Skip to main content

Databases and Simulation

  • Chapter
  • First Online:

Part of the book series: Series in BioEngineering ((SERBIOENG))

Abstract

The most popular public databases employed in engineering-oriented research are described in this chapter. Various aspects on the simulation of ECG signals in atrial fibrillation are considered, and a simulator of paroxysmal atrial fibrillation is described in detail. The chapter ends with a discussion of the relevance of simulation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A.L. Goldberger, L.A. Amaral, L. Glass, J.M. Hausdorff, P.C. Ivanov, R.G. Mark, J.E. Mietus, G.B. Moody, C.K. Peng, H.E. Stanley, PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101, E215–220 (2000)

    Article  Google Scholar 

  2. G.B. Moody, R.G. Mark, A new method for detecting atrial fibrillation using R-R intervals, in Proceedings of Computers in Cardiology vol. 10, 227–230 (1983)

    Google Scholar 

  3. S. Petrutiu, A.V. Sahakian, S. Swiryn, Abrupt changes in fibrillatory wave characteristics at the termination of paroxysmal atrial fibrillation in humans. Europace 9, 466–470 (2007)

    Article  Google Scholar 

  4. G.B. Moody, Spontaneous termination of atrial fibrillation: a challenge from PhysioNet and Computers in Cardiology 2004, in Proceedings of Computers in Cardiology vol. 31, 101–104 (2004)

    Google Scholar 

  5. G.D. Clifford, C. Liu, B. Moody, L.-W.H. Lehman, I. Silva, Q. Li, A. Johnson, R.G. Mark, AF classification from a short single lead ECG recording: the PhysioNet Computing in Cardiology Challenge 2017, in Proceedings of Computing in Cardiology vol. 44, 1 (2017)

    Google Scholar 

  6. M. Henriksson, A. Petrėnas, V. Marozas, F. Sandberg, L. Sörnmo, Model-based assessment of f-wave signal quality in patients with atrial fibrillation. IEEE Trans. Biomed. Eng. (2018, accepted)

    Google Scholar 

  7. R.G. Mark, P.S. Schluter, G.B. Moody, P.H. Devlin, D. Chernoff, An annotated ECG database for evaluating arrhythmia detectors. Proc. IEEE Front. Eng. Health Care, 205–210 (1982)

    Google Scholar 

  8. M. Stridh, L. Sörnmo, C.J. Meurling, S.B. Olsson, Sequential characterization of atrial tachyarrhythmias based on ECG time-frequency analysis. IEEE Trans. Biomed. Eng. 51, 100–114 (2004)

    Article  Google Scholar 

  9. M. Stridh, L. Sörnmo, Spatiotemporal QRST cancellation techniques for analysis of atrial fibrillation. IEEE Trans. Biomed. Eng. 48, 105–111 (2001)

    Article  Google Scholar 

  10. F. Sandberg, M. Stridh, L. Sörnmo, Robust time-frequency analysis of atrial fibrillation using hidden Markov models. IEEE Trans. Biomed. Eng. 55, 502–511 (2008)

    Article  Google Scholar 

  11. V.D.A. Corino, L.T. Mainardi, M. Stridh, L. Sörmno, Improved time-frequency analysis of atrial fibrillation signals using spectral modelling. IEEE Trans. Biomed. Eng. 56, 2723–2730 (2008)

    Article  Google Scholar 

  12. R. Alcaraz, J.J. Rieta, Surface ECG organization analysis to predict paroxysmal atrial fibrillation termination. Comput. Biol. Med. 39, 697–706 (2009)

    Article  Google Scholar 

  13. R. Sassi, V.D.A. Corino, L.T. Mainardi, Analysis of surface atrial signals: time series with missing data? Ann. Biomed. Eng. 37, 2082–2092 (2009)

    Article  Google Scholar 

  14. H. Dai, S. Jiang, Y. Li, Atrial activity extraction from single lead ECG recordings: evaluation of two novel methods. Comput. Biol. Med. 43, 176–183 (2013)

    Article  Google Scholar 

  15. A. Petrėnas, V. Marozas, L. Sörnmo, A. Lukoševičius, An echo state neural network for QRST cancellation during atrial fibrillation. IEEE Trans. Biomed. Eng. 59, 2950–2957 (2012)

    Article  Google Scholar 

  16. F. Castells, J.J. Rieta, J. Millet, V. Zarzoso, Spatiotemporal blind source separation approach to atrial activity estimation in atrial tachyarrhythmias. IEEE Trans. Biomed. Eng. 52, 258–267 (2005)

    Article  Google Scholar 

  17. V. Jacquemet, A. van Oosterom, J.-M. Vesin, L. Kappenberger, Analysis of electrocardiograms during atrial fibrillation: a biophysical approach. IEEE Med. Biol. Eng. Mag. 25, 79–88 (2006)

    Article  Google Scholar 

  18. O. Blanc, N. Virag, J.-M. Vesin, L. Kappenberger, A computer model of human atria with reasonable computation load and realistic anatomical properties. IEEE Trans. Biomed. Eng. 48, 1229–1237 (2001)

    Article  Google Scholar 

  19. N. Virag, V. Jacquemet, C.S. Henriquez, S. Zozor, O. Blanc, J.-M. Vesin, E. Pruvot, L. Kappenberger, Study of atrial arrhythmias in a computer model based on magnetic resonance images of human atria. Chaos 12, 754–763 (2002)

    Article  Google Scholar 

  20. A. Petrėnas, V. Marozas, A. Sološenko, R. Kubilius, J. Skibarkienė, J. Oster, L. Sörnmo, Electrocardiogram modeling during paroxysmal atrial fibrillation: application to the detection of brief episodes. Physiol. Meas. 38, 2058–2080 (2017)

    Article  Google Scholar 

  21. V.D.A. Corino, F. Sandberg, L.T. Mainardi, L. Sörnmo, An atrioventricular node model for analysis of the ventricular response during atrial fibrillation. IEEE Trans. Biomed. Eng. 58, 3386–3395 (2011)

    Article  Google Scholar 

  22. M.S. Guillem, A.M. Climent, J. Millet, Á. Arenal, F. Fernández-Avilés, J. Jalife, F. Atienza, O. Berenfeld, Noninvasive localization of maximal frequency sites of atrial fibrillation by body surface potential mapping. Circ. Arrhythm. Electrophysiol. 6, 294–301 (2013)

    Article  Google Scholar 

  23. F. Ravelli, M. Masè, M.D. Greco, L. Faes, M. Disertori, Deterioration of organization in the first minutes of atrial fibrillation: a beat-to-beat analysis of cycle length and wave similarity. J. Cardiovasc. Electrophysiol. 18, 60–65 (2007)

    Article  Google Scholar 

  24. R. Alcaraz, J.J. Rieta, Non-invasive organization variation assessment in the onset and termination of paroxysmal atrial fibrillation. Comput. Methods Programs Biomed. 93, 148–154 (2009)

    Article  Google Scholar 

  25. M. Masè, M. Marini, M. Disertori, F. Ravelli, Dynamics of AV coupling during human atrial fibrillation: role of atrial rate. Am. J. Physiol. Heart Circ. Physiol. 309, H198–H205 (2015)

    Article  Google Scholar 

  26. J. Malik, N. Reed, C.-L. Wang, H.-T. Wu, Single-lead f-wave extraction using diffusion geometry. Physiol. Meas. 38, 1310–1334 (2017)

    Article  Google Scholar 

  27. R. Sameni, G.D. Clifford, C. Jutten, M.B. Shamsollahi, Multichannel ECG and noise modeling: application to maternal and fetal ECG signals. J. Adv. Signal Process., 1–14 (2007)

    Google Scholar 

  28. P.E. McSharry, G.D. Clifford, L. Tarassenko, L.A. Smith, A dynamical model for generating synthetic electrocardiogram signals. IEEE Trans. Biomed. Eng. 50, 289–294 (2003)

    Article  Google Scholar 

  29. G.R. Pai, J.M. Rawles, The QT interval in atrial fibrillation. Brit. Heart J. 61, 510–513 (1989)

    Article  Google Scholar 

  30. D.L. Musat, M. Adhaduk, M.W. Preminger, A. Arshad, T. Sichrovsky, J.S. Steinberg, S. Mittal, Correlation of QT interval correction methods during atrial fibrillation and sinus rhythm. Am. J. Cardiol. 112, 1379–1383 (2013)

    Article  Google Scholar 

  31. L. Sörnmo, P.O. Börjesson, M.E. Nygårds, O. Pahlm, A method for evaluation of QRS shape features using a mathematical model for the ECG. IEEE Trans. Biomed. Eng. 28, 713–717 (1981)

    Article  Google Scholar 

  32. P. Laguna, R. Jané, S. Olmos, N.V. Thakor, H. Rix, P. Caminal, Adaptive estimation of QRS complex by the Hermite model for classification and ectopic beat detection. Med. Biol. Eng. Comput 34, 58–68 (1996)

    Article  Google Scholar 

  33. T.H. Linh, S. Osowski, M. Stodolski, On-line heart beat recognition using Hermite polynomials and neuro-fuzzy network. IEEE Trans. Instrum. Measure. 52, 1224–1231 (2003)

    Article  Google Scholar 

  34. H. Haraldsson, L. Edenbrandt, M. Ohlsson, Detecting acute myocardial infarction in the 12-lead ECG using Hermite expansions and neural networks. Artif. Intell. Med. 32, 127–136 (2004)

    Article  Google Scholar 

  35. A. Sandryhaila, S. Saba, M. Puschel, J. Kovacevic, Efficient compression of QRS complexes using Hermite expansion. IEEE Trans. Signal Process. 60, 947–955 (2012)

    Article  MathSciNet  Google Scholar 

  36. R. Havmöller, J. Carlson, F. Holmqvist, A. Herreros, C. Meurling, S.B. Olsson, P.G. Platonov, Age-related changes in P wave morphology in healthy subjects. BMC Cardiovasc. Disord. 7, 22 (2007)

    Google Scholar 

  37. F. Holmqvist, M.S. Olesen, A. Tveit, S. Enger, J. Tapanainen, R. Jurkko, R. Havmöller, S. Haunsø, J. Carlson, J.H. Svendsen, P.G. Platonov, Abnormal atrial activation in young patients with lone atrial fibrillation. Europace 13, 188–192 (2011)

    Article  Google Scholar 

  38. H.C. Bazett, An analysis of the time relations of electrocardiograms. Heart 7, 353–370 (1920)

    Google Scholar 

  39. S.-A. Chen, M.-H. Hsieh, C.-T. Tai, C.-F. Tsai, V.S. Prakash, W.-C. Yu, T.-L. Hsu, Y.-A. Ding, M.-S. Chang, Initiation of atrial fibrillation by ectopic beats originating from the pulmonary veins: electrophysiological characteristics, pharmacological responses, and effects of radiofrequency ablation. Circulation 100, 1879–1886 (1999)

    Article  Google Scholar 

  40. D. Wallmann, D. Tüller, K. Wustmann, P. Meier, J. Isenegger, M. Arnold, H.P. Mattle, E. Delacrétaz, Frequent atrial premature beats predict paroxysmal atrial fibrillation in stroke patients: an opportunity for a new diagnostic strategy. Stroke 38, 2292–2294 (2007)

    Article  Google Scholar 

  41. M. Weber-Krüger, K. Gröschel, M. Mende, J. Seegers, R. Lahno, B. Haase, C.-F. Niehaus, F. Edelmann, G. Hasenfuß, R. Wachter, R. Stahrenberg, Excessive supraventricular ectopic activity is indicative of paroxysmal atrial fibrillation in patients with cerebral ischemia. PLoS ONE 8, e67602 (2013)

    Article  Google Scholar 

  42. D.J. Gladstone, P. Dorian, M. Spring, V. Panzov, M. Mamdani, J.S. Healey, K.E. Thorpe, for EMBRACE Steering Committee and Investigators, Atrial premature beats predict atrial fibrillation in cryptogenic stroke: results from the EMBRACE trial. Stroke 46, 936–941 (2015)

    Google Scholar 

  43. T. Thong, J. McNames, M. Aboy, B. Goldstein, Prediction of paroxysmal atrial fibrillation by analysis of atrial premature complexes. IEEE Trans. Biomed. Eng. 4, 561–569 (2004)

    Article  Google Scholar 

  44. M. Åström, E. Carro, L. Sörnmo, P. Laguna, B. Wohlfart, Vectorcardiographic loop alignment and the measurement of morphologic beat-to-beat variability in noisy signals. IEEE Trans. Biomed. Eng. 47, 497–506 (2000)

    Article  Google Scholar 

  45. R. Bailón, L. Sörnmo, P. Laguna, A robust method for ECG-based estimation of the respiratory frequency during stress testing. IEEE Trans. Biomed. Eng. 53, 1273–1285 (2006)

    Article  Google Scholar 

  46. M.M. Platiša, T. Bojić, S.U. Pavlović, N.N. Radovanović, A. Kalauzi, Uncoupling of cardiac and respiratory rhythm in atrial fibrillation. Biomed. Tech. (Berlin) 61, 657–663 (2016)

    Article  Google Scholar 

  47. G.B. Moody, W.K. Muldrow, R.G. Mark, A noise stress test for arrhythmia detectors. Proc. Comput. Cardiol. 11, 381–384 (1984)

    Google Scholar 

  48. M.S. Guillem, A.V. Sahakian, S. Swiryn, Derivation of orthogonal leads from the 12-lead electrocardiogram. Performance of an atrial-based transform for the derivation of P loops. J. Electrocardiol. 41, 19–25 (2008)

    Article  Google Scholar 

  49. G.E. Dower, A lead synthesizer for the Frank system to simulate the standard 12-lead electrocardiogram. J. Electrocardiol. 1, 101–116 (1968)

    Article  Google Scholar 

  50. G.E. Dower, H.B. Machado, J.A. Osborne, On deriving the electrocardiogram from vectorcardiographic leads. Clin. Cardiol. 3, 87–95 (1980)

    Google Scholar 

  51. E.T.Y. Chang, Y.T. Lin, T. Galla, R.H. Clayton, J. Eatock, A stochastic individual-based model of the progression of atrial fibrillation in individuals and populations. PLoS ONE 11, e0152349 (2016)

    Article  Google Scholar 

  52. M.C. Wijffels, C.J. Kirchhof, R. Dorland, M.A. Allessie, Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation 92, 1954–1968 (1995)

    Article  Google Scholar 

  53. C.R. Kerr, K.H. Humphries, M. Talajic, G.J. Klein, S.J. Connolly, M. Green, J. Boone, R. Sheldon, P. Dorian, D. Newman, Progression to chronic atrial fibrillation after the initial diagnosis of paroxysmal atrial fibrillation: results from the Canadian Registry of Atrial Fibrillation. Am. Heart J. 149, 489–496 (2005)

    Article  Google Scholar 

  54. A.H. Tayal, M. Tian, K.M. Kelly, S.C. Jones, D.G. Wright, D. Singh, J. Jarouse, J. Brillman, S. Murali, R. Gupta, Atrial fibrillation detected by mobile cardiac outpatient telemetry in cryptogenic TIA or stroke. Neurology 71, 1696–1701 (2008)

    Article  Google Scholar 

  55. C.G. Favilla, E. Ingala, J. Jara, E. Fessler, B. Cucchiara, S.R. Messé, M.T. Mullen, A. Prasad, J. Siegler, M.D. Hutchinson, S.E. Kasner, Predictors of finding occult atrial fibrillation after cryptogenic stroke. Stroke 46, 1210–1215 (2015)

    Article  Google Scholar 

  56. J.W. Keach, S.M. Bradley, M.P. Turakhia, T.M. Maddox, Early detection of occult atrial fibrillation and stroke prevention. Heart 101, 1097–1102 (2015)

    Article  Google Scholar 

  57. D.J. Miller, K. Shah, S. Modi, A. Mahajan, S. Zahoor, M. Affan, The evolution and application of cardiac monitoring for occult atrial fibrillation in cryptogenic stroke and TIA. Curr. Treat. Options Neurol. 18, 17 (2016)

    Article  Google Scholar 

  58. P. Laguna, R. Jané, P. Caminal, Automatic detection of wave boundaries in multilead ECG signals: validation with the CSE database. Comput. Biomed. Res. 27, 45–60 (1994)

    Article  Google Scholar 

  59. A. van Oosterom, T.F. Oostendorp, ECGSIM: an interactive tool for studying the genesis of QRST waveforms. Heart 90, 165–168 (2004)

    Article  Google Scholar 

  60. J. Behar, F. Andreotti, S. Zaunseder, Q. Li, J. Oster, G.D. Clifford, An ECG simulator for generating maternal-foetal activity mixtures on abdominal ECG recordings. Physiol. Meas. 35, 1537–1550 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leif Sörnmo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sörnmo, L., Petrėnas, A., Marozas, V. (2018). Databases and Simulation . In: Sörnmo, L. (eds) Atrial Fibrillation from an Engineering Perspective. Series in BioEngineering. Springer, Cham. https://doi.org/10.1007/978-3-319-68515-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68515-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68513-7

  • Online ISBN: 978-3-319-68515-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics