P. Laguna, Bioelectrical Signal Processing in Cardiac and Neurological Applications (Elsevier (Academic Press), Amsterdam, 2005)Google Scholar
  5. 5.
    B. Frey, G. Heinz, T. Binder, M. Wutte, B. Schneider, H. Schmidinger, H. Weber, R. Pacher, Diurnal variation of ventricular response to atrial fibrillation in patients with advanced heart failure. Am. Heart J. 129, 58–65 (1995)CrossRefGoogle Scholar
  6. 6.
    K.M. Stein, J.S. Borer, C. Hochreiter, R.B. Devereux, P. Kligfield, Variability of the ventricular response in atrial fibrillation and prognosis in chronic nonischemic mitral regurgitation. Am. J. Cardiol. 74, 906–911 (1994)CrossRefGoogle Scholar
  7. 7.
    R. Sassi, S. Cerutti, F. Lombardi, M. Malik, H.V. Huikuri, C.-K. Peng, G. Schmidt, Y. Yamamoto, B. Gorenek, G.Y. Lip, G. Grassi, G. Kudaiberdieva, J.P. Fisher, M. Zabel, R. Macfadyen, Advances in heart rate variability signal analysis: joint position statement by the e-Cardiology ESC Working Group and the European Heart Rhythm Association co-endorsed by the Asia Pacific Heart Rhythm Society. Europace 17, 1341–1353 (2015)CrossRefGoogle Scholar
  8. 8.
    A. Porta, G. Baselli, D. Liberati, N. Montano, C. Cogliati, T. Gnecchi-Ruscone, A. Malliani, S. Cerutti, Measuring regularity by means of a corrected conditional entropy in sympathetic outflow. Biol. Cybern. 78, 71–78 (1998)CrossRefGoogle Scholar
  9. 9.
    A. Yamada, J. Hajano, S. Sakata, A. Okada, S. Mukai, N. Ohte, G. Kimura, Reduced ventricular response irregularity is assocated with increased mortality in patients with chronic atrial fibrillation. Circulation 102, 300–306 (2000)CrossRefGoogle Scholar
  10. 10.
    R. Vazquez, A. Bayes-Genis, I. Cygankiewicz, D. Pascual-Figal, L. Grigorian-Shamagian, R. Pavon, J. Gonzalez-Juanatey, J. Cubero, L. Pastor, J. Ordonez-Llanos, J. Cinca, A. de Luna, MUSIC investigators, The MUSIC risk score: a simple method for predicting mortality in ambulatory patients with chronic heart failure. Eur. Heart J. 30, 1088–1096 (2009)CrossRefGoogle Scholar
  11. 11.
    J.T. Rich, J.G. Neely, R.C. Paniello, C.C.J. Voelker, B. Nussenbaum, E.W. Wang, A practical guide to understanding Kaplan–Meier curves. Otolaryngol. Head Neck. Surg. 143, 331–336 (2010)CrossRefGoogle Scholar
  12. 12.
    I. Cygankiewicz, V.D.A. Corino, R. Vazquez, A. Bayes-Genis, L.T. Mainardi, W. Zareba, A. Bayes de Luna, P. G. Platonov, Reduced irregularity of ventricular response during atrial fibrillation and long-term outcome in patients with heart failure. Am. J. Cardiol. 116, 1071–1075 (2015)CrossRefGoogle Scholar
  13. 13.
    V.D.A. Corino, F. Holmqvist, L.T. Mainardi, P.G. Platonov, Beta-blockade and A1-adenosine receptor agonist effects on atrial fibrillatory rate and atrioventricular conduction in patients with atrial fibrillation. Europace 16, 587–594 (2014)CrossRefGoogle Scholar
  14. 14.
    V.D.A. Corino, I. Cygankiewicz, L.T. Mainardi, M. Stridh, W. Zareba, R. Vasquez, A. Bayes de Luna, P.G. Platonov, Association between atrial fibrillatory rate and heart rate variability in patients with atrial fibrillation and congestive heart failure. Ann. Noninvasive Electrophysiol. 18, 41–50 (2013)CrossRefGoogle Scholar
  15. 15.
    V.D.A. Corino, S.R. Ulimoen, S. Enger, L.T. Mainardi, A. Tveit, P.G. Platonov, Rate-control drugs affect variability and irregularity measures of RR intervals in patients with permanent atrial fibrillation. J. Cardiovasc. Electrophysiol. 26, 137–141 (2015)CrossRefGoogle Scholar
  16. 16.
    L.T. Mainardi, A. Porta, G. Calcagnini, P. Bartolini, A. Michelucci, S. Cerutti, Linear and non-linear analysis of atrial signals and local activation period series during atrial-fibrillation episodes. Med. Biol. Eng. Comput. 39, 249–254 (2001)CrossRefGoogle Scholar
  17. 17.
    V.D.A. Corino, P.G. Platonov, S. Enger, A. Tveit, S.R. Ulimoen, Circadian variation of variability and irregularity of heart rate in patients with permanent atrial fibrillation: relation to symptoms and rate control drugs. Am. J. Physiol. Heart Circ. Physiol. 309, H2152–H2157 (2015)CrossRefGoogle Scholar
  18. 18.
    C. Bingham, B. Arbogast, C.C. Guillaume, J.K. Lee, F. Halberg, Inferential statistical methods for estimating and comparing cosinor parameters. Chronobiologia 9, 397–439 (1982)Google Scholar
  19. 19.
    R. Refinetti, G. Cornélissen, F. Halberg, Procedures for numerical analysis of circadian rhythms. Biol. Rhythm Res. 38, 275–325 (2007)CrossRefGoogle Scholar
  20. 20.
    J. Billette, R.A. Nadeau, F. Roberge, Relation between the minimum RR interval during atrial fibrillation and the functional refrectory period of the AV junction. Cardiovasc. Res. 8, 347–351 (1974)CrossRefGoogle Scholar
  21. 21.
    M. Talajic, D. Papadatos, C. Villemaire, L. Glass, S. Nattel, A unified model of atrioventricular nodal conduction predicts dynamic changes in Wenckebach periodicity. Circ. Res. 68, 1280–1293 (1991)CrossRefGoogle Scholar
  22. 22.
    L. Toivonen, A. Kadish, W. Kou, F. Morady, Determinants of the ventricular rate during atrial fibrillation. J. Am. Coll. Cardiol. 16, 1194–1200 (1990)CrossRefGoogle Scholar
  23. 23.
    A. Khand, A. Rankin, J. Cleland, I. Gemmell, E. Clark, P. Macfarlane, The assessment of autonomic function in chronic atrial fibrillation: description of a non-invasive technique based on circadian rhythm of atrioventricular nodal functional refractory period. Europace 8, 927–934 (2006)CrossRefGoogle Scholar
  24. 24.
    J. Hayano, S. Sakata, A. Okada, S. Mukai, T. Fujinami, Circadian rhythms of atrioventricular conduction properties in chronic atrial fibrillation with and without heart failure. J. Am. Coll. Cardiol. 31, 158–166 (1998)CrossRefGoogle Scholar
  25. 25.
    M. Talajic, M. Nayebpour, W. Jing, S. Nattel, Frequency dependent effects of diltiazem on the atrioventricular node during experimental atrial fibrillation. Circulation 80, 380–389 (1989)CrossRefGoogle Scholar
  26. 26.
    M.P. van den Berg, T. van Noord, J. Brouwer, J. Haaksma, D.J. van Veldhuisen, H.J. Crijns, I.C. van Gelder, Clustering of RR intervals predicts effective electrical cardioversion for atrial fibrillation. J. Cardiovasc. Electrophysiol. 15, 1027–1033 (2004)CrossRefGoogle Scholar
  27. 27.
    A. Climent, M. de la Salud Guillem, D. Husser, F. Castells, J. Millet, A. Bollmann, Poincaré surface profiles of RR intervals: a novel noninvasive method for the evaluation of preferential AV nodal conduction during atrial fibrillation. IEEE Trans. Biomed. Eng. 56, 433–442 (2009)CrossRefGoogle Scholar
  28. 28.
    M. Masè, L. Glass, M. Disertori, F. Ravelli, AV synchrogram: a novel approach to quantifying atrioventricular coupling during atrial arrhythmias. Biomed. Signal Process. Control 8, 1008–1016 (2013)CrossRefGoogle Scholar
  29. 29.
    M. Masè, M. Marini, M. Disertori, F. Ravelli, Dynamics of AV coupling during human atrial fibrillation: role of atrial rate. Am. J. Physiol. Heart Circ. Physiol. 309, H198–H205 (2015)CrossRefGoogle Scholar
  30. 30.
    M. Masè, M. Disertori, M. Marini, F. Ravelli, Characterization of rate and regularity of ventricular response during atrial tachyarrhythmias. Insight on atrial and nodal determinants. Physiol. Meas. 38, 800–818 (2017)CrossRefGoogle Scholar
  31. 31.
    J. Sun, F. Amellal, L. Glass, J. Billette, Alternans and period doubling bifurcations in atrioventricular nodal conduction. J. Theor. Biol. 173, 79–91 (1995)CrossRefGoogle Scholar
  32. 32.
    F.L. Meijler, J. Jalife, J. Beaumont, D. Vaidya, AV nodal function during atrial fibrillation: the role of electrotonic modulation of propagation. J. Cardiovasc. Electrophysiol. 7, 843–861 (1996)CrossRefGoogle Scholar
  33. 33.
    P. Jørgensen, C. Schäfer, P.G. Guerra, M. Talajic, S. Nattel, L. Glass, A mathematical model of human atrioventricular nodal function incorporating concealed conduction. Bull. Math. Biol. 64, 1083–1099 (2002)CrossRefGoogle Scholar
  34. 34.
    L. Mangin, A. Vinet, P. Page, L. Glass, Effects of antiarrhythmic drug therapy on atrioventricular nodal function during atrial fibrillation in humans. Europace 7, S71–S82 (2005)CrossRefGoogle Scholar
  35. 35.
    J. Lian, D. Müssig, V. Lang, Computer modeling of ventricular rhythm during atrial fibrillation and ventricular pacing. IEEE Trans. Biomed. Eng. 53, 1512–1520 (2006)CrossRefGoogle Scholar
  36. 36.
    A. Climent, M. Guillem, Y. Zhang, J. Millet, T. Mazgalev, Functional mathematical model of dual pathway AV nodal conduction. Am. J. Physiol. Heart Circ. Physiol. 300, H1393–1401 (2011)CrossRefGoogle Scholar
  37. 37.
    Y. Zhang, S. Bharati, K. Mowrey, T. Mazgalev, His electrogram alternans reveal dual atrioventricular nodal pathway conduction during atrial fibrillation: the role of slow-pathway modification. Circulation 107, 1059–1065 (2003)CrossRefGoogle Scholar
  38. 38.
    A. Rashidi, I. Khodarahmi, Nonlinear modeling of the atrioventricular node physiology in atrial fibrillation. J. Theor. Biol. 232, 545–549 (2005)CrossRefGoogle Scholar
  39. 39.
    J. Lian, D. Müssig, Heart rhythm and cardiac pacing: an integrated dual-chamber heart and pacer model. Ann. Biomed. Eng. 37, 64–81 (2009)CrossRefGoogle Scholar
  40. 40.
    J. Lian, D. Müssig, V. Lang, Ventricular rate smoothing for atrial fibrillation: a quantitative comparison study. Europace 9, 506–513 (2007)CrossRefGoogle Scholar
  41. 41.
    J. Lian, D. Müssig, V. Lang, On the role of ventricular conduction time in rate stabilization for atrial fibrillation. Europace 9, 289–293 (2007)CrossRefGoogle Scholar
  42. 42.
    M. Wallman, F. Sandberg, Characterisation of human AV-nodal properties using a network model. Med. Biol. Eng. Comput. 56, 247–259 (2018)CrossRefGoogle Scholar
  43. 43.
    R.J. Cohen, R.D. Berger, T. Dushane, A quantitative model for the ventricular response during atrial fibrillation. IEEE Trans. Biomed. Eng. 30, 769–780 (1983)CrossRefGoogle Scholar
  44. 44.
    R.E. Goldstein, G.O. Barnett, A statistical study of the ventricular irregularity of atrial fibrillation. Comput. Biomed. Res. 1, 146–161 (1967)CrossRefGoogle Scholar
  45. 45.
    V.D.A. Corino, F. Sandberg, L.T. Mainardi, L. Sörnmo, An atrioventricular node model for analysis of the ventricular response during atrial fibrillation. IEEE Trans. Biomed. Eng. 58, 3386–3395 (2011)CrossRefGoogle Scholar
  46. 46.
    V.D.A. Corino, F. Sandberg, F. Lombardi, L.T. Mainardi, L. Sörnmo, Atrioventricular nodal function during atrial fibrillation: Model building and robust estimation. Biomed. Signal Process. Control 8, 1017–1025 (2013)CrossRefGoogle Scholar
  47. 47.
    M. Henriksson, V.D.A. Corino, L. Sörnmo, F. Sandberg, A statistical atrioventricular node model accounting for pathway switching during atrial fibrillation. IEEE Trans. Biomed. Eng. 63, 1842–1849 (2016)CrossRefGoogle Scholar
  48. 48.
    F. Van den Bergh, A.P. Engelbrecht, A cooperative approach to particle swarm optimization. IEEE Trans. Evolutionary Comput. 8, 225–239 (2004)CrossRefGoogle Scholar
  49. 49.
    B. Niu, X. Zhu, Y. He, H. Wu, MCPSO: a multi-swarm cooperative particle swarm optimize. Appl. Math. Comput. 2, 1050–1062 (2007)zbMATHGoogle Scholar
  50. 50.
    V.D.A. Corino, F. Sandberg, L.T. Mainardi, P.G. Platonov, L. Sörnmo, Noninvasive assessment of atrioventricular nodal function: effect of rate-control drugs during atrial fibrillation. Ann. Noninvasive Electrocardiol. 20, 534–541 (2015)CrossRefGoogle Scholar
  51. 51.
    V.D.A. Corino, F. Sandberg, P.G. Platonov, L.T. Mainardi, S.R. Ulimoen, S. Enger, A. Tveit, and L. Sörnmo, Non-invasive evaluation of the effect of metoprolol on the atrioventricular node during permanent atrial fibrillation. Europace 16 iv129–iv134 (2014)CrossRefGoogle Scholar
  52. 52.
    F. Sandberg, V.D.A. Corino, L.T. Mainardi, S. Ulimoen, S. Enger, A. Tveit, P.G. Platonov, L. Sörnmo, Non-invasive assessment of beta blockers and calcium channel blockers on the av node during permanent atrial fibrillation. J. Electrocardiol. 48, 861–866 (2015)CrossRefGoogle Scholar
  53. 53.
    E.N. Prystowsky, I. Niazi, A. Curtis, D.J. Wilber, T. Bahnson, K. Ellenbogen, A. Dhala, D.M. Bloomfield, M. Gold, A. Kadish, R.I. Fogel, M.D. Gonzalez, L. Belardinelli, R. Shreeniwas, A.A. Wolff, Termination of paroxysmal supraventricular tachycardia by tecadenoson (CVT-510), a novel A1-adenosine receptor agonist. J. Am. Coll. Cardiol. 42, 1098–1102 (2003)CrossRefGoogle Scholar
  54. 54.
    F. Philippon, V.P. Plumb, G.N. Kay, Differential effect of esmolol on the fast and slow AV nodal pathways in patients with AV nodal reentrant tachycardia. J. Cardiovasc. Electrophysiol. 5, 810–817 (1994)CrossRefGoogle Scholar
  55. 55.
    F.E. Marchlinski, A.E. Buxton, H.L. Waxman, M.E. Josephson, Electrophysiologic effects of intravenous metoprolol. Am. Heart J. 107, 1125–1131 (1984)CrossRefGoogle Scholar
  56. 56.
    T. Horio, S. Ito, M. Aoyama, Y. Takeda, H. Suzumura, K. Nakata, Y. Yamada, S. Suzuki, T. Fukutomi, I.M, Effect of carvedilol on atrioventricular conduction in the ischemic heart. Eur. J. Pharmacol. 412, 145–153 (2001)CrossRefGoogle Scholar
  57. 57.
    H. Shiina, A. Sugiyama, A. Takahara, Y. Satoh, K. Hashimoto, Comparison of the electropharmacological effects of verapamil and propranolol in the halothane-anesthetized in vivo canine model under monophasic action potential monitoring. Jpn. Circ. J. 64, 777–782 (2000)CrossRefGoogle Scholar
  58. 58.
    M. Talajic, R. Lemery, D. Roy, C. Villemaire, R. Cartier, B. Coutu, S. Nattel, Rate-dependent effects of diltiazem on human atrioventricular nodal properties. Circulation 86, 870–877 (1992)CrossRefGoogle Scholar
  59. 59.
    V.D.A. Corino, F. Sandberg, F. Lombardi, L.T. Mainardi, L.Sörnmo, Statistical modeling of atrioventricular nodal function during atrial fibrillation focusing on the refractory period estimation, in Biomedical Engineering Systems and Technologies ed. by M. Fernández-Chimeno et al., vol. 452, (Springer, Heidelberg, 2014) pp. 258–268Google Scholar
  60. 60.
    M. Nayebpour, M. Talajic, C. Villemaire, S. Nattel, Vagal modulation of the rate-dependent properties of the atrioventricular node. Circ. Res. 67, 1152–1166 (1990)CrossRefGoogle Scholar
  61. 61.
    S.M. Ross, Introduction to Probability Models, 11th edn. (Academic Press, 2014)zbMATHGoogle Scholar
  62. 62.
    J. Billette, R. Tadros, Integrated rate-dependent and dual pathway AV nodal functions: principles and assessment framework. Am. J. Physiol. Heart. Circ. Physiol. 306, H173–183 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Valentina D. A. Corino
    • 1
  • Frida Sandberg
    • 2
  • Luca T. Mainardi
    • 1
  • Leif Sörnmo
    • 2
  1. 1.Department of Electronics, Information and BioengineeringPolitecnico di MilanoMilanItaly
  2. 2.Department of Biomedical Engineering and Center for Integrative ElectrocardiologyLund UniversityLundSweden

Personalised recommendations