Lead Systems and Recording Devices

  • Andrius Petrėnas
  • Vaidotas Marozas
  • Leif Sörnmo
Chapter
Part of the Series in BioEngineering book series (SERBIOENG)

Abstract

This chapter provides an overview of ECG lead systems and commercial devices for atrial fibrillation monitoring, with special emphasis on devices using few leads. The rapid development of electronics has given rise to various approaches, ranging from invasive devices to short-term screening recorders, as well as to non-ECG mobile devices. Contemporary devices offer patient comfort and can therefore be used for extended time periods, for example, to detect silent, previously undocumented atrial fibrillation.

References

  1. 1.
    P. Kirchhof, S. Benussi, D. Kotecha, A. Ahlsson, D. Atar, B. Casadei, M. Castella, H.C. Diener, H. Heidbuchel, J. Hendriks, G. Hindricks, A.S. Manolis, J. Oldgren, B.A. Popescu, U. Schotten, B. Van Putte, P. Vardas, S. Agewall, J. Camm, G. Baron Esquivias, W. Budts, S. Carerj, F. Casselman, A. Coca, R. De Caterina, S. Deftereos, D. Dobrev, J.M. Ferro, G. Filippatos, D. Fitzsimons, B. Gorenek, M. Guenoun, S.H. Hohnloser, P. Kolh, G.Y. Lip, A. Manolis, J. McMurray, P. Ponikowski, R. Rosenhek, F. Ruschitzka, I. Savelieva, S. Sharma, P. Suwalski, J.L. Tamargo, C.J. Taylor, I.C. Van Gelder, A.A. Voors, S. Windecker, J.L. Zamorano, K. Zeppenfeld, 2016 ESC guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur. Heart J. 37, 2893–2962 (2016)CrossRefGoogle Scholar
  2. 2.
    L. Roten, M. Schilling, A. Häberlin, J. Seiler, N.G. Schwick, J. Fuhrer, E. Delacrétaz, H. Tanner, Is 7-day event triggered ECG recording equivalent to 7-day Holter ECG recording for atrial fibrillation screening? Heart 98, 645–649 (2012)CrossRefGoogle Scholar
  3. 3.
    M.S. Guillem, A.M. Climent, F. Castells, D. Husser, J. Millet, A. Arya, C. Piorkowski, A. Bollmann, Noninvasive mapping of human atrial fibrillation. J. Cardiovasc. Electrophysiol. 20, 507–513 (2009)CrossRefGoogle Scholar
  4. 4.
    K. Harris, D. Edwards, J. Mant, How can we best detect atrial fibrillation? J. R. Coll. Physicians. Edinb. 42, 5–22 (2012)CrossRefGoogle Scholar
  5. 5.
    J. Mant, D.A. Fitzmaurice, F.D.R. Hobbs, S. Jowett, E.T. Murray, R. Holder, M. Davies, G.Y.H. Lip, Accuracy of diagnosing atrial fibrillation on electrocardiogram by primary care practitioners and interpretative diagnostic software: analysis of data from screening for atrial fibrillation in the elderly (safe) trial. Br. Med. J. 335, 1–6 (2007)CrossRefGoogle Scholar
  6. 6.
    A.L. Bakker, G. Nijkerk, B.E. Groenemeijer, R.A. Waalewijn, E.M. Koomen, R.L. Braam, H.J. Wellens, The Lewis lead: making recognition of P waves easy during wide QRS complex tachycardia. Circulation 119, e592–e593 (2009)CrossRefGoogle Scholar
  7. 7.
    A. Mizuno, K. Masuda, K. Niwa, Usefulness of Lewis lead for visualizing P-wave. Circ. J. 78, 2774–2775 (2014)CrossRefGoogle Scholar
  8. 8.
    P.G. Platonov, V.D.A. Corino, M. Seifert, F. Holmqvist, L. Sörnmo, Atrial fibrillatory rate in the clinical context: natural course and prediction of intervention outcome. Europace 16, iv110–iv119 (2014)CrossRefGoogle Scholar
  9. 9.
    M.S. Guillem, A. Bollmann, A.M. Climent, D. Husser, J. Millet, F. Castells, How many leads are necessary for a reliable reconstruction of surface potentials during atrial fibrillation? IEEE Trans. Inf. Technol. Biomed. 13, 330–340 (2009)CrossRefGoogle Scholar
  10. 10.
    M.S. Guillem, A.V. Sahakian, S. Swiryn, Derivation of orthogonal leads from the 12-lead electrocardiogram. Performance of an atrial-based transform for the derivation of P loops. J. Electrocardiol. 41, 19–25 (2008)CrossRefGoogle Scholar
  11. 11.
    M. Haissaguerre, M. Hocini, A.J. Shah, N. Derval, F. Sacher, P. Jaïs, R. Dubois, Noninvasive panoramic mapping of human atrial fibrillation mechanisms: a feasibility report. J. Cardiovasc. Electrophysiol. 24, 711–717 (2013)CrossRefGoogle Scholar
  12. 12.
    M.S. Guillem, A.M. Climent, J. Millet, Á. Arenal, F. Fernández-Avilés, J. Jalife, F. Atienza, O. Berenfeld, Noninvasive localization of maximal frequency sites of atrial fibrillation by body surface potential mapping. Circ. Arrhythm. Electrophysiol. 6, 294–301 (2013)CrossRefGoogle Scholar
  13. 13.
    Z. Ihara, V. Jacquemet, J.M. Vesin, A. van Oosterom, Adaption of the standard 12-lead ECG system focusing on atrial electrical activity, in Proceedings of Computers in Cardiology vol. 32, 203–205 (2005)Google Scholar
  14. 14.
    Z. Ihara, A. van Oosterom, V. Jacquemet, R. Hoekema, Adaptation of the 12-lead electrocardiogram system dedicated to the analysis of atrial fibrillation. J. Electrocardiol. 40, 68.e1–68.e8 (2007)Google Scholar
  15. 15.
    D. Husser, M. Stridh, L. Sörnmo, I. Toepffer, H.U. Klein, S.B. Olsson, A. Bollmann, Electroatriography–time-frequency analysis of atrial fibrillation from modified 12-lead ECG configurations for improved diagnosis and therapy. Med. Hypotheses 68, 568–573 (2007)CrossRefGoogle Scholar
  16. 16.
    W. Wenger, P. Kligfield, Variability of precordial electrode placement during routine electrocardiography. J. Electrocardiol. 29, 179–184 (1996)CrossRefGoogle Scholar
  17. 17.
    A. Bollmann, N. Kanuru, K. McTeague, P. Walter, D.B. DeLurgio, J. Langberg, Frequency analysis of human atrial fibrillation using the surface electrocardiogram and its response to ibutilide. Am. J. Cardiol. 81, 1439–1445 (1998)CrossRefGoogle Scholar
  18. 18.
    S. Petrutiu, A.V. Sahakian, W.B. Fisher, S. Swiryn, Manifestation of left atrial events in the surface electrocardiogram, in Proceedings of Computers in Cardiology vol. 33, 1–4 (2006)Google Scholar
  19. 19.
    G.E. Dower, A. Yakush, S.B. Nazzal, R.V. Jutzy, C.E. Ruiz, Deriving the 12-lead electrocardiogram from four (EASI) electrodes. J. Electrocardiol. 21(Suppl.), S182–187 (1988)CrossRefGoogle Scholar
  20. 20.
    R.L. Lux, C.R. Smith, R.F. Wyatt, J.A. Abildskov, Limited lead selection for estimation of body surface potential maps in electrocardiography. IEEE Trans. Biomed. Eng. 25, 270–276 (1978)CrossRefGoogle Scholar
  21. 21.
    B.J. Drew, R.M. Califf, M. Funk, E.S. Kaufman, M.W. Krucoff, M.M. Laks, P.W. Macfarlane, C. Sommargren, S. Swiryn, G.F. Van Hare, Practice standards for electrocardiographic monitoring in hospital settings. Circulation 110, 2721–2746 (2004)CrossRefGoogle Scholar
  22. 22.
    M.P. Turakhia, D.D. Hoang, P. Zimetbaum, J.D. Miller, V.F. Froelicher, U.N. Kumar, X. Xu, F. Yang, P.A. Heidenreich, Diagnostic utility of a novel leadless arrhythmia monitoring device. Am. J. Cardiol. 112, 520–524 (2013)CrossRefGoogle Scholar
  23. 23.
    T. Lewis, Clinical Electrocardiography (Shaw & Sons, New York, 1913)Google Scholar
  24. 24.
    A. Petrėnas, V. Marozas, G. Jaruševičius, L. Sörnmo, A modified Lewis ECG lead system for ambulatory monitoring of atrial arrhythmias. J. Electrocardiol. 48, 157–163 (2015)CrossRefGoogle Scholar
  25. 25.
    S. Nedios, I. Romero, J.-H. Gerds-Li, E. Fleck, C. Kriatselis, Precordial electrode placement for optimal ECG monitoring: implications for ambulatory monitor devices and event recorders. J. Electrocardiol. 47, 669–676 (2014)CrossRefGoogle Scholar
  26. 26.
    A. Kennedy, D.D. Finlay, D. Guldenring, R.R. Bond, J. McLaughlin, Detecting the elusive P-wave: a new ECG lead to improve the recording of atrial activity. IEEE Trans. Biomed. Eng. 63, 243–249 (2016)CrossRefGoogle Scholar
  27. 27.
    M.A. Rosenberg, M. Samuel, A. Thosani, P.J. Zimetbaum, Use of a noninvasive continuous monitoring device in the management of atrial fibrillation: a pilot study. Pacing Clin. Electrophysiol. 36, 328–333 (2013)CrossRefGoogle Scholar
  28. 28.
    S. Babaeizadeh, R.E. Gregg, E.D. Helfenbein, J.M. Lindauer, S.H. Zhou, Improvements in atrial fibrillation detection for real-time monitoring. J. Electrocardiol. 42, 522–526 (2009)CrossRefGoogle Scholar
  29. 29.
    S. Asgari, A. Mehrnia, M. Moussavi, Automatic detection of atrial fibrillation using stationary wavelet transform and support vector machine. Comput. Biol. Med. 60, 132–142 (2015)CrossRefGoogle Scholar
  30. 30.
    J.S. Steinberg, N. Varma, I. Cygankiewicz, P. Aziz, P. Balsam, A. Baranchuk, D.J. Cantillon, P. Dilaveris, S.J. Dubner, N. El-Sherif, J. Krol, M. Kurpesa, M.T. La Rovere, S.S. Lobodzinski, E.T. Locati, S. Mittal, B. Olshansky, E. Piotrowicz, L. Saxon, P.H. Stone, L. Tereshchenko, G. Turitto, N.J. Wimmer, R.L. Verrier, W. Zareba, R. Piotrowicz, 2017 ISHNE-HRS expert consensus statement on ambulatory ECG and external cardiacmonitoring/telemetry. Heart Rhythm 17, e55–e96 (2017)CrossRefGoogle Scholar
  31. 31.
    N.J. Holter, New method for heart studies: continuous electrocardiography of active subjects over long period is now practical. Science 134, 1214 (1961)CrossRefGoogle Scholar
  32. 32.
    H.T. Tu, S. Spence, J.M. Kalman, S.M. Davis, Twenty-eight day Holter monitoring is poorly tolerated and insensitive for paroxysmal atrial fibrillation detection in cryptogenic stroke. Int. Med. J. 44, 505–508 (2014)CrossRefGoogle Scholar
  33. 33.
    A. Müller, W. Scharner, T. Borchardt, W. Och, H. Korb, Reliability of an external loop recorder for automatic recognition and transtelephonic ECG transmission of atrial fibrillation. J. Telemed. Telecare 15, 391–396 (2009)CrossRefGoogle Scholar
  34. 34.
    B.O. Velthuis, J. Bos, K. Kraaier, J. Stevenhagen, J.M. van Opstal, J. van der Palen, M.F. Scholten, Performance of an external transtelephonic loop recorder for automated detection of paroxysmal atrial fibrillation. Ann. Noninvasive Electrocardiol. 18, 564–570 (2013)CrossRefGoogle Scholar
  35. 35.
    S.S. Lobodzinski, ECG patch monitors for assessment of cardiac rhythm abnormalities. Prog. Cardiovasc. Dis. 56, 224–229 (2013)CrossRefGoogle Scholar
  36. 36.
    P.M. Barrett, R. Komatireddy, S. Haaser, S. Topol, J. Sheard, J. Encinas, A.J. Fought, E.J. Topol, Comparison of 24-hour Holter monitoring with 14-day novel adhesive patch electrocardiographic monitoring. Am. J. Med. 127, 95.e11–95.e17 (2014)CrossRefGoogle Scholar
  37. 37.
    J. M. Engel, V. Mehta, R. Fogoros, A. Chavan, Study of arrhythmia prevalence in NUVANT mobile cardiac telemetry system patients, in Proceedings Conference of the IEEE Engineering in Medicine and Biology Society (2012), pp. 2440–2443Google Scholar
  38. 38.
    J.M. Engel, N. Chakravarthy, G. Nosbush, M. Merkert, M.D.R. Fogoros, A. Chavan, Comparison of arrhythmia prevalence in NUVANT Mobile Cardiac Telemetry System patients in the US and India, in Proceedings Conference of the IEEE Engineering in Medicine and Biology Society (2014), pp. 2730–2733Google Scholar
  39. 39.
    L. Friberg, J. Engdahl, V. Frykman, E. Svennberg, L.-Å. Levin, M. Rosenqvist, Population screening of 75- and 76-year-old men and women for silent atrial fibrillation (STROKESTOP). Europace 15, 135–140 (2012)CrossRefGoogle Scholar
  40. 40.
    E. Svennberg, J. Engdahl, F. Al-Khalili, L. Friberg, V. Frykman, M. Rosenqvist, Mass screening for untreated atrial fibrillation: the STROKESTOP study. Circulation 131, 2176–2184 (2015)CrossRefGoogle Scholar
  41. 41.
    B. Vaes, S. Stalpaert, K. Tavernier, B. Thaels, D. Lapeire, W. Mullens, J. Degryse, The diagnostic accuracy of the MyDiagnostick to detect atrial fibrillation in primary care. BMC Fam. Pract. 15, 113 (2014)CrossRefGoogle Scholar
  42. 42.
    M. Stridh, M. Rosenqvist, Automatic screening of atrial fibrillation in thumb-ECG recordings, in Proceedings of Computing in Cardiology vol. 39, 193–196 (2012)Google Scholar
  43. 43.
    E. Agu, P. Pedersen, D. Strong, B. Tulu, Q. He, L. Wang, Y. Li, The smartphone as a medical device: assessing enablers, benefits and challenges, in 10th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON) (2013), pp. 76–80Google Scholar
  44. 44.
    A.R.J. Mitchell, P. Le Page, Living with the handheld ECG. BMJ Innov. 2 (2015)Google Scholar
  45. 45.
    P.-H. Chan, C.-K. Wong, Y. C. Poh, L. Pun, W.W.-C. Leung, Y.-F. Wong, M.M.-Y. Wong, M.-Z. Poh, D. W.-S. Chu, C.-W. Siu, Diagnostic performance of a smartphone-based photoplethysmographic application for atrial fibrillation screening in a primary care setting. J. Am. Heart Assoc. 5 (2016)CrossRefGoogle Scholar
  46. 46.
    B. Freedman, Screening for atrial fibrillation using a smartphone: Is there an app for that? J. Am. Heart Assoc. 5 (2016)CrossRefGoogle Scholar
  47. 47.
    N. Lowres, S.B. Freedman, J. Redfern, A. McLachlan, I. Krass, A. Bennett, T. Briffa, A. Bauman, L. Neubeck, Screening education and recognition in community pharmacies of atrial fibrillation to prevent stroke in an ambulant population aged \(\ge \)65 years (SEARCH-AF stroke prevention study): a cross-sectional study protocol. Br. Med. J. Open 2 (2012)CrossRefGoogle Scholar
  48. 48.
    J.K. Lau, N. Lowres, L. Neubeck, D.B. Brieger, R.W. Sy, C.D. Galloway, D.E. Albert, S.B. Freedman, iPhone ECG application for community screening to detect silent atrial fibrillation: a novel technology to prevent stroke. Int. J. Cardiol. 165, 193–194 (2013)CrossRefGoogle Scholar
  49. 49.
    L. Desteghe, Z. Raymaekers, M. Lutin, J. Vijgen, D. Dilling-Boer, P. Koopman, J. Schurmans, P. Vanduynhoven, P. Dendale, H. Heidbuchel, Performance of handheld electrocardiogram devices to detect atrial fibrillation in a cardiology and geriatric ward setting. Europace 19, 29–39 (2017)Google Scholar
  50. 50.
    D.E. Albert, Letter on Desteghe et al., Performance of handheld electrocardiogram devices to detect atrial fibrillation in a cardiology and geriatric ward setting. Europace, euw218 (2016)Google Scholar
  51. 51.
    K. Kanjwal, V.M. Figueredo, B. Karabin, B. Grubb, The implantable loop recorder: current uses, future directions. J. Innov. Cardiac Rhythm Manag. 2, 215–222 (2011)Google Scholar
  52. 52.
    S. Sarkar, D. Ritscher, R. Mehra, A detector for a chronic implantable atrial tachyarrhythmia monitor. IEEE Trans. Biomed. Eng. 55, 1219–1224 (2008)CrossRefGoogle Scholar
  53. 53.
    G. Hindricks, E. Pokushalov, L. Urban, M. Taborsky, K.-H. Kuck, D. Lebedev, G. Rieger, H. Pürerfellner, and on behalf of the XPECT Trial Investigators, Performance of a new leadless implantable cardiac monitor in detecting and quantifying atrial fibrillation results of the XPECT trial. Circ. Arrhythm. Electrophysiol. 3, 141–147 (2010)CrossRefGoogle Scholar
  54. 54.
    A.S. Montenero, A. Quayyum, P. Franciosa, D. Mangiameli, A. Antonelli, L. Barbieri, N. Bruno, F. Zumbo, M. Vimercati, Implantable loop recorders: a novel method to judge patient perception of atrial fibrillation. Preliminary results from a pilot study. J. Interv. Card. Electrophysiol. 10, 211–220 (2004)CrossRefGoogle Scholar
  55. 55.
    C. Eitel, D. Husser, G. Hindricks, M. Frühauf, S. Hilbert, A. Arya, T. Gaspar, U. Wetzel, A. Bollmann, C. Piorkowski, Performance of an implantable automatic atrial fibrillation detection device: impact of software adjustments and relevance of manual episode analysis. Europace 13, 480–485 (2011)CrossRefGoogle Scholar
  56. 56.
    O. Andersson, K.H. Chon, L. Sörnmo, J.N. Rodrigues, A 290 mV sub-V\(_\text{ T }\) ASIC for real-time atrial fibrillation detection. IEEE Trans. Biomed. Circuits Syst. 9, 377–386 (2015)CrossRefGoogle Scholar
  57. 57.
    C.D. Swerdlow, W. Schsls, B. Dijkman, W. Jung, N.V. Sheth, W.H. Olson, B.D. Gunderson, Detection of atrial fibrillation and flutter by a dual-chamber implantable cardioverter-defibrillator. For the Worldwide Jewel AF Investigators. Circulation 101, 878–885 (2000)CrossRefGoogle Scholar
  58. 58.
    J.W. Fung, J. Sperzel, C.M. Yu, J.Y. Chan, R.N. Gelder, M.X. Yang, R. Rooke, P. Boileau, G. Fröhlig, Multicenter clinical experience with an atrial lead designed to minimize far-field R-wave sensing. Europace 11, 618–624 (2009)CrossRefGoogle Scholar
  59. 59.
    J. Lee, B.A. Reyes, D.D. McManus, O. Mathias, K.H. Chon, Atrial fibrillation detection using an iPhone 4S. IEEE Trans. Biomed. Eng. 60, 203–206 (2013)CrossRefGoogle Scholar
  60. 60.
    J.P. Couderc, S. Kyal, L. Mestha, B. Xu, D. Peterson, X. Xia, B. Hall, Detection of atrial fibrillation using contactless facial video monitoring. Heart Rhythm 12, 195–201 (2015)CrossRefGoogle Scholar
  61. 61.
    T. Conroy, J.H. Guzman, B. Hall, G. Tsouri, J.-P. Couderc, Detection of atrial fibrillation using an earlobe photoplethysmographic sensor. Physiol. Meas. 38, 1906–1918 (2017)CrossRefGoogle Scholar
  62. 62.
    V.D.A. Corino, R. Laureanti, L. Ferranti, G. Scarpini, F. Lombardi, L.T. Mainardi, Detection of atrial fibrillation episodes using a wristband device. Physiol. Meas. 38, 787–799 (2017)CrossRefGoogle Scholar
  63. 63.
    G. Lu, F. Yang, J.A. Taylor, J.F. Stein, A comparison of photoplethysmography and ECG recording to analyse heart rate variability in healthy subjects. J. Med. Eng. Technol. 33, 634–641 (2009)CrossRefGoogle Scholar
  64. 64.
    E. Gil, M. Orini, R. Bailón, J.M. Vergara, L. Mainardi, P. Laguna, Photoplethysmography pulse rate variability as a surrogate measurement of heart rate variability during non-stationary conditions. Physiol. Meas. 31, 1271 (2010)CrossRefGoogle Scholar
  65. 65.
    D.D. McManus, J. Lee, O. Maitas, N. Esa, R. Pidikiti, A. Carlucci, J. Harrington, E. Mick, K.H. Chon, A novel application for the detection of an irregular pulse using an iPhone 4S in patients with atrial fibrillation. Heart Rhythm 10, 315–319 (2013)CrossRefGoogle Scholar
  66. 66.
    J. Wiesel, L. Fitzig, Y. Herschman, F.C. Messineo, Detection of atrial fibrillation using a modified Microlife blood pressure monitor. Am. J. Hypertens. 22, 848–852 (2009)CrossRefGoogle Scholar
  67. 67.
    G.S. Stergiou, N. Karpettas, A. Protogerou, E.G. Nasothimiou, M. Kyriakidis, Diagnostic accuracy of a home blood pressure monitor to detect atrial fibrillation. J. Hum. Hypertens. 23, 654–658 (2009)CrossRefGoogle Scholar
  68. 68.
    G. Marazzi, F. Iellamo, M. Volterrani, M. Lombardo, F. Pelliccia, D. Righi, F. Grieco, L. Cacciotti, L. Iaia, G. Caminiti, G. Rosano, Comparison of Microlife BP A200 Plus and Omron M6 blood pressure monitors to detect atrial fibrillation in hypertensive patients. Adv. Ther. 29, 64–70 (2012)CrossRefGoogle Scholar
  69. 69.
    J. Wiesel, B. Arbesfeld, D. Schechter, Comparison of the Microlife blood pressure monitor with the Omron blood pressure monitor for detecting atrial fibrillation. Am. J. Cardiol. 114, 1046–1048 (2014)CrossRefGoogle Scholar
  70. 70.
    A.J. Cheung, B.M.Y. Cheung, False detection of atrial fibrillation in children by a blood pressure monitor with atrial fibrillation detection function. Br. Med. J. Case Rep. 1–2 (2015)Google Scholar
  71. 71.
    G. Hindricks, C. Piorkowski, Atrial fibrillation monitoring: mathematics meets real life. Circulation 126, 791–792 (2012)CrossRefGoogle Scholar
  72. 72.
    E.I. Charitos, U. Stierle, P.D. Ziegler, M. Baldewig, D.R. Robinson, H. Sievers, T. Hanke, A comprehensive evaluation of rhythm monitoring strategies for the detection of atrial fibrillation recurrence: insights from 647 continuously monitored patients and implications for monitoring after therapeutic interventions. Circulation 126, 806–814 (2012)CrossRefGoogle Scholar
  73. 73.
    J. Engdahl, L. Andersson, M. Mirskaya, M. Rosenqvist, Stepwise screening of atrial fibrillation in a 75-year-old population: Implications for stroke prevention. Circulation 127, 930–937 (2013)CrossRefGoogle Scholar
  74. 74.
    N. Gaillard, S. Deltour, B. Vilotijevic, A. Hornych, S. Crozier, A. Leger, R. Frank, Y. Samson, Detection of paroxysmal atrial fibrillation with transtelephonic EKG in TIA or stroke patients. Neurology 74, 1666–1670 (2010)CrossRefGoogle Scholar
  75. 75.
    D.J. Gladstone, M. Spring, P. Dorian, V. Panzov, K.E. Thorpe, J. Hall, H. Vaid, M. O’Donnell, A. Laupacis, R. Côté, M. Sharma, J.A. Blakely, A. Shuaib, V. Hachinski, S.B. Coutts, D.J. Sahlas, P. Teal, S. Yip, J.D. Spence, B. Buck, S. Verreault, L.K. Casaubon, A. Penn, D. Selchen, A. Jin, D. Howse, M. Mehdiratta, K. Boyle, R. Aviv, M.K. Kapral, M. Mamdani, Atrial fibrillation in patients with cryptogenic stroke. N. Engl. J. Med. 370, 2467–2477 (2014)CrossRefGoogle Scholar
  76. 76.
    T. Sanna, H.-C. Diener, R.S. Passman, V. Di Lazzaro, R.A. Bernstein, C.A. Morillo, M.M. Rymer, V. Thijs, T. Rogers, F. Beckers, K. Lindborg, J. Brachmann, Cryptogenic stroke and underlying atrial fibrillation. N. Engl. J. Med. 370, 2478–2486 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Andrius Petrėnas
    • 1
  • Vaidotas Marozas
    • 1
  • Leif Sörnmo
    • 2
  1. 1.Biomedical Engineering InstituteKaunas University of TechnologyKaunasLithuania
  2. 2.Department of Biomedical Engineering and Center for Integrative ElectrocardiologyLund UniversityLundSweden

Personalised recommendations