Skip to main content

Part of the book series: Series in BioEngineering ((SERBIOENG))

Abstract

This chapter provides a comprehensive overview of methods for f wave extraction, divided into the following categories: average beat subtraction and variants, interpolation, extended Kalman filtering, adaptive filtering, principal component analysis, singular spectral analysis, autoregressive modeling and prediction error analysis, and independent component analysis. Different performance measures are described, used either for real or simulated ECG signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This signal model was also considered for determining a QRST template using a maximum likelihood (ML) approach. Since the performance of the ML-based method was found to be inferior to that of the method based on the MSE criterion described in this section, the interested reader is referred to [21] for further details.

  2. 2.

    For the single-lead case, i.e., \(L=1\), STC simplifies to ABS, except for that misalignment in time can still be handled by \(\mathbf {J}_{\tau }\) and amplitude mismatch to \(\hat{\mathbf {S}}_t\) by the scaling factor \(a_1\); the rotation matrix reduces to a scalar equal to one. The single-lead version of STC is closely related to the extraction method based on singular value decomposition, as described in Sect. 5.6.1, which also involves amplitude scaling.

  3. 3.

    Time-dependent scaling and rotation have been considered when evaluating a method for vectorcardiographic loop alignment [38], see also [39]. A mathematical model was proposed in which the time-dependent, angular variation associated with the rotation matrix is assumed to be proportional to the amount of air in the lungs during a respiratory cycle—a property modeled by the product of two sigmoidal functions reflecting inhalation and exhalation, respectively, cf. Sect. 3.4.4.

  4. 4.

    In general, it is desirable to use an orthogonal set of basis functions for signal representation, so that the signal component associated with a certain basis function do not interfere with the components associated with the other basis functions. For example, the Hermite functions are well-suited for modeling of the QRST complex [61, 62]. However, orthogonality is of less importance to the described simulation model, and, therefore, Gaussian functions, being nonorthogonal basis functions, are considered.

  5. 5.

    An early precursor to the idea of using multiple state-space models was explored for the identification of certain persistent ECG rhythms [70], although none of them were AF. In that study, the proposed rhythm models were linear in nature, and, therefore, the discrete-time Kalman filter could be used.

  6. 6.

    For the eigenvector \(\pmb {\varphi }_1\) to be virtually identical to a scaled version of the ensemble average, the ensemble with similar-shaped beats should be reasonably well-aligned in time and the noise level should not be so high that f waves are completely obscured, i.e., two conditions which are easily met in practice.

  7. 7.

    The observation model in (5.125) is also central to the methods exploring higher-order statistics for independent component analysis, see Sect. 5.9. The mixing matrix \(\mathbf {A}\) is here constrained to be orthogonal, whereas not so in Sect. 5.9.

  8. 8.

    Alternatively, the mean cross prediction error \(E[e_d(n) e_d(n-q)]\) in (5.133) may be minimized by introducing the cost function \(J^{\prime }(\mathbf {w};q) = \mathbf {w}^T (\mathbf {E}_x(q) + \mathbf {E}_x^T(q)) \mathbf {w}\). The eigenvector corresponding to the smallest eigenvalue of the symmetric matrix \(\mathbf {E}_x(q) + \mathbf {E}_x^T(q)\) minimizes \(J^{\prime }(\mathbf {w};q)\), and therefore taken as an estimate of \(\mathbf {w}\).

  9. 9.

    An overview of methods for AR model parameter estimation, as well as for model order estimation, can be found in, e.g., [4, 118].

  10. 10.

    The analysis of lagged covariance matrices for the purpose of separating different signal sources with a temporal structure was first explored in a nonparametric setting, leading to the AMUSE algorithm [119], see also [95, Chap. 18]. Using that algorithm, the time lag is usually chosen to be \(q=1\), just like in [113].

  11. 11.

    The wavelet coefficients are obtained by correlating the observed signal with the selected mother wavelet at different dilations and time shifts.

References

  1. M. Holm, S. Pehrsson, M. Ingemansson, L. Sörnmo, R. Johansson, L. Sandhall, M. Sunemark, B. Smideberg, C. Olsson, S.B. Olsson, Non-invasive assessment of atrial refractoriness during atrial fibrillation in man–Introducing, validating, and illustrating a new ECG method. Cardiovasc. Res. 38, 69–81 (1998)

    Article  Google Scholar 

  2. A. Bollmann, N. Kanuru, K. McTeague, P. Walter, D.B. DeLurgio, J. Langberg, Frequency analysis of human atrial fibrillation using the surface electrocardiogram and its response to ibutilide. Am. J. Cardiol. 81, 1439–1445 (1998)

    Article  Google Scholar 

  3. J.L. Salinet Jr., J.P.V. Madeiro, P.C. Cortez, P.J. Stafford, G.A. Ng, F.S. Schlindwein, Analysis of QRS-T subtraction in unipolar atrial fibrillation electrograms. Med. Biol. Eng. Comput. 51, 1381–1391 (2013)

    Article  Google Scholar 

  4. L. Sörnmo, P. Laguna, Bioelectrical Signal Processing in Cardiac and Neurological Applications (Elsevier (Academic Press), Amsterdam, 2005)

    Google Scholar 

  5. G.D. Clifford, F. Azuaje, P.E. McSharry (eds.), Advanced Methods and Tools for ECG Data Analysis (Artech House, Boston, 2006)

    Google Scholar 

  6. D.S. Rosenbaum, R.J. Cohen, Frequency based measures of atrial fibrillation in man, in Proceeding of International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), vol. 12 (1990), pp. 582–583

    Google Scholar 

  7. L. Sörnmo, M. Stridh, J.J. Rieta, Atrial activity extraction from the ECG, in Understanding Atrial Fibrillation: The Signal Processing Contribution, ed. by L.T. Mainardi, L. Sörnmo, S. Cerutti, ch. 3 (San Francisco: Morgan & Claypool, 2008), pp. 53–80

    Google Scholar 

  8. J.J. Rieta, F. Hornero, Comparative study of methods for ventricular activity cancellation in atrial electrograms of atrial fibrillation. Physiol. Meas. 28, 925–936 (2007)

    Article  Google Scholar 

  9. L. Stark, J. Dickson, G. Whipple, H. Horibe, Remote real-time diagnosis of clinical electrograms by a digital computer system. Ann. N.Y. Acad. Sci. 127, 851–872 (1966)

    Google Scholar 

  10. S. Blumlein, G. Harvey, V. Murthy, J. Haywood, New technique for detection of changes in QRS morphology of ECG signals. Am. J. Physiol. 244, H560–566 (1983)

    Google Scholar 

  11. J. Slocum, E. Byrom, L. McCarthy, A.V. Sahakian, S. Swiryn, Computer detection of atrioventricular dissociation from surface electrocardiograms during wide QRS complex tachycardia. Circulation 72, 1028–1036 (1985)

    Article  Google Scholar 

  12. J. Slocum, A.V. Sahakian, S. Swiryn, Diagnosis of atrial fibrillation from surface electrocardiograms based on computer-detected atrial activity. J. Electrocardiol. 25, 1–8 (1992)

    Article  Google Scholar 

  13. S. Shkurovich, A.V. Sahakian, S. Swiryn, Detection of atrial activity from high-voltage leads of implantable ventricular defibrillators using a cancellation technique. IEEE Trans. Biomed. Eng. 45, 229–234 (1998)

    Article  Google Scholar 

  14. Q. Xi, A.V. Sahakian, S. Swiryn, The effect of QRS cancellation on atrial fibrillatory wave signal characteristics in the surface electrocardiogram. J. Electrocardiol. 36, 243–249 (2003)

    Article  Google Scholar 

  15. A. Fujiki, M. Sakabe, K. Nishida, K. Mizumaki, H. Inoue, Role of fibrillation cycle length in spontaneous and drug-indcued termination of human atrial fibrillation–Spectral analysis of fibrillation waves from surface electrocardiogram. Circ. J. 67, 391–395 (2003)

    Article  Google Scholar 

  16. D.C. Shah, T. Yamane, K.J. Choi, M. Haïssaguerre, QRS subtraction and the ECG analysis of atrial ectopics. Ann. Noninvasive Electrocardiol. 9, 389–398 (2004)

    Article  Google Scholar 

  17. F. Beckers, W. Anne, B. Verheyden, C. van der Dussen de Kestergat, E. van Herk, L. Janssens, R. Willems, H. Heidbuchel, A. E. Aubert, Determination of atrial fibrillation frequency using QRST-cancellation with QRS-scaling in standard electrocardiogram leads, in Proceedings of Computers in Cardiology, vol. 32 (IEEE Press, 2005), pp. 339–342

    Google Scholar 

  18. S. Petrutiu, A.V. Sahakian, S. Swiryn, Abrupt changes in fibrillatory wave characteristics at the termination of paroxysmal atrial fibrillation in humans. Europace 9, 466–470 (2007)

    Article  Google Scholar 

  19. H. Grubitzsch, D. Modersohn, T. Leuthold, W. Konertz, Analysis of atrial fibrillatory activity from high-resolution surface electrocardiograms: evaluation and application of a new system. Exp. Clin. Cardiol. 13, 29–35 (2008)

    Google Scholar 

  20. M. Sterling, D.T. Huang, B. Ghoraani, Developing a new computer-aided clinical decision support system for prediction of successful postcardioversion patients with persistent atrial fibrillation. Comput. Math. Methods Med. (2015)

    Google Scholar 

  21. H. Dai, S. Jiang, Y. Li, Atrial activity extraction from single lead ECG recordings: evaluation of two novel methods. Comput. Biol. Med. 43, 176–183 (2013)

    Article  Google Scholar 

  22. R. Alcaraz, J.J. Rieta, Adaptive singular value cancelation of ventricular activity in single-lead atrial fibrillation electrocardiograms. Physiol. Meas. 29, 1351–1369 (2008)

    Article  Google Scholar 

  23. V.D.A. Corino, M.W. Rivolta, R. Sassi, F. Lombardi, L.T. Mainardi, Ventricular activity cancellation in electrograms during atrial fibrillation with constraints on residuals’ power. Med. Eng. Phys. 35, 1770–1777 (2013)

    Article  Google Scholar 

  24. E. Bataillou, E. Thierry, H. Rix, O. Meste, Weighted averaging using adaptive estimation of the weights. Signal Process. 44, 51–66 (1995)

    Article  MATH  Google Scholar 

  25. F. Castells, J.J. Rieta, J. Millet, V. Zarzoso, Spatiotemporal blind source separation approach to atrial activity estimation in atrial tachyarrhythmias. IEEE Trans. Biomed. Eng. 52, 258–267 (2005)

    Article  Google Scholar 

  26. A.L. Goldberger, L.A. Amaral, L. Glass, J.M. Hausdorff, P.C. Ivanov, R.G. Mark, J.E. Mietus, G.B. Moody, C.K. Peng, H.E. Stanley, PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101, E215–220 (2000)

    Article  Google Scholar 

  27. P. Laguna, L. Sörnmo, Sampling rate and the estimation of ensemble variability for repetitive signals. Med. Biol. Eng. Comput. 38, 540–546 (2000)

    Article  Google Scholar 

  28. J. Malmivuo, R. Plonsey, Bioelectromagnetism (Oxford University Press, Oxford, 1995)

    Google Scholar 

  29. G.J.M. Huiskamp, A. van Oosterom, Heart position and orientation in forward and inverse electrocardiography. Med. Biol. Eng. Comput. 30, 613–620 (1992)

    Article  Google Scholar 

  30. M. Stridh, L. Sörnmo, Spatiotemporal QRST cancellation techniques for analysis of atrial fibrillation. IEEE Trans. Biomed. Eng. 48, 105–111 (2001)

    Article  Google Scholar 

  31. L. Sörnmo, Vectorcardiographic loop alignment and morphologic beat-to-beat variability. IEEE Trans. Biomed. Eng. 45, 1401–1413 (1998)

    Article  Google Scholar 

  32. R. Goya-Esteban, F. Sandberg, Ó. Barquero-Pérez, A. García Alberola, L. Sörnmo, J.L. Rojo-Álvarez, Long-term characterization of persistent atrial fibrillation: wave morphology, frequency, and irregularity analysis. Med. Biol. Eng. Comput. 52, 1053–1060 (2014)

    Article  Google Scholar 

  33. V.D.A. Corino, F. Sandberg, L.T. Mainardi, P.G. Platonov, L. Sörnmo, Noninvasive assessment of atrioventricular nodal function: effect of rate-control drugs during atrial fibrillation. Ann. Noninvasive Electrocardiol. 20, 534–541 (2015)

    Article  Google Scholar 

  34. G.H. Golub, C.F. van Loan, Matrix Computations, 2nd edn. (The Johns Hopkins University Press, Baltimore, 1989)

    MATH  Google Scholar 

  35. J. Waktare, K. Hnatkova, C.J. Meurling, H. Nagayoshi, T. Janota, A.J. Camm, M. Malik, Optimal lead configuration in the detection and subtraction of QRS and T wave templates in atrial fibrillation, in Proceedings of Computers in Cardiology, vol. 25 (IEEE Press, 1998), pp. 629–632

    Google Scholar 

  36. L. Mainardi, M. Matteucci, R. Sassi, On predicting the spontaneous termination of atrial fibrillation episodes using linear and nonlinear parameters of ECG signal and RR series, in Proceedings of Computers in Cardiology, vol. 31 (IEEE Press, 2004), pp. 665–668

    Google Scholar 

  37. M. Lemay, J.-M. Vesin, A. van Oosterom, V. Jacquemet, L. Kappenberger, Cancellation of ventricular activity in the ECG: evaluation of novel and existing methods. IEEE Trans. Biomed. Eng. 54, 542–546 (2007)

    Article  Google Scholar 

  38. M. Åström, E. Carro, L. Sörnmo, P. Laguna, B. Wohlfart, Vectorcardiographic loop alignment and the measurement of morphologic beat-to-beat variability in noisy signals. IEEE Trans. Biomed. Eng. 47, 497–506 (2000)

    Article  Google Scholar 

  39. R. Bailón, L. Sörnmo, P. Laguna, A robust method for ECG-based estimation of the respiratory frequency during stress testing. IEEE Trans. Biomed. Eng. 53, 1273–1285 (2006)

    Article  Google Scholar 

  40. V. Jacquemet, A. van Oosterom, J.-M. Vesin, L. Kappenberger, Analysis of electrocardiograms during atrial fibrillation. A biophysical approach. IEEE Med. Biol. Eng. Mag. 25, 79–88 (2006)

    Article  Google Scholar 

  41. C. Li, C. Zheng, C. Tai, Detection of ECG characteristic points using the wavelet transform. IEEE Trans. Biomed. Eng. 42, 21–28 (1995)

    Article  Google Scholar 

  42. J.P. Martínez, R. Almeida, S. Olmos, A.P. Rocha, P. Laguna, A wavelet-based ECG delineator: evaluation on standard databases. IEEE Trans. Biomed. Eng. 51, 570–581 (2004)

    Article  Google Scholar 

  43. R. Almeida, J.P. Martínez, A.P. Rocha, P. Laguna, Multilead ECG delineation using spatially projected leads from wavelet transform loops. IEEE Trans. Biomed. Eng. 56, 1996–2005 (2009)

    Article  Google Scholar 

  44. H. Dai, L. Yin, Y. Li, QRS residual removal in atrial activity signals extracted from single lead: a new perspective based on signal extrapolation. IET Signal Process. 10, 1169–1175 (2016)

    Article  Google Scholar 

  45. X. Du, N. Rao, F. Ou, G. Xu, L. Yin, G. Wang, f-wave suppression method for improvement of locating T-wave ends in electrocardiograms during atrial fibrillation. Ann. Noninvasive Electrocardiol. 18, 262–270 (2013)

    Article  Google Scholar 

  46. B. Niu, Y. Zhu, X. He, H. Wu, MCPSO: A multi-swarm cooperative particle swarm optimizer. Appl. Math. Comput. 2, 1050–1062 (2007)

    MATH  Google Scholar 

  47. F. Van den Bergh, A.P. Engelbrecht, A cooperative approach to particle swarm optimization. IEEE Trans. Evol. Comput. 8, 225–239 (2004)

    Article  Google Scholar 

  48. P. Bonizzi, M. Stridh, L. Sörnmo, O. Meste, Ventricular activity residual reduction in remainder ECGs based on short-term autoregressive model interpolation, in Proceedings of Computers in Cardiology, vol. 36, pp. 813–816 (2009)

    Google Scholar 

  49. A. Ahmad, J.L. Salinet, P.D. Brown Jr., J.H. Tuan, P.J. Stafford, G.A. Ng, F.S. Schlindwein, QRS subtraction for atrial electrograms: flat, linear and spline interpolation. Med. Biol. Eng. Comput. 49, 1321–1328 (2011)

    Article  Google Scholar 

  50. M. Stridh, L. Sörnmo, C.J. Meurling, S.B. Olsson, Sequential characterization of atrial tachyarrhythmias based on ECG time-frequency analysis. IEEE Trans. Biomed. Eng. 51, 100–114 (2004)

    Article  Google Scholar 

  51. M. Stridh, L. Sörnmo, C. Meurling, S.B. Olsson, Characterization of atrial fibrillation using the surface ECG: time-dependent spectral properties. IEEE Trans. Biomed. Eng. 48, 19–27 (2001)

    Article  Google Scholar 

  52. S.V. Vaseghi, Advanced Digital Signal Processing and Noise Reduction, 3rd edn. (Wiley, 2006)

    Google Scholar 

  53. S. Haykin, Adaptive Filter Theory, 5th edn. (Pearson, New Jersey, 2014)

    Google Scholar 

  54. B.D.O. Anderson, J.B. Moore, Optimal Filtering (Prentice-Hall, Englewood Cliffs, N.J., 1979)

    MATH  Google Scholar 

  55. M. Hayes, Statistical Digital Signal Processing and Modeling (Wiley, New York, 1996)

    Google Scholar 

  56. E.K. Roonizi, R. Sassi, An extended Bayesian framework for atrial and ventricular activity separation in atrial fibrillation. IEEE J. Biomed. Health Inform. 21, 1573–1580 (2017)

    Article  Google Scholar 

  57. M. Stridh, D. Husser, A. Bollmann, L. Sörnmo, Waveform characterization of atrial fibrillation using phase information. IEEE Trans. Biomed. Eng. 56, 1081–1089 (2009)

    Article  MATH  Google Scholar 

  58. A. Buttu, E. Pruvot, J. Van Zaen, A. Viso, A. Forclaz, P. Pascale, S.M. Narayan, J. Vesin, Adaptive frequency tracking of the baseline ECG identifies the site of atrial fibrillation termination by catheter ablation. Biomed. Signal Process. Control 8, 969–980 (2013)

    Article  Google Scholar 

  59. M.E. Nygårds, J. Hulting, An automated system for ECG monitoring. Comput. Biomed. Res. 12, 181–202 (1979)

    Article  Google Scholar 

  60. P.E. McSharry, G.D. Clifford, L. Tarassenko, L.A. Smith, A dynamical model for generating synthetic electrocardiogram signals. IEEE Trans. Biomed. Eng. 50, 289–294 (2003)

    Article  Google Scholar 

  61. L. Sörnmo, P.O. Börjesson, M.E. Nygårds, O. Pahlm, A method for evaluation of QRS shape features using a mathematical model for the ECG. IEEE Trans. Biomed. Eng. 28, 713–717 (1981)

    Article  Google Scholar 

  62. P. Laguna, R. Jané, S. Olmos, N.V. Thakor, H. Rix, P. Caminal, Adaptive estimation of QRS complex by the Hermite model for classification and ectopic beat detection. Med. Biol. Eng. Comput. 34, 58–68 (1996)

    Article  Google Scholar 

  63. R. Sameni, M.B. Shamsollahi, C. Jutten, G.D. Clifford, A nonlinear Bayesian filtering framework for ECG denoising. IEEE Trans. Biomed. Eng. 54, 2172–2185 (2007)

    Article  MATH  Google Scholar 

  64. J.V. Candy, Bayesian Signal Processing: Classical, Modern, and Particle Filtering Methods, 2nd edn. (Wiley, 2016)

    Book  Google Scholar 

  65. O. Sayadi, M.B. Shamsollahi, ECG denoising and compression using a modified extended Kalman filter structure. IEEE Trans. Biomed. Eng. 55, 2240–2248 (2008)

    Article  Google Scholar 

  66. E. Pueyo, M. Malik, P. Laguna, A dynamic model to characterize beat-to-beat adaptation of repolarization to heart rate changes. Biomed. Signal Process. Control 3, 29–43 (2008)

    Article  Google Scholar 

  67. J. Oster, J. Behar, O. Sayadi, S. Nemati, A.E.W. Johnson, G.D. Clifford, Semisupervised ECG ventricular beat classification with novelty detection based on switching Kalman filters. IEEE Trans. Biomed. Eng. 62, 2125–2134 (2015)

    Article  Google Scholar 

  68. E.K. Roonizi, R. Sassi, A signal decomposition model-based Bayesian framework for ECG components separation. IEEE. Trans. Signal Process. 64, 665–674 (2016)

    Article  MathSciNet  Google Scholar 

  69. M. Rahimpour, B.M. Asl, P wave detection in ECG signals using an extended Kalman filter: an evaluation in different arrhythmia contexts. Physiol. Meas. 37, 1089–1104 (2016)

    Article  Google Scholar 

  70. D.E. Gustafson, A.S. Willsky, J.Y. Wang, M.C. Lancaster, J.H. Triebwasser, ECG/VCG rhythm diagnosis using statistical signal analysis–I. Identification of persistent rhythms. IEEE Trans. Biomed. Eng. 25, 344–353 (1978)

    Article  Google Scholar 

  71. S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd edn. (Prentice Hall, 1998)

    Google Scholar 

  72. A. Petrėnas, V. Marozas, L. Sörnmo, A. Lukoševičius, An echo state neural network for QRST cancellation during atrial fibrillation. IEEE Trans. Biomed. Eng. 59, 2950–2957 (2012)

    Article  Google Scholar 

  73. V. Zarzoso, Extraction of ECG characteristics using source separation techniques: Exploiting statistical independence and beyond, in Advanced Biosignal Processing, ed. by A. Naït-Ali (Springer, Berlin Heidelberg, 2013), pp. 15–47

    Chapter  Google Scholar 

  74. N.V. Thakor, Z. Yi-Sheng, Applications of adaptive filtering to ECG analysis: noise cancellation and arrhythmia detection. IEEE Trans. Biomed. Eng. 38, 785–794 (1991)

    Article  Google Scholar 

  75. P. Laguna, R. Jané, O. Meste, P.W. Poon, P. Caminal, H. Rix, N.V. Thakor, Adaptive filter for event-related bioelectric signals using an impulse correlated reference input: comparison with signal averaging techniques. IEEE Trans. Biomed. Eng. 39, 1032–1044 (1992)

    Article  Google Scholar 

  76. J. Lee, M.H. Song, D.G. Shin, K.J. Lee, Event synchronous adaptive filter based atrial activity estimation in single-lead atrial fibrillation electrocardiograms. Med. Biol. Eng. Comput. 50, 801–811 (2012)

    Article  Google Scholar 

  77. P. Laguna, R. Jané, E. Masgrau, P. Caminal, The adaptive linear combiner with a periodic-impulse reference input as a linear comb filter. Signal Process. 48, 193–203 (1996)

    Article  MATH  Google Scholar 

  78. C. Vásquez, A. Hernández, F. Mora, G. Carrault, G. Passariello, Atrial activity enhancement by Wiener filtering using an artificial neural network. IEEE Trans. Biomed. Eng. 48, 940–944 (2001)

    Article  Google Scholar 

  79. J.L. Elman, Finding structure in time. Cogn. Sci. 14, 179–211 (1990)

    Article  Google Scholar 

  80. J.A. Anderson, An Introduction to Neural Networks (MIT Press, 1995)

    Google Scholar 

  81. K. Doya, Bifurcations of recurrent neural networks in gradient descent learning. IEEE Trans. Neural Netw. 1, 75–80 (1993)

    Google Scholar 

  82. B.A. Pearlmutter, Gradient calculations for dynamic recurrent neural networks: a survey. IEEE Trans. Neural Netw. 6, 1212–1228 (1995)

    Article  Google Scholar 

  83. H. Jaeger, The ‘echo state’ approach to analysing and training recurrent neural networks, GMD Report 148 (German National Research Center for Information Technology, 2001)

    Google Scholar 

  84. M.C. Ozturk, D. Xu, J.C. Principe, Analysis and design of echo state networks. Neural Comput. 19, 111–138 (2007)

    Article  MATH  Google Scholar 

  85. A. Petrėnas, L. Sörnmo, A. Lukoševičius, V. Marozas, Detection of occult paroxysmal atrial fibrillation. Med. Biol. Eng. Comput. 53, 287–297 (2015)

    Article  Google Scholar 

  86. M. Lukoševičius, H. Jaeger, Reservoir computing approaches to recurrent neural network training. Comput. Sci. Rev. 3, 127–149 (2009)

    Article  MATH  Google Scholar 

  87. H. Jaeger, M. Lukoševičius, D. Popovici, U. Siewert, Optimization and applications of echo state networks with leaky integrator neurons. Neural Netw. 20, 335–352 (2007)

    Article  MATH  Google Scholar 

  88. M. Lukoševičius, A practical guide to applying echo state networks, in Neural Networks: Tricks of the Trade, ed. by G. Montavon, G.B. Orr, K.-R. Müller, 2nd edn. (Springer, 2012)

    Google Scholar 

  89. S.C. Douglas, Numerically-robust \(\cal{O}(N^2)\) RLS algorithms using least-squares prewhitening, in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), vol. 25 (2000), pp. 412–415

    Google Scholar 

  90. A. Rodan, P. Tiňo, Minimum complexity echo state network. IEEE Trans. Neural Netw. 22, 131–144 (2011)

    Article  Google Scholar 

  91. I.T. Joliffe, Principal Component Analysis (Springer, Berlin, 2002)

    Google Scholar 

  92. L.G. Horan, N.C. Flowers, D.A. Brody, Principal factor waveforms of the thoracic QRS-complex. Circ. Res. 14, 131–145 (1964)

    Article  Google Scholar 

  93. F. Castells, P. Laguna, L. Sörnmo, A. Bollmann, J. Millet Roig, Principal component analysis in ECG signal processing. J. Adv. Signal Process. 2007, ID 74580 (2007)

    Google Scholar 

  94. F. Castells, C. Mora, J.J. Rieta, D. Moratal-Pérez, J. Millet, Estimation of atrial fibrillatory wave from single-lead atrial fibrillation electrocardiograms using principal component analysis concepts. Med. Biol. Eng. Comput. 43, 557–560 (2005)

    Article  Google Scholar 

  95. A. Hyvärinen, J. Karhunen, E. Oja, Independent Component Analysis (Wiley Interscience, 2001)

    Google Scholar 

  96. A. Martínez, R. Alcaraz, J.J. Rieta, Ventricular activity morphological characterization: Ectopic beats removal in long term atrial fibrillation recordings. Comput. Methods Programs Biomed. 109, 283–292 (2013)

    Article  Google Scholar 

  97. P. Langley, J.P. Bourke, A. Murray, Frequency analysis of atrial fibrillation, in Proceedings of Computers in Cardiology, vol. 27 (IEEE Press, 2000), pp. 65–68

    Google Scholar 

  98. D. Raine, P. Langley, A. Murray, A. Dunuwille, J.P. Bourke, Surface atrial frequency analysis in patients with atrial fibrillation: a tool for evaluating the effects of intervention. J. Cardiovasc. Electrophysiol. 15, 1021–1026 (2004)

    Article  Google Scholar 

  99. P. Langley, M. Stridh, J.J. Rieta, J. Millet, L. Sörnmo, A. Murray, Comparison of atrial signal extraction algorithms in 12-lead ECGs with atrial fibrillation. IEEE Trans. Biomed. Eng. 53, 343–346 (2006)

    Article  Google Scholar 

  100. A. van Oosterom, The dominant T wave and its significance. J. Cardiovasc. Electrophysiol. 14, S180–S187 (2003)

    Article  Google Scholar 

  101. A. van Oosterom, The dominant T wave. J. Electrocardiol. 37, 193–197 (2004)

    Article  Google Scholar 

  102. R. Sassi, L.T. Mainardi, An estimate of the dispersion of repolarization times based on a biophysical model of the ECG. IEEE Trans. Biomed. Eng. 58, 3396–3405 (2011)

    Article  Google Scholar 

  103. P. Laguna, J.P. Martínez, E. Pueyo, Techniques for ventricular repolarization instability assessment from the ECG. Proc. IEEE 104, 392–415 (2016)

    Article  Google Scholar 

  104. G.S. Wagner, Marriott’s Practical Electrocardiography, 10th edn. (Lippincott Williams & Wilkins, Baltimore, 2001)

    Google Scholar 

  105. P. Langley, J.P. Bourke, A. Murray, The U wave in atrial fibrillation, in Proceedings of Computing in Cardiology, vol. 42, pp. 833–836 (2015)

    Google Scholar 

  106. R. Sassi, V.D.A. Corino, L.T. Mainardi, Analysis of surface atrial signals: time series with missing data? Ann. Biomed. Eng. 37, 2082–2092 (2009)

    Article  Google Scholar 

  107. R. Vautard, P. Yiou, M. Ghil, Singular-spectrum analysis: a toolkit for short, noisy chaotic signals. Phys. D 58, 95–126 (1992)

    Article  Google Scholar 

  108. N. Golyandina, A. Zhigljavsky, Singular Spectrum Analysis for Time Series (Springer, 2013)

    Book  MATH  Google Scholar 

  109. E. Parzen, On spectral analysis with missing observations and amplitude modulation. Sankya A. 25, 383–392 (1963)

    MathSciNet  MATH  Google Scholar 

  110. D.H. Schoellhamer, Singular spectrum analysis for time series with missing data. Geophys. Res. Lett. 28, 3187–3190 (2001)

    Article  Google Scholar 

  111. M. Stridh, L. Sörnmo, C.J. Meurling, S.B. Olsson, Detection of autonomic modulation in permanent atrial fibrillation. Med. Biol. Eng. Comput. 41, 625–629 (2003)

    Article  Google Scholar 

  112. D. Kondrashov, M. Ghil, Spatio-temporal filling of missing points in geophysical data sets. Nonlinear Process. Geophys. 13, 151–159 (2006)

    Article  Google Scholar 

  113. G. Wang, N. Rao, S.J. Shepherd, C.B. Beggs, Extraction of desired signal based on AR model with its application to atrial activity estimation in atrial fibrillation. J. Adv. Signal Process. 8, 1–9 (2008)

    MATH  Google Scholar 

  114. W. Liu, D.P. Mandic, A. Cichocki, Blind source extraction based on a linear predictor. IET Signal Process. 1, 29–34 (2007)

    Article  Google Scholar 

  115. T.K. Moon, W.C. Sterling, Mathematical Methods and Algorithms for Signal Processing (Prentice Hall, New Jersey, USA, 2000)

    Google Scholar 

  116. J.F. Cardoso, Blind signal separation: statistical principles. Proc. IEEE 86, 2009–2025 (1998)

    Article  Google Scholar 

  117. P. Bonizzi, M. de la Salud Guillem, A.M. Climent, J. Millet, V. Zarzoso, F. Castells, O. Meste, Noninvasive assessment of the complexity and stationarity of the atrial wavefront patterns during atrial fibrillation. IEEE Trans. Biomed. Eng. 57, 2147–2157 (2010)

    Article  Google Scholar 

  118. S.M. Kay, Modern Spectral Estimation, Theory and Application (Prentice-Hall, New Jersey, 1999)

    Google Scholar 

  119. L. Tong, R.-W. Liu, V.C. Soon, Y.-F. Huang, Indeterminacy and identifiability of blind identification. IEEE Trans. Circ. Syst. 38, 499–509 (1991)

    Article  MATH  Google Scholar 

  120. A. Hyvärinen, E. Oja, Independent component analysis: algorithms and applications. Neural Netw. 13, 411–430 (2000)

    Article  Google Scholar 

  121. P. Comon, Independent component analysis–a new concept? Signal Process. 36, 287–314 (1994)

    Article  MATH  Google Scholar 

  122. A. Hyvärinen, E. Oja, A fast fixed-point algorithm for independent component analysis. Neural Comput. 9, 1483–1492 (1997)

    Article  Google Scholar 

  123. J.J. Rieta, F. Castells, C. Sánchez, V. Zarzoso, J. Millet, Atrial activity extraction for atrial fibrillation analysis using blind source separation. IEEE Trans. Biomed. Eng. 51, 1176–1186 (2004)

    Article  Google Scholar 

  124. M. Lemay, J.-M. Vesin, Z. Ihara, L. Kappenberger, Suppression of ventricular activity in the surface electrocardiogram of atrial fibrillation, in Proceedings of the International Conference Independent Component Analysis and Blind Signal Separation (Springer, 2004), pp. 1095–1102

    Chapter  Google Scholar 

  125. F. Castells, J. Igual, J. Millet, J.J. Rieta, Atrial activity extraction from atrial fibrillation episodes based on maximum likelihood source separation. Signal Process. 85, 523–535 (2005)

    Article  MATH  Google Scholar 

  126. R. Phlypo, Y. D’Asseler, I. Lemahieu, V. Zarzoso, Extraction of the atrial activity from the ECG based on independent component analysis with prior knowledge of the source kurtosis signs, in Proceeding of International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), vol. 29 (2007), pp. 6499–6502

    Google Scholar 

  127. V. Zarzoso, O. Meste, P. Comon, D.G. Latcu, N. Saoudi, Noninvasive cardiac signal analysis using data decomposition techniques, in Modeling in Computational Biology and Biomedicine: A Multidisciplinary Endeavor ed. by F. Cazals, P. Kornprobst (Springer, Berlin Heidelberg, 2013), pp. 83–116

    Google Scholar 

  128. V. Zarzoso, R. Phlypo, P. Comon, A contrast for independent component analysis with priors on the source kurtosis signs. IEEE Signal Process. Lett. 15, 501–504 (2008)

    Article  Google Scholar 

  129. A. Mincholé, L. Sörnmo, P. Laguna, Detection of body position changes from the ECG using a Laplacian noise model. Biomed. Signal Process. Control 14, 189–196 (2014)

    Article  Google Scholar 

  130. A.J. Pullan, M.L. Buist, L.K. Cheng, Mathematically Modelling the Electrical Activity of the Heart (World Scientific, New Jersey, USA, 2005)

    Book  MATH  Google Scholar 

  131. C. Vayá, J.J. Rieta, C. Sanchez, D. Moratal, Convolutive blind source separation algorithms applied to the electrocardiogram of atrial fibrillation: study of performance. IEEE Trans. Biomed. Eng. 54, 1530–1533 (2007)

    Article  Google Scholar 

  132. F.I. Donoso, R.L. Figueroa, E.A. Lecannelier, E.J. Pinoa, A.J. Rojas, Atrial activity selection for atrial fibrillation ECG recordings. Comput. Biol. Med. 43, 1628–1636 (2013)

    Article  Google Scholar 

  133. A. Belouchrani, K. Abed-Meraim, J.F. Cardoso, E. Moulines, A blind source separation technique using second-order statistics. IEEE Trans. Signal Process. 45, 434–444 (1997)

    Article  Google Scholar 

  134. J. Malik, N. Reed, C.-L. Wang, H.-T. Wu, Single-lead f-wave extraction using diffusion geometry. Physiol. Meas. 38, 1310–1334 (2017)

    Article  Google Scholar 

  135. R. Phlypo, V. Zarzoso, I. Lemahieu, Atrial activity estimation from atrial fibrillation ECGs by blind source extraction based on a conditional maximum likelihood approach. Med. Biol. Eng. Comput. 48, 483–488 (2010)

    Article  Google Scholar 

  136. R. Llinares, J. Igual, J. Miró-Borrás, A fixed point algorithm for extracting the atrial activity in the frequency domain. Comput. Biol. Med. 40, 943–949 (2010)

    Article  Google Scholar 

  137. R. Llinares, J. Igual, Exploiting periodicity to extract the atrial activity in atrial arrhythmias. J. Adv. Signal Process. 134–140 (2011)

    Google Scholar 

  138. O.A. Rosso, S. Blanco, J. Yordanova, V. Kolev, A. Figliola, M. Schürmann, E. Başar, Wavelet entropy: a new tool for analysis of short duration brain electrical signals. J. Neurosci. Meth. 105, 65–75 (2001)

    Article  Google Scholar 

  139. P. Langley, Wavelet entropy as a measure of ventricular beat suppression from the electrocardiogram in atrial fibrillation. Entropy 17, 6397–6411 (2015)

    Article  Google Scholar 

  140. J. Ródenas, M. García, R. Alcaraz, J.J. Rieta, Wavelet entropy automatically detects episodes of atrial fibrillation from single-lead electrocardiograms. Entropy 17, 6179–6199 (2015)

    Article  Google Scholar 

  141. J. Mateo, J.J. Rieta, Radial basis function neural networks applied to efficient QRST cancellation in atrial fibrillation. Comput. Biol. Med. 43, 154–163 (2013)

    Article  Google Scholar 

  142. I. Nault, N. Lellouche, S. Matsuo, S. Knecht, M. Wright, K.T. Lim, F. Sacher, P. Platonov, A. Deplagne, P. Bordachar, N. Derval, M.D. O’Neill, G.J. Klein, M. Hocini, P. Jaïs, J. Clémenty, M. Haïssaguerre, Clinical value of fibrillatory wave amplitude on surface ECG in patients with persistent atrial fibrillation. J. Interv. Card. Electrophysiol. 26, 11–19 (2009)

    Article  Google Scholar 

  143. J. Lian, G. Garner, D. Muessig, V. Lang, A simple method to quantify the morphological similarity between signals. Signal Process. 90, 684–688 (2010)

    Article  MATH  Google Scholar 

  144. J. Igual, R. Llinares, M.S. Guillem, J. Millet, Optimal localization of leads in atrial fibrillation episodes, in International Conference on Acoustics, Speech and Signal Processing (ICASSP), vol. 31 (2006), pp. II:1192–II:1195

    Google Scholar 

  145. D. Husser, M. Stridh, L. Sörnmo, C. Geller, H.U. Klein, S.B. Olsson, A. Bollmann, Time-frequency analysis of the surface electrocardiogram for monitoring antiarrhythmic drug effects in atrial fibrillation. Am. J. Cardiol. 95, 526–528 (2005)

    Article  Google Scholar 

  146. A. Bollmann, A. Tveit, D. Husser, M. Stridh, L. Sörnmo, P. Smith, S.B. Olsson, Fibrillatory rate response to candesartan in persistent atrial fibrillation. Europace 10, 1138–1144 (2008)

    Article  Google Scholar 

  147. M. Aunes-Jansson, N. Edvardsson, M. Stridh, L. Sörnmo, L. Frison, A. Berggren, Decrease of the atrial fibrillatory rate, increased organization of the atrial rhythm and termination of atrial fibrillation by AZD7009. J. Electrocardiol. 46, 29–35 (2013)

    Article  Google Scholar 

  148. M. Aunes, K. Egstrup, L. Frison, A. Berggren, M. Stridh, L. Sörnmo, N. Edvardsson, Rapid slowing of the atrial fibrillatory rate after administration of AZD7009 predicts conversion of atrial fibrillation. J. Electrocardiol. 47, 316–323 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leif Sörnmo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sörnmo, L., Petrėnas, A., Laguna, P., Marozas, V. (2018). Extraction of f Waves. In: Sörnmo, L. (eds) Atrial Fibrillation from an Engineering Perspective. Series in BioEngineering. Springer, Cham. https://doi.org/10.1007/978-3-319-68515-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68515-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68513-7

  • Online ISBN: 978-3-319-68515-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics