Advertisement

Characterization of f Waves

  • Leif Sörnmo
  • Raúl Alcaraz
  • Pablo Laguna
  • José Joaquín Rieta
Chapter
Part of the Series in BioEngineering book series (SERBIOENG)

Abstract

This chapter reviews different approaches to f wave characterization. The two fundamental characteristics f wave amplitude and atrial fibrillatory rate are first considered, followed by a description of linear and nonlinear techniques for characterizing wave morphology and regularity. The analysis of spatial ECG information, manifested as a vectorcardiographic loop or a body surface potential map, is reviewed. The chapter concludes with a brief overview of popular clinical applications where the described approaches have been explored.

References

  1. 1.
    A. Bollmann, D. Husser, L.T. Mainardi, F. Lombardi, P. Langley, A. Murray, J.J. Rieta, J. Millet, S.B. Olsson, M. Stridh, L. Sörnmo, Analysis of surface electrocardiograms in atrial fibrillation: techniques, research, and clinical applications. Europace 8, 911–926 (2006)CrossRefGoogle Scholar
  2. 2.
    T.A.R. Lankveld, S. Zeemering, H.J.G.M. Crijns, U. Schotten, The ECG as a tool to determine atrial fibrillation complexity. Heart 100, 1077–1084 (2014)CrossRefGoogle Scholar
  3. 3.
    P.G. Platonov, V.D.A. Corino, M. Seifert, F. Holmqvist, L. Sörnmo, Atrial fibrillatory rate in the clinical context: natural course and prediction of intervention outcome. Europace 16, iv110–iv119 (2014)CrossRefGoogle Scholar
  4. 4.
    Z. Cheng, H. Deng, K. Cheng, T. Chen, P. Gao, M. Yu, Q. Fang, The amplitude of fibrillatory waves on leads aVF and V1 predicting the recurrence of persistent atrial fibrillation patients who underwent catheter ablation. Ann. Noninvasive Electrocardiol. 18, 352–358 (2013)CrossRefGoogle Scholar
  5. 5.
    I. Nault, N. Lellouche, S. Matsuo, S. Knecht, M. Wright, K.T. Lim, F. Sacher, P. Platonov, A. Deplagne, P. Bordachar, N. Derval, M.D. O’Neill, G.J. Klein, M. Hocini, P. Jaïs, J. Clémenty, M. Haïssaguerre, Clinical value of fibrillatory wave amplitude on surface ECG in patients with persistent atrial fibrillation. J. Interv. Card. Electrophysiol. 26, 11–19 (2009)CrossRefGoogle Scholar
  6. 6.
    A. Bollmann, A. Tveit, D. Husser, M. Stridh, L. Sörnmo, P. Smith, S.B. Olsson, Fibrillatory rate response to candesartan in persistent atrial fibrillation. Europace 10, 1138–1144 (2008)CrossRefGoogle Scholar
  7. 7.
    A. Bollmann, D. Husser, R. Steinert, M. Stridh, L. Sörnmo, S.B. Olsson, D. Polywka, J. Molling, C. Geller, H.U. Klein, Echo- and electrocardiographic predictors for atrial fibrillation recurrence following cardioversion. J. Cardiovasc. Electrophysiol. 14, 162–165 (2003)CrossRefGoogle Scholar
  8. 8.
    D. Husser, M. Stridh, L. Sörnmo, P. Platanov, S.B. Olsson, A. Bollmann, Analysis of the surface electrocardiogram for monitoring and predicting antiarrhythmic drug effects in atrial fibrillation. Cardiovasc. Drugs Therapy 18, 377–386 (2004)CrossRefGoogle Scholar
  9. 9.
    M. Aunes-Jansson, N. Edvardsson, M. Stridh, L. Sörnmo, L. Frison, A. Berggren, Decrease of the atrial fibrillatory rate, increased organization of the atrial rhythm and termination of atrial fibrillation by AZD7009. J. Electrocardiol. 46, 29–35 (2013)CrossRefGoogle Scholar
  10. 10.
    S. Nattel, Atrial electrophysiological remodeling caused by rapid atrial activation: underlying mechanisms and clinical relevance to atrial fibrillation. Cardiovasc. Res. 42, 298–308 (1999)CrossRefGoogle Scholar
  11. 11.
    S. Petrutiu, A. Sahakian, S. Swiryn, Time domain analysis of atrial fibrillation, in Understanding Atrial Fibrillation: The Signal Processing Contribution ed. by L.T. Mainardi, L. Sörnmo, S. Cerutti (Morgan & Claypool, San Francisco, 2008), pp. 33–51 (Chap. 2)Google Scholar
  12. 12.
    R. Alcaraz, J.J. Rieta, A review on sample entropy applications for the non-invasive analysis of atrial fibrillation electrocardiograms. Biomed. Signal Process. Control 5, 1–14 (2010)CrossRefGoogle Scholar
  13. 13.
    R. Alcaraz, J.J. Rieta, Applications of nonlinear methods to atrial fibrillation, in Complexity and Nonlinearity in Cardiovascular Signals, ed. by R. Barbieri, E.P. Scilingo, G. Valenza (Springer, 2017), pp. 387–426CrossRefGoogle Scholar
  14. 14.
    M. Rodrigo, M. de la Salud Guillem, A.M. Climent, J. Pedrón-Torrecilla, A. Liberos, J. Millet, F. Fernández-Avilés, F. Atienza, O. Berenfeld, Body surface localization of left and right atrial high-frequency rotors in atrial fibrillation patients: a clinical-computational study. Heart Rhythm 9, 1584–1591 (2014)CrossRefGoogle Scholar
  15. 15.
    V. Jacquemet, A. van Oosterom, J.-M. Vesin, L. Kappenberger, Analysis of electrocardiograms during atrial fibrillation: a biophysical approach. IEEE Med. Biol. Eng. Mag. 25, 79–88 (2006)CrossRefGoogle Scholar
  16. 16.
    V. Jacquemet, A. van Oosterom, Modeling atrial fibrillation: From myocardial cells to ECG, in Understanding Atrial Fibrillation: The Signal Processing Contribution, ed. by L.T. Mainardi, L. Sörnmo, S. Cerutti (Morgan & Claypool, San Francisco, 2008) Chap. 7, pp. 151–173Google Scholar
  17. 17.
    O.V. Aslanidi, M.A. Colman, J. Stott, H. Dobrzynski, M.R. Boyett, A.V. Holden, H. Zhang, 3D virtual human atria: a computational platform for studying clinical atrial fibrillation. Prog. Biophys. Mol. Biol. 107, 156–168 (2011)CrossRefGoogle Scholar
  18. 18.
    M. Meo, V. Zarzoso, O. Meste, D.G. Latcu, N. Saoudi, Catheter ablation outcome prediction in persistent atrial fibrillation using weighted principal component analysis. Biomed. Signal Process. Control 8, 958–968 (2013)CrossRefGoogle Scholar
  19. 19.
    L.Y. Di Marco, D. Raine, J.P. Bourke, P. Langley, Recurring patterns of atrial fibrillation in surface ECG predict restoration of sinus rhythm by catheter ablation. Comput. Biol. Med. 54, 172–179 (2014)CrossRefGoogle Scholar
  20. 20.
    R. Dubois, A.J. Shah, M. Hocini, A. Denis, N. Derval, H. Cochet, F. Sacher, L. Bear, J. Duchateau, P. Jaïs, M. Haïssaguerre, Non-invasive cardiac mapping in clinical practice: application to the ablation of cardiac arrhythmias. J. Electrocardiol. 48, 966–974 (2015)CrossRefGoogle Scholar
  21. 21.
    A. Shah, M. Hocini, M. Haïssaguerre, P. Jaïs, Non-invasive mapping of cardiac arrhythmias. Curr. Cardiol. Rep. 17, 1–11 (2015)CrossRefGoogle Scholar
  22. 22.
    M. Thurmann, J. Janney, The diagnostic importance of fibrillatory wave size. Circulation 25, 991–994 (1962)CrossRefGoogle Scholar
  23. 23.
    M.R. Culler, J.A. Boone, P.C. Gazes, Fibrillatory wave size as a clue to etiological diagnosis. Am. Heart J. 66, 435–436 (1963)CrossRefGoogle Scholar
  24. 24.
    H. Åberg, Atrial fibrillation II. A study of fibrillatory wave size on the regular scalar electrocardiogram. Acta Med. Scand. 185, 381–385 (1969)CrossRefGoogle Scholar
  25. 25.
    M.H. Aysha, A.S. Hassan, Diagnostic importance of fibrillatory wave amplitude: a clue to echocardiographic left atrial size and etiology of atrial fibrillation. J. Electrocardiol. 21, 247–251 (1988)CrossRefGoogle Scholar
  26. 26.
    J.L. Blackshear, R.E. Safford, L.A. Pearce on behalf of the stroke prevention in atrial fibrillation investigators, F-amplitude, left atrial appendage velocity, and thromboembolic risk in nonrheumatic atrial fibrillation. Clin. Cardiol. 19, 309–313 (1996)CrossRefGoogle Scholar
  27. 27.
    Q. Xi, A.V. Sahakian, J. Ng, S. Swiryn, Atrial fibrillatory wave characteristics on surface electrogram: ECG to ECG repeatability over twenty-four hours in clinically stable patients. J. Cardiovasc. Electrophysiol. 15, 911–917 (2004)CrossRefGoogle Scholar
  28. 28.
    Q. Xi, A.V. Sahakian, T.G. Frohlich, J. Ng, S. Swiryn, Relationship between pattern of occurrence of atrial fibrillation and surface electrocardiographic fibrillatory wave characteristics. Heart Rhythm 1, 656–663 (2004)CrossRefGoogle Scholar
  29. 29.
    R. Alcaraz, F. Hornero, J.J. Rieta, Noninvasive time and frequency predictors of long-standing atrial fibrillation early recurrence after electrical cardioversion. Pacing Clin. Electrophysiol. 34, 1241–1250 (2011)CrossRefGoogle Scholar
  30. 30.
    L. Sörnmo, P. Laguna, Bioelectrical Signal Processing in Cardiac and Neurological Applications (Elsevier (Academic Press), Amsterdam, 2005)Google Scholar
  31. 31.
    M. Meo, V. Zarzoso, O. Meste, D.G. Latcu, N. Saoudi, Spatial variability of the 12-lead surface ECG as a tool for noninvasive prediction of catheter ablation outcome in persistent atrial fibrillation. IEEE Trans. Biomed. Eng. 60, 20–27 (2013)CrossRefGoogle Scholar
  32. 32.
    V. Zarzoso, D.G. Latcub, A.R. Hidalgo-Muñoz, M. Meo, O. Meste, I. Popescu, N. Saoudi, Non-invasive prediction of catheter ablation outcome in persistent atrial fibrillation by fibrillatory wave amplitude computation in multiple electrocardiogram leads. Arch. Cardiovasc. Dis. 109, 679–688 (2016)CrossRefGoogle Scholar
  33. 33.
    N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shi, Q. Zheng, N.-C. Yen, C.C. Tung, H.H. Liu, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A 454, 903–995 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    D.W. Botteron, J.M. Smith, A technique for measurement of the extent of spatial organization of atrial activation during atrial fibrillation in the intact human heart. IEEE Trans. Biomed. Eng. 42, 579–586 (1995)CrossRefGoogle Scholar
  35. 35.
    M. Holm, R. Johansson, S.B. Olsson, J. Brandt, C. Lührs, A new method for analysis of atrial activation during chronic atrial fibrillation in man. IEEE Trans. Biomed. Eng. 43, 198–210 (1996)CrossRefGoogle Scholar
  36. 36.
    L. Faes, G. Nollo, R. Antolini, F. Gaita, F. Ravelli, A method for quantifying atrial fibrillation organization based on wave morphology similarity. IEEE Trans. Biomed. Eng. 49, 1504–1513 (2002)CrossRefGoogle Scholar
  37. 37.
    R.P.M. Houben, N.M.S. de Groot, M.A. Allessie, Analysis of fractionated atrial fibrillation electrograms by wavelet decomposition. IEEE Trans. Biomed. Eng. 57, 1388–1398 (2010)CrossRefGoogle Scholar
  38. 38.
    J. Ng, V. Sehgal, J.K. Ng, D. Gordon, J.J. Goldberger, Iterative method to detect atrial activations and measure cycle length from electrograms during atrial fibrillation. IEEE Trans. Biomed. Eng. 61, 273–278 (2014)CrossRefGoogle Scholar
  39. 39.
    M. El Haddad, R.P.M. Houben, R. Stroobandt, F. Van Heuverswyn, R. Tavernier, M. Duytschaever, Novel algorithmic methods in mapping of atrial and ventricular tachycardia. Circ. Arrhythm. Electrophysiol. 7, 463–472 (2014)CrossRefGoogle Scholar
  40. 40.
    C.D. Cantwell, C.H. Roney, F.S. Ng, J.H. Siggers, S.J. Sherwin, N.S. Peters, Techniques for automated local activation time annotation and conduction velocity estimation in cardiac mapping. Comput. Biol. Med. 65, 229–242 (2015)CrossRefGoogle Scholar
  41. 41.
    K.M. Ropella, A.V. Sahakian, J.M. Baerman, S. Swiryn, Effects of procainamide on intra-atrial electrograms during atrial fibrillation: implications for detection algorithms. Circulation 77, 1047–1054 (1988)CrossRefGoogle Scholar
  42. 42.
    S. Lazar, S. Dixit, F.E. Marchlinski, D.J. Callans, E.P. Gerstenfeld, Presence of left-to-right atrial frequency gradient in paroxysmal but not persistent atrial fibrillation in humans. Circulation 110, 3181–3186 (2004)CrossRefGoogle Scholar
  43. 43.
    Y.J. Lin, C.T. Tai, T. Kao, H.W. Tso, S. Higa, H.M. Tsao, S.L. Chang, M.H. Hsieh, S.A. Chen, Frequency analysis in different types of paroxysmal atrial fibrillation. J. Am. Coll. Cardiol. 47, 1401–1407 (2006)CrossRefGoogle Scholar
  44. 44.
    M. Hayes, Statistical Digital Signal Processing and Modeling (Wiley, New York, 1996)Google Scholar
  45. 45.
    R. Sassi, L.T. Mainardi, P. Maison-Blanche, S. Cerruti, Estimation of spectral parameters of residual ECG signals during atrial fibrillation using autoregressive models. Folia Cardiologica 12, 108–110 (2005)Google Scholar
  46. 46.
    R. Sassi, V.D.A. Corino, L.T. Mainardi, Analysis of surface atrial signals: time series with missing data? Ann. Biomed. Eng. 37, 2082–2092 (2009)CrossRefGoogle Scholar
  47. 47.
    S.M. Kay, Fundamentals of Statistical Signal Processing. Estimation Theory (Prentice-Hall, New Jersey, 1993)Google Scholar
  48. 48.
    N.R. Lomb, Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci. 39, 447–462 (1976)CrossRefGoogle Scholar
  49. 49.
    D.S. Stoffer, D.E. Tyler, D.A. Wendt, The spectral envelope and its applications. Stat. Sci. 15, 224–253 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    L. Uldry, J. Van Zaen, Y. Prudat, L. Kappenberger, J.-M. Vesin, Measures of spatiotemporal organization differentiate persistent from long-standing atrial fibrillation. Europace 14, 1125–1131 (2012)CrossRefGoogle Scholar
  51. 51.
    S. Zeemering, T.A.R. Lankveld, P. Bonizzi, I. Limantoro, S.C.A.M. Bekkers, H.J.G.M. Crijns, U. Schotten, The electrocardiogram as a predictor of successful pharmacological cardioversion and progression of atrial fibrillation. Europace, eux234 (2017)Google Scholar
  52. 52.
    T.H. Everett, L.-C. Kok, R.H. Vaughn, J.R. Moorman, D.E. Haines, Frequency domain algorithm for quantifying atrial fbrillation organization to increase defibrillation efficiency. IEEE Trans. Biomed. Eng. 48, 969–978 (2001)CrossRefGoogle Scholar
  53. 53.
    T.H. Everett, J.R. Moorman, L.-C. Kok, J.G. Akar, D.E. Haines, Assessment of global atrial fibrillation organization to optimize timing of atrial defibrillation. Circulation 103, 2857–2861 (2001)CrossRefGoogle Scholar
  54. 54.
    A. Buttu, E. Pruvot, J. Van Zaen, A. Viso, A. Forclaz, P. Pascale, S.M. Narayan, J. Vesin, Adaptive frequency tracking of the baseline ECG identifies the site of atrial fibrillation termination by catheter ablation. Biomed. Signal Process. Control 8, 969–980 (2013)CrossRefGoogle Scholar
  55. 55.
    M. Stridh, L. Sörnmo, C.J. Meurling, S.B. Olsson, Sequential characterization of atrial tachyarrhythmias based on ECG time–frequency analysis. IEEE Trans. Biomed. Eng. 51, 100–114 (2004)CrossRefGoogle Scholar
  56. 56.
    R. Alcaraz, F. Hornero, J.J. Rieta, Electrocardiographic spectral features for long-term outcome prognosis of atrial fibrillation catheter ablation. Ann. Biomed. Eng. 44, 3307–3318 (2016)CrossRefGoogle Scholar
  57. 57.
    I.A. Rezek, S.J. Roberts, Stochastic complexity measures for physiological signal analysis. IEEE Trans. Biomed. Eng. 45, 1186–1191 (1998)CrossRefGoogle Scholar
  58. 58.
    S. Pehrson, M. Holm, C. Meurling, M. Ingemansson, B. Smideberg, L. Sörnmo, S.B. Olsson, Non-invasive assessment of magnitude and dispersion of atrial cycle length during chronic atrial fibrillation in man. Eur. Heart J. 19, 1836–1844 (1998)CrossRefGoogle Scholar
  59. 59.
    F. Chiarugi, M. Varanini, F. Cantini, F. Conforti, G. Vrouchos, Noninvasive ECG as a tool for predicting termination of paroxysmal atrial fibrillation. IEEE Trans. Biomed. Eng. 54, 1399–1406 (2007)CrossRefGoogle Scholar
  60. 60.
    M. Stridh, L. Sörnmo, C.J. Meurling, S.B. Olsson, Characterization of atrial fibrillation using the surface ECG: time-dependent spectral properties. IEEE Trans. Biomed. Eng. 48, 19–27 (2001)CrossRefGoogle Scholar
  61. 61.
    C. Vayá, J.J. Rieta, Time and frequency series combination for non-invasive regularity analysis of atrial fibrillation. Med. Biol. Eng. Comput. 47, 687–696 (2009)CrossRefGoogle Scholar
  62. 62.
    S. Qian, D. Chen, Joint Time–Frequency Analysis Methods and Applications (Prentice-Hall, New Jersey, 1996)Google Scholar
  63. 63.
    L. Cohen, Time–Frequency Analysis (Prentice-Hall, New Jersey, 1995)Google Scholar
  64. 64.
    B. Boashash, Estimating and interpreting the instantaneous frequency of a signal–Part 2: algorithms and applications. Proc. IEEE 80, 540–568 (1992)CrossRefGoogle Scholar
  65. 65.
    M. Stridh, L. Sörnmo, C.J. Meurling, S.B. Olsson, Detection of autonomic modulation in permanent atrial fibrillation. Med. Biol. Eng. Comput. 41, 625–629 (2003)CrossRefGoogle Scholar
  66. 66.
    M. Malik, Standard measurements of heart rate variability, in Dynamic Electrocardiography, ed. by M. Malik, A.J. Camm (Wiley, New York, 2004), pp. 13–21 (Chap. 2)Google Scholar
  67. 67.
    B. Widrow, S.D. Stearns, Adaptive Signal Proccessing (Prentice-Hall, New Jersey, 1985)zbMATHGoogle Scholar
  68. 68.
    S. Haykin, Adaptive Filter Theory, 5th edn. (Pearson, New Jersey, 2014)Google Scholar
  69. 69.
    J. Van Zaen, L. Uldry, C. Duchêne, Y. Prudat, R.A. Meuli, M.M. Murray, J.-M. Vesin, Adaptive tracking of EEG oscillations. J. Neurosci. Meth. 186, 97–106 (2010)CrossRefGoogle Scholar
  70. 70.
    R. Alcaraz, J.J. Rieta, Sample entropy of the main atrial wave predicts spontaneous termination of paroxysmal atrial fibrillation. Med. Eng. Phys. 31, 917–922 (2009)CrossRefGoogle Scholar
  71. 71.
    M. Stridh, D. Husser, A. Bollmann, L. Sörnmo, Waveform characterization of atrial fibrillation using phase information. IEEE Trans. Biomed. Eng. 56, 1081–1089 (2009)zbMATHCrossRefGoogle Scholar
  72. 72.
    A.V. Oppenheim, R.W. Schafer, J.R. Buck, Discrete-Time Signal Processing, 2nd edn. (Prentice-Hall, New Jersey, 1999)Google Scholar
  73. 73.
    B. Picinbono, On instantaneous amplitude and phase of signals. IEEE Trans. Signal Process. 45, 552–560 (1997)CrossRefGoogle Scholar
  74. 74.
    M. Chavez, M. Besserve, C. Adam, J. Martinerie, Towards a proper estimation of phase synchronization from time series. J. Neurosci. Meth. 154, 149–160 (2006)CrossRefGoogle Scholar
  75. 75.
    L. Faes, G. Nollo, M. Kirchner, E. Olivetti, F. Gaita, R. Riccardi, R. Antolini, Principal component analysis and cluster analysis for measuring the local organisation of human atrial fibrillation. Med. Biol. Eng. Comput. 39, 656–663 (2001)CrossRefGoogle Scholar
  76. 76.
    S.G. Priori, D.W. Mortara, C. Napolitano, L. Diehl, V. Paganini, F. Cantù, G. Cantù, P.J. Schwartz, Evaluation of the spatial aspects of T-wave complexity in the long-QT syndrome. Circulation 96, 3006–3012 (1997)CrossRefGoogle Scholar
  77. 77.
    R. Goya-Esteban, F. Sandberg, Ó. Barquero-Pérez, A. García Alberola, L. Sörnmo, J.L. Rojo-Álvarez, Long-term characterization of persistent atrial fibrillation: wave morphology, frequency, and irregularity analysis. Med. Biol. Eng. Comput. 52, 1053–1060 (2014)CrossRefGoogle Scholar
  78. 78.
    F. Nilsson, M. Stridh, A. Bollmann, L. Sörnmo, Predicting spontaneous termination of atrial fibrillation using the surface ECG. Med. Eng. Phys. 26, 802–808 (2006)CrossRefGoogle Scholar
  79. 79.
    J. Behar, J. Oster, Q. Li, G.D. Clifford, ECG signal quality during arrhythmia and its application to false alarm reduction. IEEE Trans. Biomed. Eng. 60, 1660–1666 (2013)CrossRefGoogle Scholar
  80. 80.
    P. Bonizzi, M. de la Salud Guillem, A.M. Climent, J. Millet, V. Zarzoso, F. Castells, O. Meste, Noninvasive assessment of the complexity and stationarity of the atrial wavefront patterns during atrial fibrillation. IEEE Trans. Biomed. Eng. 57, 2147–2157 (2010)CrossRefGoogle Scholar
  81. 81.
    M.E. Nygårds, J. Hulting, An automated system for ECG monitoring. Comput. Biomed. Res. 12, 181–202 (1979)CrossRefGoogle Scholar
  82. 82.
    P. Bonizzi, S. Zeemering, J.M.H. Karel, L.Y. Di Marco, L. Uldry, J. Van Zaen, J.-M. Vesin, U. Schotten, Systematic comparison of non-invasive measures for the assessment of atrial fibrillation complexity: a step forward towards standardization of atrial fibrillation electrogram analysis. Europace 17, 318–325 (2015)CrossRefGoogle Scholar
  83. 83.
    M. Lagerholm, C. Peterson, G. Braccini, L. Edenbrandt, L. Sörnmo, Clustering ECG complexes using Hermite functions and self-organizing maps. IEEE Trans. Biomed. Eng. 47, 838–848 (2000)CrossRefGoogle Scholar
  84. 84.
    Z. Syed, J. Guttag, C. Stultz, Clustering and symbolic analysis of cardiovascular signals: Discovery and visualization of medically relevant patterns in long-term data using limited prior knowledge. J. Adv. Signal Process., 1–16 (2007)Google Scholar
  85. 85.
    J.H. Abawajy, A.V. Kelarev, M. Chowdhury, Multistage approach for clustering and classification of ECG data. Comput. Meth. Prog. Biomed. 112, 720–730 (2013)CrossRefGoogle Scholar
  86. 86.
    R. Alcaraz, F. Hornero, A. Martínez, J.J. Rieta, Short-time regularity assessment of fibrillatory waves from the surface ECG in atrial fibrillation. Physiol. Meas. 33, 969–984 (2012)CrossRefGoogle Scholar
  87. 87.
    P. Sun, Q.H. Wu, A.M. Weindling, A. Finkelstein, K. Ibrahim, An improved morphological approach to background normalization of ECG signals. IEEE Trans. Biomed. Eng. 50, 117–121 (2003)CrossRefGoogle Scholar
  88. 88.
    Y. Sun, K. Chan, S. Krishnan, Characteristic wave detection in ECG signal using morphological transform. BMC Cardiovasc. Disord. 5, 28 (2005)CrossRefGoogle Scholar
  89. 89.
    F. Zhang, L. Yong, QRS detection based on multiscale mathematical morphology for wearable ECG devices in body area networks. IEEE Trans. Biomed. Circuits Syst. 3, 220–228 (2009)CrossRefGoogle Scholar
  90. 90.
    J. Lian, G. Garner, D. Muessig, V. Lang, A simple method to quantify the morphological similarity between signals. Signal Process. 90, 684–688 (2010)zbMATHCrossRefGoogle Scholar
  91. 91.
    W. Chen, J. Zhuang, W. Yu, Z. Wang, Measuring complexity using FuzzyEn, ApEn, and SampEn. Med. Eng. Phys. 31, 61–68 (2009)CrossRefGoogle Scholar
  92. 92.
    M. Julián, R. Alcaraz, J.J. Rieta, Comparative assessment of nonlinear metrics to quantify organization-related events in surface electrocardiograms of atrial fibrillation. Comput. Biol. Med. 48, 66–76 (2014)CrossRefGoogle Scholar
  93. 93.
    F. Ravelli, M. Masè, Computational mapping in atrial fibrillation: how the integration of signal-derived maps may guide the localization of critical sources. Europace 16, 714–723 (2014)CrossRefGoogle Scholar
  94. 94.
    Z. Liang, Y. Wang, X. Sun, D. Li, L.J. Voss, J.W. Sleigh, S. Hagihira, X. Li, EEG entropy measures in anesthesia. Front. Comput. Neurosci. 9, 16 (2015)CrossRefGoogle Scholar
  95. 95.
    W. Xiong, L. Faes, P.C. Ivanov, Entropy measures, entropy estimators, and their performance in quantifying complex dynamics: effects of artifacts, nonstationarity, and long-range correlations. Phys. Rev. E 95, 062114 (2017)CrossRefGoogle Scholar
  96. 96.
    C.E. Shannon, A mathematical theory of communication. Bell Sys. Tech. J. 27, 379–423 (1948)MathSciNetzbMATHCrossRefGoogle Scholar
  97. 97.
    S.M. Pincus, Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 88, 2297–2301 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  98. 98.
    S.J. Richman, J.R. Moorman, Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. 278, H2039–H2049 (2000)Google Scholar
  99. 99.
    T. Inouye, K. Shinosaki, H. Sakamoto, S. Toi, S. Ukai, A. Iyama, Y. Katsuda, M. Hirano, Quantification of EEG irregularity by use of the entropy of the power spectrum. Electroencephal. Clin. Neurophysiol. 79, 204–210 (1991)CrossRefGoogle Scholar
  100. 100.
    O.A. Rosso, S. Blanco, J. Yordanova, V. Kolev, A. Figliola, M. Schürmann, E. Başar, Wavelet entropy: a new tool for analysis of short duration brain electrical signals. J. Neurosci. Meth. 105, 65–75 (2001)CrossRefGoogle Scholar
  101. 101.
    A. Porta, G. Baselli, D. Liberati, N. Montano, C. Cogliati, T. Gnecchi-Ruscone, A. Malliani, S. Cerutti, Measuring regularity by means of a corrected conditional entropy in sympathetic outflow. Biol. Cybern. 78, 71–78 (1998)zbMATHCrossRefGoogle Scholar
  102. 102.
    A. Molina-Picó, D. Cuesta-Frau, M. Aboy, C. Crespo, P. Miró-Martínez, S. Oltra-Crespo, Comparative study of approximate entropy and sample entropy robustness to spikes. Artif. Intell. Med. 53, 97–106 (2011)CrossRefGoogle Scholar
  103. 103.
    R. Alcaraz, J.J. Rieta, A non-invasive method to predict electrical cardioversion outcome of persistent atrial fibrillation. Med. Biol. Eng. Comput. 46, 625–635 (2008)CrossRefGoogle Scholar
  104. 104.
    R. Alcaraz, J.J. Rieta, Wavelet bidomain sample entropy analysis to predict spontaneous termination of atrial fibrillation. Physiol. Meas. 29, 65–80 (2008)CrossRefGoogle Scholar
  105. 105.
    R. Alcaraz, F. Sandberg, L. Sörnmo, J.J. Rieta, Classification of paroxysmal and persistent atrial fibrillation in ambulatory ECG recordings. IEEE Trans. Biomed. Eng. 58, 1441–1449 (2011)CrossRefGoogle Scholar
  106. 106.
    D.T. Kaplan, M.I. Furman, S.M. Pincus, S.M. Ryan, L.A. Lipsitz, A.L. Goldberger, Aging and the complexity of cardiovascular dynamics. Biophys. J. 59, 945–949 (1991)CrossRefGoogle Scholar
  107. 107.
    S.M. Pincus, D.L. Keefe, Quantification of hormone pulsatility via an approximate entropy algorithm. Am. J. Physiol. 262, E741–E754 (1992)Google Scholar
  108. 108.
    M.S. Pincus, A.L. Goldberger, Physiological time-series analysis: what does regularity quantify? Am. J. Physiol. (Heart Circ. Physiol.)266, H1643–H1656 (1994)CrossRefGoogle Scholar
  109. 109.
    S. Lu, X. Chen, J.K. Kanters, I.C. Solomon, K.H. Chon, Automatic selection of the threshold value \(r\) for approximate entropy. IEEE Trans. Biomed. Eng. 55, 1966–1972 (2008)CrossRefGoogle Scholar
  110. 110.
    R. Alcaraz, D. Abásolo, R. Hornero, J.J. Rieta, Optimal parameters study for sample entropy-based atrial fibrillation organization analysis. Comput. Meth. Progr. Biomed. 99, 124–132 (2010)CrossRefGoogle Scholar
  111. 111.
    F. Liao, Y.-K. Jan, Using modified sample entropy to characterize aging-associated microvascular dysfunction. Front. Physiol. 7, 126 (2016)CrossRefGoogle Scholar
  112. 112.
    X. Chen, I.C. Solomon, K.H. Chon, Comparison of the use of approximate entropy and sample entropy: applications to neural respiratory signal. in Proceedings of IEEE Conference on Engineering in Medicine and Biology (EMBS), vol. 27 (2005), pp. 4212–4215Google Scholar
  113. 113.
    J.M. Yentes, N. Hunt, K.K. Schmid, J.P. Kaipust, D. McGrath, N. Stergiou, The appropriate use of approximate entropy and sample entropy with short data sets. Ann. Biomed. Eng. 41, 349–365 (2013)CrossRefGoogle Scholar
  114. 114.
    G.D. Clifford, J. Behar, Q. Li, I. Rezek, Signal quality indices and data fusion for determining clinical acceptability of electrocardiograms. Physiol Meas. 33, 1419–1433 (2012)CrossRefGoogle Scholar
  115. 115.
    F. Sandberg, M. Stridh, L. Sörnmo, Robust time–frequency analysis of atrial fibrillation using hidden Markov models. IEEE Trans. Biomed. Eng. 55, 502–511 (2008)CrossRefGoogle Scholar
  116. 116.
    M. Henriksson, A. Petrėnas, V. Marozas, F. Sandberg, L. Sörnmo, Model-based assessment of f-wave signal quality in patients with atrial fibrillation. IEEE Trans. Biomed. Eng. (2018) (accepted)Google Scholar
  117. 117.
    P. Stoica, H. Li, J. Li, Amplitude estimation of sinusoidal signals: survey, new results, and an application. IEEE Trans. Signal Process. 48, 338–352 (2000)zbMATHCrossRefGoogle Scholar
  118. 118.
    V.D.A. Corino, L.T. Mainardi, M. Stridh, L. Sörmno, Improved time–frequency analysis of atrial fibrillation signals using spectral modelling. IEEE Trans. Biomed. Eng. 56, 2723–2730 (2008)CrossRefGoogle Scholar
  119. 119.
    M.S. Guillem, A.M. Climent, J. Millet, Á. Arenal, F. Fernández-Avilés, J. Jalife, F. Atienza, O. Berenfeld, Noninvasive localization of maximal frequency sites of atrial fibrillation by body surface potential mapping. Circ. Arrhythm. Electrophysiol. 6, 294–301 (2013)CrossRefGoogle Scholar
  120. 120.
    Y. Rudy, J.E. Burnes, Noninvasive electrocardiographic imaging. Ann. Noninvasive Electrocardiol. 4, 340–359 (1999)CrossRefGoogle Scholar
  121. 121.
    P.S. Cuculich, Y. Wang, B.D. Lindsay, M.N. Faddis, R. Schuessler, R.J. Damiano Jr., L. Li, Y. Rudy, Noninvasive characterization of epicardial activation in humans with diverse atrial fibrillation patterns. Circulation 122, 1364–1372 (2010)CrossRefGoogle Scholar
  122. 122.
    M. Haïssaguerre, M. Hocini, A. Denis, A.J. Shah, Y. Komatsu, S. Yamashita, M. Daly, S. Amraoui, S. Zellerhoff, M.Q. Picat, A. Quotb, L. Jesel, H. Lim, S. Ploux, P. Bordachar, G. Attuel, V. Meillet, P. Ritter, N. Derval, F. Sacher, O. Bernus, H. Cochet, P. Jaïs, R. Dubois, Driver domains in persistent atrial fibrillation. Circulation 130, 530–538 (2014)CrossRefGoogle Scholar
  123. 123.
    Y. Rudy, B.D. Lindsay, Electrocardiographic imaging of heart rhythm disorders: from bench to bedside. Card. Electrophysiol. Clin. 7, 17–35 (2015)CrossRefGoogle Scholar
  124. 124.
    Z. Zhou, Q. Jin, L.Y. Chen, L. Yu, L. Wu, B. He, Noninvasive imaging of high-frequency drivers and reconstruction of global dominant frequency maps in patients with paroxysmal and persistent atrial fibrillation. IEEE Trans. Biomed. Eng. 63, 1333–1340 (2016)CrossRefGoogle Scholar
  125. 125.
    J. Ng, A.V. Sahakian, W.G. Fisher, S. Swiryn, Atrial flutter loops derived from the surface ECG: does the plane of the loop correspond anatomically to the macroreentrant circuit? J. Electrocardiol. 36, S181–186 (2003)CrossRefGoogle Scholar
  126. 126.
    G.E. Dower, H.B. Machado, J.A. Osborne, On deriving the electrocardiogram from vectorcardiographic leads. Clin. Cardiol. 3, 87–95 (1980)Google Scholar
  127. 127.
    L. Edenbrandt, O. Pahlm, Vectorcardiogram synthesized from a 12-lead ECG: superiority of the inverse Dower matrix. J. Electrocardiol. 21, 361–367 (1988)CrossRefGoogle Scholar
  128. 128.
    J. Ng, A.V. Sahakian, W.G. Fisher, S. Swiryn, Surface ECG vector characteristics of organized and disorganized atrial activity during atrial fibrillation. J. Electrocardiol. 37, 91–97 (2004)CrossRefGoogle Scholar
  129. 129.
    S.R. Dibs, J. Ng, R. Arora, R.S. Passman, A.H. Kadish, J.J. Goldberger, Spatiotemporal characterization of atrial activation in persistent human atrial fibrillation: multisite electrogram analysis and surface electrocardiographic correlations–A pilot study. Heart Rhythm 5, 686–693 (2008)CrossRefGoogle Scholar
  130. 130.
    U. Richter, D. Husser, A. Bollmann, M. Stridh, L. Sörnmo, Spatial characteristics of atrial fibrillation electrocardiograms. J. Electrocardiol. 41, 165–172 (2008)CrossRefGoogle Scholar
  131. 131.
    S. Petrutiu, J. Ng, G.M. Nijm, H. Al-Angari, S. Swiryn, A.V. Sahakian, Atrial fibrillation and waveform characterization: a time domain perspective in the surface ECG. IEEE Eng. Med. Biol. Mag. 25, 24–30 (2006)CrossRefGoogle Scholar
  132. 132.
    F. Badilini, J. Fayn, P. Maison-Blanche, A. Leenhardt, M.C. Forlini, I. Denjoy, P. Coumel, P. Rubel, Quantitative aspects of ventricular repolarization: relationship between three-dimensional T wave loop morphology and scalar QT dispersion. Ann. Noninvasive Electrocardiol. 2, 146–157 (1997)CrossRefGoogle Scholar
  133. 133.
    T. Baykaner, R. Trikha, J.A.B. Zaman, D.E. Krummen, P.J. Wang, S.M. Narayan, Electrocardiographic spatial loops indicate organization of atrial fibrillation minutes before ablation-related transitions to atrial tachycardia. J. Electrocardiol. 50, 307–315 (2017)CrossRefGoogle Scholar
  134. 134.
    M.S. Guillem, A.M. Climent, F. Castells, D. Husser, J. Millet, A. Arya, C. Piorkowski, A. Bollmann, Noninvasive mapping of human atrial fibrillation. J. Cardiovasc. Electrophysiol. 20, 507–513 (2009)CrossRefGoogle Scholar
  135. 135.
    M. Mansour, R. Mandapati, O. Berenfeld, J. Chen, F. Samie, J. Jalife, Left-to-right gradient of atrial frequencies during acute atrial fibrillation in the isolated sheep heart. Circulation 103, 2631–2636 (2001)CrossRefGoogle Scholar
  136. 136.
    J. Jalife, O. Berenfeld, M. Mansour, Mother rotors and fibrillatory conduction: a mechanism of atrial fibrillation. Cardiovasc. Res. 54, 204–216 (2002)CrossRefGoogle Scholar
  137. 137.
    J. Jalife, Rotors and spiral waves in atrial fibrillation. J. Cardiovasc. Electrophysiol. 14, 776–780 (2003)CrossRefGoogle Scholar
  138. 138.
    K.T. Konings, C.J. Kirchhof, J.R. Smeets, H.J. Wellens, O.C. Penn, M.A. Allessie, High-density mapping of electrically induced atrial fibrillation in humans. Circulation 89, 1665–1680 (1994)CrossRefGoogle Scholar
  139. 139.
    L.Y. Di Marco, J.P. Bourke, P. Langley, Spatial complexity and spectral distribution variability of atrial activity in surface ECG recordings of atrial fibrillation. Med. Biol. Eng. Comput. 50, 439–446 (2012)CrossRefGoogle Scholar
  140. 140.
    J.M. Rogers, P.V. Bayly, Quantitative analysis of complex rhythms, in Quantitative Cardiac Electrophysiology, ed. by D. Rosenbaum (CRC Press, New York, 2002), pp. 403–428 (Chap. 12)CrossRefGoogle Scholar
  141. 141.
    F. Atienza, J. Almendral, J. Jalife, S. Zlochiver, R. Ploutz-Snyder, E.G. Torrecilla, A. Arenal, J. Kalifa, F. Fernández-Avilés, O. Berenfeld, Real-time dominant frequency mapping and ablation of dominant frequency sites in atrial fibrillation with left-to-right frequency gradients predicts long-term maintenance of sinus rhythm. Heart Rhythm 6, 33–40 (2009)CrossRefGoogle Scholar
  142. 142.
    K. Umapathy, K. Nair, S. Masse, S. Krishnan, J. Rogers, M.P. Nash, K. Nanthakumar, Phase mapping of cardiac fibrillation. Circ. Arrhythm. Electrophysiol. 3, 105–114 (2010)CrossRefGoogle Scholar
  143. 143.
    S.V. Pandit, J. Jalife, Rotors and the dynamics of cardiac fibrillation. Circ. Res. 112, 849–862 (2013)CrossRefGoogle Scholar
  144. 144.
    P. Kuklik, S. Zeemering, B. Maesen, J. Maessen, H.J. Crijns, S. Verheule, A.N. Ganesan, U. Schotten, Reconstruction of instantaneous phase of unipolar atrial contact electrogram using a concept of sinusoidal recomposition and Hilbert transform. IEEE Trans. Biomed. Eng. 62, 296–302 (2015)CrossRefGoogle Scholar
  145. 145.
    R. Vijayakumar, S.K. Vasireddi, P.S. Cuculich, M.N. Faddis, Y. Rudy, Methodology considerations in phase mapping of human cardiac arrhythmias. Circ. Arrhythm. Electrophysiol. 9, 1–11 (2016)CrossRefGoogle Scholar
  146. 146.
    J.M. Miller, R.C. Kowal, V. Swarup, J.P. Daubert, E.G. Daoud, J.D. Day, K.A. Ellenbogen, J.D. Hummel, T. Baykaner, D.E. Krummen, S.M. Narayan, V.Y. Reddy, K. Shivkumar, J.S. Steinberg, K.R. Wheelan, Initial independent outcomes from focal impulse and rotor modulation ablation for atrial fibrillation: multicenter FIRM Registry. J. Cardiovasc. Electrophysiol. 25, 921–929 (2014)CrossRefGoogle Scholar
  147. 147.
    S.M. Narayan, T. Baykaner, P. Clopton, A. Schricker, G.G. Lalani, D.E. Krummen, K. Shivkumar, J.M. Miller, Ablation of rotor and focal sources reduces late recurrence of atrial fibrillation compared with trigger ablation alone. J. Am. Coll. Cardiol. 63, 1761–1768 (2014)CrossRefGoogle Scholar
  148. 148.
    D. Calvo, J. Rubín, D. Pérez, C. Morís, Ablation of rotor domains effectively modulates dynamics of human long-standing persistent atrial fibrillation. Circ. Arrhythm. Electrophysiol. 10 (2017)Google Scholar
  149. 149.
    E. Buch, M. Share, R. Tung, P. Benharash, P. Sharma, J. Koneru, R. Mandapati, K.A. Ellenbogen, K. Shivkumar, Long-term clinical outcomes of focal impulse and rotor modulation for treatment of atrial fibrillation: a multicenter experience. Heart Rhythm 13, 636–641 (2016)CrossRefGoogle Scholar
  150. 150.
    M. Rodrigo, A.M. Climent, A. Liberos, F. Fernández-Avilés, O. Berenfeld, F. Atienza, M.S. Guillem, Technical considerations on phase mapping for identification of atrial reentrant activity in direct- and inverse-computed electrograms. Circ. Arrhythm. Electrophysiol. 11 (2018)Google Scholar
  151. 151.
    L.G. Horan, N.C. Flowers, D.A. Brody, Principal factor waveforms of the thoracic QRS-complex. Circ. Res. 14, 131–145 (1964)CrossRefGoogle Scholar
  152. 152.
    A.M. Scher, A.C. Young, W.M. Meredith, Factor analysis of the electrocardiogram test of electrocardiographic theory: normal hearts. Circ. Res. 8, 519–526 (1960)CrossRefGoogle Scholar
  153. 153.
    L.Y. Di Marco, L. Chiari, A wavelet-based ECG delineation algorithm for 32-bit integer online processing. BioMed. Eng. Online 10, 23 (2011)CrossRefGoogle Scholar
  154. 154.
    M.C. Wijffels, R. Dorland, F. Mast, M.A. Allessie, Widening of the excitable gap during pharmacological cardioversion of atrial fibrillation in the goat: effects of cibenzoline, hydroquinidine, flecainide, and d-sotalol. Circulation 102, 260–267 (2000)CrossRefGoogle Scholar
  155. 155.
    M. Holm, S. Pehrsson, M. Ingemansson, L. Sörnmo, R. Johansson, L. Sandhall, M. Sunemark, B. Smideberg, C. Olsson, S.B. Olsson, Non-invasive assessment of atrial refractoriness during atrial fibrillation in man–Introducing, validating, and illustrating a new ECG method. Cardiovasc. Res. 38, 69–81 (1998)CrossRefGoogle Scholar
  156. 156.
    A. Bollmann, N. Kanuru, K. McTeague, P. Walter, D.B. DeLurgio, J. Langberg, Frequency analysis of human atrial fibrillation using the surface electrocardiogram and its response to ibutilide. Am. J. Cardiol. 81, 1439–1445 (1998)CrossRefGoogle Scholar
  157. 157.
    A. Fujiki, T. Tsuneda, M. Sugao, K. Mizumaki, H. Inoue, Usefulness and safety of bepridil in converting persistent atrial fibrillation to sinus rhythm. Am. J. Cardiol. 92, 472–475 (2003)CrossRefGoogle Scholar
  158. 158.
    D. Raine, P. Langley, A. Murray, A. Dunuwille, J.P. Bourke, Surface atrial frequency analysis in patients with atrial fibrillation: a tool for evaluating the effects of intervention. J. Cardiovasc. Electrophysiol. 15, 1021–1026 (2004)CrossRefGoogle Scholar
  159. 159.
    D. Husser, M. Stridh, L. Sörnmo, C. Geller, H.U. Klein, S.B. Olsson, A. Bollmann, Time-frequency analysis of the surface electrocardiogram for monitoring antiarrhythmic drug effects in atrial fibrillation. Am. J. Cardiol. 95, 526–528 (2005)CrossRefGoogle Scholar
  160. 160.
    V.P. Raygor, J. Ng, J.J. Goldberger, Surface ECG f wave analysis of dofetilide drug effect in the atrium. J. Cardiovasc. Electrophysiol. 26, 644–648 (2015)CrossRefGoogle Scholar
  161. 161.
    M. Aunes, K. Egstrup, L. Frison, A. Berggren, M. Stridh, L. Sörnmo, N. Edvardsson, Rapid slowing of the atrial fibrillatory rate after administration of AZD7009 predicts conversion of atrial fibrillation. J. Electrocardiol. 47, 316–323 (2014)CrossRefGoogle Scholar
  162. 162.
    E.P. Gerstenfeld, S. Duggirala, Atrial fibrillation ablation: indications, emerging techniques, and follow-up. Prog. Cardiovasc. Dis. 58, 202–212 (2015)CrossRefGoogle Scholar
  163. 163.
    T. Lankveld, S. Zeemering, D. Scherr, P. Kuklik, B.A. Hoffmann, S. Willems, B. Pieske, M. Haïssaguerre, P. Jaïs, H.J. Crijns, U. Schotten, Atrial fibrillation complexity parameters derived from surface ECGs predict procedural outcome and long-term follow-up of stepwise catheter ablation for atrial fibrillation. Circ. Arrhythm. Electrophysiol. 9, e003354 (2016)CrossRefGoogle Scholar
  164. 164.
    S. Matsuo, N. Lellouche, M. Wright, M. Bevilacqua, S. Knecht, I. Nault, K.T. Lim, L. Arantes, M.D. O’Neill, P.G. Platonov, J. Carlson, F. Sacher, M. Hocini, P. Jaïs, M. Haïssaguerre, Clinical predictors of termination and clinical outcome of catheter ablation for persistent atrial fibrillation. J. Am. Coll. Cardiol. 54, 788–795 (2009)CrossRefGoogle Scholar
  165. 165.
    K. Yoshida, A. Chugh, E. Good, T. Crawford, J. Myles, S. Veerareddy, S. Billakanty, W.S. Wong, M. Ebinger, F. Pelosi, K. Jongnarangsin, F. Bogun, F. Morady, H. Oral, A critical decrease in dominant frequency and clinical outcome after catheter ablation of persistent atrial fibrillation. Heart Rhythm 7, 295–302 (2010)CrossRefGoogle Scholar
  166. 166.
    I. Drewitz, S. Willems, T.V. Salukhe, D. Steven, B.A. Hoffmann, H. Servatius, K. Bock, M. Aydin, K. Wegscheider, T. Meinertz, T. Rostock, Atrial fibrillation cycle length is a sole independent predictor of a substrate for consecutive arrhythmias in patients with persistent atrial fibrillation. Circ. Arrhythm. Electrophysiol. 3, 351–360 (2010)CrossRefGoogle Scholar
  167. 167.
    E.K. Heist, F. Chalhoub, C. Barrett, S. Danik, J.N. Ruskin, M. Mansour, Predictors of atrial fibrillation termination and clinical success of catheter ablation of persistent atrial fibrillation. Am. J. Cardiol. 110, 545–551 (2012)CrossRefGoogle Scholar
  168. 168.
    L.Y. Di Marco, D. Raine, J.P. Bourke, P. Langley, Characteristics of atrial fibrillation cycle length predict restoration of sinus rhythm by catheter ablation. Heart Rhythm 10, 1303–1310 (2013)CrossRefGoogle Scholar
  169. 169.
    P. Kirchhof, S. Benussi, D. Kotecha, A. Ahlsson, D. Atar, B. Casadei, M. Castella, H.C. Diener, H. Heidbuchel, J. Hendriks, G. Hindricks, A.S. Manolis, J. Oldgren, B.A. Popescu, U. Schotten, B. Van Putte, P. Vardas, S. Agewall, J. Camm, G. Baron Esquivias, W. Budts, S. Carerj, F. Casselman, A. Coca, R. De Caterina, S. Deftereos, D. Dobrev, J.M. Ferro, G. Filippatos, D. Fitzsimons, B. Gorenek, M. Guenoun, S.H. Hohnloser, P. Kolh, G.Y. Lip, A. Manolis, J. McMurray, P. Ponikowski, R. Rosenhek, F. Ruschitzka, I. Savelieva, S. Sharma, P. Suwalski, J.L. Tamargo, C.J. Taylor, I.C. Van Gelder, A.A. Voors, S. Windecker, J.L. Zamorano, K. Zeppenfeld, 2016 ESC guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur. Heart J. 37, 2893–2962 (2016)CrossRefGoogle Scholar
  170. 170.
    N.P. Gall, F.D. Murgatroyd, Electrical cardioversion for AF–the state of the art. Pacing Clin. Electrophysiol. 30, 554–567 (2007)CrossRefGoogle Scholar
  171. 171.
    A. Bollmann, M. Mende, A. Neugebauer, D. Pfeiffer, Atrial fibrillatory frequency predicts atrial defibrillation threshold and early arrhythmia recurrence in patients undergoing internal cardioversion of persistent atrial fibrillation. Pacing Clin. Electrophysiol. 25, 1179–1184 (2002)CrossRefGoogle Scholar
  172. 172.
    F. Holmqvist, M. Stridh, J.E. Waktare, L. Sörnmo, S.B. Olsson, C.J. Meurling, Atrial fibrillatory rate and sinus rhythm maintenance in patients undergoing cardioversion of persistent atrial fibrillation. Eur. Heart J. 27, 2201–2207 (2006)CrossRefGoogle Scholar
  173. 173.
    R. Alcaraz, J.J. Rieta, F. Hornero, Analysis of atrial fibrillation recidivity under successive attempts of electrical cardioversion based on fibrillatory wave amplitude and dominant frequency. J. Med. Biol. Eng. 33, 455–462 (2013)CrossRefGoogle Scholar
  174. 174.
    F. Holmqvist, M. Stridh, J.E.P. Waktare, L. Sörnmo, S.B. Olsson, C.J. Meurling, Atrial fibrillation signal organization predicts sinus rhythm maintenance in patients undergoing cardioversion of atrial fibrillation. Europace 8, 559-565 (2006)CrossRefGoogle Scholar
  175. 175.
    J.N. Watson, P.S. Addison, N. Uchaipichat, A. Shah, N.R. Grubb, Wavelet transform analysis predicts outcome of DC cardioversion for atrial fibrillation patients. Comput. Biol. Med. 37, 517–523 (2007)CrossRefGoogle Scholar
  176. 176.
    R. Alcaraz, J.J. Rieta, Central tendency measure and wavelet transform combined in the non-invasive analysis of atrial fibrillation recordings. Biomed. Eng. Online 11, 46 (2012)CrossRefGoogle Scholar
  177. 177.
    G.B. Moody, Spontaneous termination of atrial fibrillation: a challenge from Physionet and Computers in Cardiology 2004, in Proceedings of Computers in Cardiology, vol. 31 (2004), pp. 101–104Google Scholar
  178. 178.
    S. Petrutiu, A.V. Sahakian, S. Swiryn, Abrupt changes in fibrillatory wave characteristics at the termination of paroxysmal atrial fibrillation in humans. Europace 9, 466–470 (2007)CrossRefGoogle Scholar
  179. 179.
    Y. Asano, J. Saito, K. Matsumoto, K. Kaneko, T. Yamamoto, U. Masatsugu, On the mechanism of termination and perpetuation of atrial fibrillation. Am. J. Cardiol. 69, 1033–1038 (1992)CrossRefGoogle Scholar
  180. 180.
    H. Sih, K. Ropella, S. Swiryn, E. Gerstenfeld, A.V. Sahakian, Observations from intra-atrial recordings on the termination of electrically induced atrial fibrillation in humans. Pacing Clin. Electrophysiol. 17, 1231–1242 (1994)CrossRefGoogle Scholar
  181. 181.
    A. Fujiki, M. Sakabe, K. Nishida, K. Mizumaki, H. Inoue, Role of fibrillation cycle length in spontaneous and drug-indcued termination of human atrial fibrillation–Spectral analysis of fibrillation waves from surface electrocardiogram. Circ. J. 67, 391–395 (2003)CrossRefGoogle Scholar
  182. 182.
    R. Alcaraz, J.J. Rieta, Application of wavelet entropy to predict atrial fibrillation progression from the surface ECG. Comput. Math. Meth. Med. 13, 1–9 (2012)zbMATHCrossRefGoogle Scholar
  183. 183.
    R. Hermida, D. Ayala, F. Portaluppi, Circadian variation of blood pressure: the basis for the chronotherapy of hypertension. Adv. Drug Delivery Rev 59, 904–922 (2007)CrossRefGoogle Scholar
  184. 184.
    J.R. Fernández, R.C. Hermida, A. Mojón, Chronobiological analysis techniques: application to blood pressure. Phil. Trans. R. Soc. A 367, 431–445 (2009)zbMATHCrossRefGoogle Scholar
  185. 185.
    C. Bingham, B. Arbogast, C.C. Guillaume, J.K. Lee, F. Halberg, Inferential statistical methods for estimating and comparing cosinor parameters. Chronobiologia 9, 397–439 (1982)Google Scholar
  186. 186.
    A. Bollmann, K. Sonne, H. Esperer, I. Toepffer, H. Klein, Circadian variations in atrial fibrillatory frequency in persistent human atrial fibrillation. Pacing Clin. Electrophysiol. 23, 1867–1871 (2000)CrossRefGoogle Scholar
  187. 187.
    C.J. Meurling, J.E. Waktare, F. Holmqvist, A. Hedman, A.J. Camm, S.B. Olsson, M. Malik, Diurnal variations of the dominant cycle length of chronic atrial fibrillation. Am. J. Physiol. 280, H401–H406 (2001)Google Scholar
  188. 188.
    F. Sandberg, A. Bollmann, D. Husser, M. Stridh, L. Sörnmo, Circadian variation in dominant atrial fibrillation frequency in persistent atrial fibrillation. Physiol. Meas. 31, 531–542 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Leif Sörnmo
    • 1
  • Raúl Alcaraz
    • 2
  • Pablo Laguna
    • 3
  • José Joaquín Rieta
    • 4
  1. 1.Department of Biomedical Engineering and Center for Integrative ElectrocardiologyLund UniversityLundSweden
  2. 2.Innovation in Bioengineering Research GroupUniversity of Castilla–La Mancha, Campus UniversitarioCuencaSpain
  3. 3.Biomedical Signal Interpretation and Computational Simulation (BSICoS), Aragón Institute of Engineering Research (I3A), Centro de Investigacíon Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)Zaragoza UniversityZaragozaSpain
  4. 4.Biomedical Synergy, Electronic Engineering DepartmentUniversidad Politécnica de ValenciaGandíaSpain

Personalised recommendations