Skip to main content

Part of the book series: Mechanical Engineering Series ((MES))

  • 1610 Accesses

Abstract

Low temperature combustion (LTC) is an engine combustion mode that yields ultralow NO x and soot emission levels along with high fuel conversion efficiency. Typically, LTC engines use premixed fuel–air mixture, and combustion is mainly governed by chemical kinetics. The LTC strategies such as partially premixed combustion (PPC) and reactivity-controlled compression ignition (RCCI) have some level of direct control on combustion phasing due to direct injection of fuel in the engine cylinder. However, homogeneous charge compression ignition (HCCI) combustion strategy lacks the direct control on combustion phasing. In HCCI combustion, ignition timings are kinetically controlled and affected by pressure and temperature history of the charge in the engine cylinder (indirect control). Therefore, HCCI combustion requires the combustion feedback control for its very operation. The present chapter describes the closed-loop combustion control in LTC engines. First, the need of closed-loop combustion control and control variables are discussed. Then, combustion feedback sensors and combustion control actuators are described in detail. Typically, cylinder pressure sensor and ion current sensors are used for sensing of combustion phasing in HCCI combustion. The last section presents the combustion control methods and various controllers used in different LTC strategies such as HCCI, PPC and RCCI, for closed-loop combustion control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maurya RK, Agarwal AK (2013) Experimental investigation of close-loop control of HCCI engine using dual fuel approach (No. 2013-01-1675). SAE technical paper

    Google Scholar 

  2. Bengtsson J (2004) Closed-loop control of HCCI engine dynamics. PhD Theses. Lund University, Sweden

    Google Scholar 

  3. Tunestål P, Johansson B (2007) HCCI control. In: CAI and HCCI engines for the automotive industry. Woodhead Publishing Limited, Cambridge, IL, USA, pp 164–184

    Google Scholar 

  4. Olsson JO, Tunestål P, Johansson B, Fiveland S, Agama R, Willi M, Assanis DN (2002) Compression ratio influence on maximum load of a natural gas fueled HCCI engine (No. 2002-01-0111). SAE technical paper

    Google Scholar 

  5. Strandh P, Bengtsson J, Johansson R, Tunestål P, Johansson B (2005) Variable valve actuation for timing control of a homogeneous charge compression ignition engine (No. 2005-01-0147). SAE technical paper

    Google Scholar 

  6. Sjöberg M, Dec JE (2009) Influence of EGR quality and unmixedness on the high-load limits of HCCI engines. SAE Int J Engines 2. (2009-01-0666):492–510

    Article  Google Scholar 

  7. Sjöberg M, Dec JE (2008) Influence of fuel autoignition reactivity on the high-load limits of HCCI engines. SAE Int J Engines 1(2008-01-0054):39–58

    Article  Google Scholar 

  8. Fathi M, Jahanian O, Shahbakhti M (2017) Modeling and controller design architecture for cycle-by-cycle combustion control of homogeneous charge compression ignition (HCCI) engines – a comprehensive review. Energy Convers Manag 139:1–19

    Article  Google Scholar 

  9. Bidarvatan M (2015) Physics-based modeling and control of powertrain systems integrated with low temperature combustion engines. PhD Thesis, Michigan Technological University, Houghton

    Google Scholar 

  10. Ingesson G, Yin L, Johansson R, Tunestal P (2015) Simultaneous control of combustion timing and ignition delay in multi-cylinder partially premixed combustion. SAE Int J Engines 8(2015-24-2424):2089–2098

    Google Scholar 

  11. Bengtsson J, Strandh P, Johansson R, Tunestål P, Johansson B (2004) Closed-loop combustion control of homogeneous charge compression ignition (HCCI) engine dynamics. Int J Adapt Control Signal Process 18(2):167–179

    Article  MATH  Google Scholar 

  12. Shaver GM, Gerdes JC, Roelle M (2004) Physics-based closed-loop control of phasing, peak pressure and work output in HCCI engines utilizing variable valve actuation. In: American control conference, 2004. Proceedings of the 2004, vol 1. IEEE, Massachusetts, USA, pp 150–155, June

    Google Scholar 

  13. Shaver GM, Gerdes JC, Roelle MJ (2009) Physics-based modeling and control of residual-affected HCCI engines. J Dyn Syst Meas Control 131(2):021002

    Article  Google Scholar 

  14. Maurya RK, Agarwal AK (2013) Investigations on the effect of measurement errors on estimated combustion and performance parameters in HCCI combustion engine. Measurement 46(1):80–88

    Article  Google Scholar 

  15. Maurya RK, Pal DD, Agarwal AK (2013) Digital signal processing of cylinder pressure data for combustion diagnostics of HCCI engine. Mech Syst Signal Process 36(1):95–109

    Article  Google Scholar 

  16. Ingesson G, Yin L, Johansson R, Tunestal P (2016) Control of the low-load region in partially premixed combustion. In: Journal of physics: conference series, vol 744, no. 1. IOP Publishing, p 012106, September

    Google Scholar 

  17. Arora JK, Shahbakhti M (2017). Real-time closed-loop control of a light-duty RCCI engine during transient operations (No. 2017-01-0767). SAE technical paper

    Google Scholar 

  18. Bidarvatan M, Thakkar V, Shahbakhti M, Bahri B, Aziz AA (2014) Grey-box modeling of HCCI engines. Appl Therm Eng 70(1):397–409

    Article  Google Scholar 

  19. Olsson JO, Tunestål P, Johansson B (2001) Closed-loop control of an HCCI engine (No. 2001-01-1031). SAE technical paper

    Google Scholar 

  20. Bidarvatan M, Shahbakhti M (2013) Two-input two-output control of blended fuel HCCI engines (No. 2013-01-1663). SAE technical paper

    Google Scholar 

  21. Ravi N, Liao HH, Jungkunz AF, Widd A, Gerdes JC (2012) Model predictive control of HCCI using variable valve actuation and fuel injection. Control Eng Pract 20(4):421–430

    Article  Google Scholar 

  22. Tandra V, Srivastava N (2009) Optimal peak pressure and exhaust temperature tracking control for a two-zone HCCI engine model with mean burn duration (No. 2009-01-1130). SAE technical paper

    Google Scholar 

  23. Williams S, Hu LR, Nakazono T, Ohtsubo H, Uchida M (2008) Oxidation catalysts for natural gas engine operating under HCCI or SI conditions. SAE Int J Fuels Lubr 1(2008-01-0807):326–337

    Article  Google Scholar 

  24. Bidarvatan M, Shahbakhti M (2014) Integrated HCCI engine control based on a performance index. J Eng Gas Turbines Power 136(10):101601

    Article  Google Scholar 

  25. Gorzelic P, Hellström E, Stefanopoulou A, Li J (2012) Model-based feedback control for an automated transfer out of SI operation during SI to HCCI transitions in gasoline engines. In: ASME 2012 5th annual dynamic systems and control conference joint with the JSME 2012 11th motion and vibration conference, Florida, USA, pp 359–367, October

    Google Scholar 

  26. Bidarvatan M, Kothari D, Shahbakhti M (2015) Integrated cycle-to-cycle control of exhaust gas temperature, load, and combustion phasing in an HCCI engine. In: American control conference (ACC). IEEE, Chicago, IL, USA, pp 7–12, July

    Google Scholar 

  27. Asad U, Divekar P, Chen X, Zheng M, Tjong J (2012) Mode switching control for diesel low temperature combustion with fast feedback algorithms. SAE Int J Engines 5(2012-01-0900):850–863

    Article  Google Scholar 

  28. Daw CS, Wagner RM, Edwards KD, Green JB (2007) Understanding the transition between conventional spark-ignited combustion and HCCI in a gasoline engine. Proc Combust Inst 31(2):2887–2894

    Article  Google Scholar 

  29. Abarbanel H (1996) Analysis of observed chaotic data. Springer, New York

    Google Scholar 

  30. Fang C, Yang F, Ouyang M, Gao G, Chen L (2013) Combustion mode switching control in a HCCI diesel engine. Appl Energy 110:190–200

    Article  Google Scholar 

  31. Wang J (2008) Hybrid robust air-path control for diesel engines operating conventional and low temperature combustion modes. IEEE Trans Control Syst Technol 16(6):1138–1151

    Article  Google Scholar 

  32. Delorme A, Rouseau A, Wallner T, Ortiz-Soto E, Babajimopolous A, Assanis D (2010) Evaluation of homogeneous charge compression ingition (HCCI) engine fuel savings for various electric drive powertrains. In: Proceeding of the 25th world battery, hybrid and fuel cell electric vehicle symposium and exhibition, EVS-25, Shenzhen, China

    Google Scholar 

  33. Lawler B, Ortiz-Soto E, Gupta R, Peng H, Filipi Z (2011) Hybrid electric vehicle powertrain and control strategy optimization to maximize the synergy with a gasoline HCCI engine. SAE Int J Engines 4(2011-01-0888):1115–1126

    Article  Google Scholar 

  34. Ahn K, Whitefoot J, Babajimopoulos A, Ortiz-Soto E, Papalambros PY (2013) Homogeneous charge compression ignition technology implemented in a hybrid electric vehicle: system optimal design and benefit analysis for a power-split architecture. Proc Inst Mech Eng D J Automob Eng 227(1):87–98

    Article  Google Scholar 

  35. Saracino R, Gaballo MR, Mannal S, Motz S, Carlucci A, Benegiamo M (2015) Cylinder pressure-based closed loop combustion control: A valid support to fulfill current and future requirements of diesel powertrain systems (No. 2015-24-2423). SAE technical paper

    Google Scholar 

  36. Wilhelmsson C (2007) Field programmable gate arrays and reconfigurable computing in automatic control. Lund University, Lund

    Google Scholar 

  37. Tunestål P (2001) Estimation of the in-cylinder air/fuel ratio of an internal combustion engine by the use of pressure sensors. PhD Thesis, Lund Institute of Technology, 1025

    Google Scholar 

  38. Sellnau MC, Matekunas FA, Battiston PA, Chang CF, Lancaster DR (2000) Cylinder-pressure-based engine control using pressure-ratio-management and low-cost non-intrusive cylinder pressure sensors (No. 2000-01-0932). SAE technical paper

    Google Scholar 

  39. Shimasaki Y, Kobayashi M, Sakamoto H, Ueno M, Hasegawa M, Yamaguchi S, Suzuki T (2004) Study on engine management system using in-cylinder pressure sensor integrated with spark plug (No. 2004-01-0519). SAE technical paper

    Google Scholar 

  40. Bogin G, Chen JY, Dibble RW (2009) The effects of intake pressure, fuel concentration, and bias voltage on the detection of ions in a homogeneous charge compression ignition (HCCI) engine. Proc Combust Inst 32(2):2877–2884

    Article  Google Scholar 

  41. Chen Y, Dong G, Mack JH, Butt RH, Chen JY, Dibble RW (2016) Cyclic variations and prior-cycle effects of ion current sensing in an HCCI engine: a time-series analysis. Appl Energy 168:628–635

    Article  Google Scholar 

  42. Saitzkoff A, Reinmann R, Mauss F, Glavmo M (1997) In-cylinder pressure measurements using the spark plug as an ionization sensor (No. 970857). SAE technical paper

    Google Scholar 

  43. Wang Y, Zhou L (2003) Investigation of the detection of knock and misfire of a spark ignition engine with the ionic current method. Proc Inst Mech Eng D J Automob Eng 217(7):617–621

    Article  Google Scholar 

  44. Strandh P, Christensen M, Bengtsson J, Johansson R, Vressner A, Tunestål P, Johansson B (2003) Ion current sensing for HCCI combustion feedback (No. 2003-01-3216). SAE technical paper

    Google Scholar 

  45. Prager J, Riedel U, Warnatz J (2007) Modeling ion chemistry and charged species diffusion in lean methane–oxygen flames. Proc Combust Inst 31(1):1129–1137

    Article  Google Scholar 

  46. Dong G, Chen Y, Li L, Wu Z, Dibble R (2017) A skeletal gasoline flame ionization mechanism for combustion timing prediction on HCCI engines. Proc Combust Inst 36(3):3669–3676

    Article  Google Scholar 

  47. Dong G, Li L, Wu Z, Zhang Z, Zhao D (2013) Study of the phase-varying mechanisms of ion current signals for combustion phasing in a gasoline HCCI engine. Fuel 113:209–215

    Article  Google Scholar 

  48. Lee JH, Hwang SH, Lim JS, Jeon DC, Cho YS (1998) A new knock-detection method using cylinder pressure, block vibration and sound pressure signals from a SI engine (No. 981436). SAE technical paper

    Google Scholar 

  49. Souder JS, Mack JH, Hedrick JK, Dibble RW (2004) Microphones and knock sensors for feedback control of HCCI engines. In: ASME 2004 internal combustion engine division fall technical conference. American Society of Mechanical Engineers, California, USA, pp 77–84, January

    Google Scholar 

  50. Urlaub M, Böhme JF (2004) Reconstruction of pressure signals on structure-borne sound for knock investigation (No. 2004-01-0521). SAE technical paper

    Google Scholar 

  51. Larsson S, Andersson I (2005) An experimental evaluation of torque sensor based feedback control of combustion phasing in an SI-engine (No. 2005-01-0060). SAE technical paper

    Google Scholar 

  52. Schagerberg S, McKelvey T (2003) Instantaneous crankshaft torque measurements-modeling and validation (No. 2003-01-0713). SAE technical paper

    Google Scholar 

  53. Guezennec YG, Gyan P (1999) A novel approach to real-time estimation of the individual cylinder combustion pressure for SI engine control (No. 1999-01-0209). SAE technical paper

    Google Scholar 

  54. Taraza D, Henein NA, Bryzik W (1998) Determination of the gas-pressure torque of a multicylinder engine from measurements of the crankshaft’s speed variation (No. 980164). SAE technical paper

    Google Scholar 

  55. Lee B, Rizzoni G, Guezennec Y, Soliman A, Cavalletti M, Waters J (2001) Engine control using torque estimation (No. 2001-01-0995). SAE technical paper

    Google Scholar 

  56. Ingesson G, Yin L, Johansson R, Tunestål P (2016) A double-injection control strategy for partially premixed combustion. IFAC-PapersOnLine 49(11):353–360

    Article  Google Scholar 

  57. Bengtsson J, Strandh P, Johansson R, Tunestål P, Johansson B (2006) Hybrid control of homogeneous charge compression ignition (HCCI) engine dynamics. Int J Control 79(05):422–448

    Article  MATH  MathSciNet  Google Scholar 

  58. Borgqvist P, Tunestal P, Johansson B (2012) Gasoline partially premixed combustion in a light duty engine at low load and idle operating conditions (No. 2012-01-0687). SAE technical paper

    Google Scholar 

  59. Borgqvist P, Tunestal P, Johansson B (2013) Comparison of negative valve overlap (NVO) and rebreathing valve strategies on a gasoline PPC engine at low load and idle operating conditions. SAE Int J Engines 6(2013-01-0902):366–378

    Article  Google Scholar 

  60. Maurya RK (2012) Performance, emissions and combustion characterization and close loop control of HCCI engine employing gasoline like fuels. PhD Thesis, Indian Institute of Technology Kanpur, India

    Google Scholar 

  61. Maurya RK, Agarwal AK (2014) Experimental investigations of performance, combustion and emission characteristics of ethanol and methanol fueled HCCI engine. Fuel Process Technol 126:30–48

    Article  Google Scholar 

  62. Maurya RK, Agarwal AK (2015) Combustion and emission characterization of n-butanol fueled HCCI engine. J Energy Resour Technol 137(1):011101

    Article  Google Scholar 

  63. Haraldsson G, Tunestål P, Johansson B, Hyvönen J (2005) Transient control of a multi cylinder HCCI engine during a drive cycle (No. 2005-01-0153). SAE technical paper

    Google Scholar 

  64. Maciejowski JM (2002) Predictive control: with constraints. Pearson Education, London

    Google Scholar 

  65. Bubnicki Z (2005) Modern control theory. Springer, New York

    Google Scholar 

  66. Wang L (2009) Model predictive control system design and implementation using MATLAB®. Springer-Verlag, London

    Google Scholar 

  67. Audet A, Koch CR (2009) Actuator comparison for closed loop control of HCCI combustion timing (No. 2009-01-1135). SAE technical paper

    Google Scholar 

  68. Bengtsson J, Strandh P, Johansson R, Tunestål P, Johansson B (2007) Hybrid modelling of homogeneous charge compression ignition (HCCI) engine dynamics – a survey. Int J Control 80(11):1814–1847

    Article  MATH  MathSciNet  Google Scholar 

  69. Ohmura T, Ikemoto M, Iida N (2006) A study on combustion control by using internal and external EGR for HCCI engines fuelled with DME (No. 2006-32-0045). SAE technical paper

    Google Scholar 

  70. Haraldsson G, Tunestål P, Johansson B, Hyvönen J (2004) HCCI closed-loop combustion control using fast thermal management (No. 2004-01-0943). SAE technical paper

    Google Scholar 

  71. Agrell F, Ångström HE, Eriksson B, Wikander J, Linderyd J (2003) Integrated simulation and engine test of closed loop HCCI control by aid of variable valve timings (No. 2003-01-0748). SAE technical paper

    Google Scholar 

  72. Haraldsson G, Tunestål P, Johansson B, Hyvönen J (2003) HCCI combustion phasing with closed-loop combustion control using variable compression ratio in a multi cylinder engine (No. 2003-01-1830). SAE technical paper

    Google Scholar 

  73. Shaver GM, Roelle M, Gerdes JC (2005) Decoupled control of combustion timing and work output in residual-affected HCCI engines. In: American control conference, 2005. Proceedings of the 2005. IEEE, pp 3871–3876, June

    Google Scholar 

  74. Kulzer A, Hathout JP, Sauer C, Karrelmeyer R, Fischer W, Christ A (2007) Multi-mode combustion strategies with CAI for a GDI engine (No. 2007-01-0214). SAE technical paper

    Google Scholar 

  75. Shaver GM, Roelle MJ, Caton PA, Kaahaaina NB, Ravi N, Hathout JP et al (2005) A physics-based approach to the control of homogeneous charge compression ignition engines with variable valve actuation. Int J Engine Res 6(4):361–375

    Article  Google Scholar 

  76. Strandh P, Bengtsson J, Johansson R, Tunestål P, Johansson B (2004) Cycle-to-cycle control of a dual-fuel HCCI engine (No. 2004-01-0941). SAE technical paper

    Google Scholar 

  77. Widd A, Ekholm K, Tunestal P, Johansson R (2012) Physics-based model predictive control of HCCI combustion phasing using fast thermal management and VVA. IEEE Trans Control Syst Technol 20(3):688–699

    Article  Google Scholar 

  78. Janakiraman VM, Nguyen X, Assanis D (2016) An ELM based predictive control method for HCCI engines. Eng Appl Artif Intell 48:106–118

    Article  Google Scholar 

  79. Bengtsson J, Strandh P, Johansson R, Tunestal P, Johansson B (2006) Model predictive control of homogeneous charge compression ignition (HCCI) engine dynamics. In: Computer aided control system design, 2006 I.E. international conference on control applications, 2006 I.E. international symposium on intelligent control, 2006 IEEE. IEEE, pp 1675–1680, October

    Google Scholar 

  80. Bengtsson J, Strandh P, Johansson R, Tunestål P, Johansson B (2006) Multi-output control of a heavy duty HCCI engine using variable valve actuation and model predictive control (No. 2006-01-0873). SAE technical paper

    Google Scholar 

  81. Lewander M, Johansson B, Tunestål P, Keeler N, Milovanovic N, Bergstrand P (2008) Closed loop control of a partially premixed combustion engine using model predictive control strategies. In: Proceedings of AVEC, vol 8. Japan

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maurya, R.K. (2018). Closed-Loop Combustion Control. In: Characteristics and Control of Low Temperature Combustion Engines. Mechanical Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-319-68508-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68508-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68507-6

  • Online ISBN: 978-3-319-68508-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics