Skip to main content

Part of the book series: Mechanical Engineering Series ((MES))

  • 1752 Accesses

Abstract

Combustion characteristics of an engine determine its performance and emission characteristics. This chapter presents the combustion characteristic of LTC engines using different gasoline-like fuels (ethanol and methanol) vis-à-vis conventional fuels. First, combustion kinetics of ethanol and methanol in premixed charge compression ignition engine is discussed using reaction pathway and sensitivity analysis. Combustion kinetics in LTC engine using hydrocarbon fuels is discussed in Chap. 2. Ignition and heat release characteristics of LTC combustion process are described by analysis of ignition delay, in-cylinder pressure, pressure rise rate, ringing intensity, heat release rate, start of combustion, combustion phasing, combustion duration and combustion efficiency. Effect of different engine operating conditions on combustion characteristics of ethanol and methanol vis-à-vis conventional fuels in HCCI, PPC and RCCI combustion is discussed in the present chapter. Combustion stability and cyclic variation analysis of combustion parameters using statistical and nonlinear dynamic methods are also discussed in the last section of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aceves SM, Flowers DL, Westbrook CK, Smith JR, Pitz W, Dibble R et al (2000) A multi-zone model for prediction of HCCI combustion and emissions (No. 2000-01-0327). SAE technical paper. doi:https://doi.org/10.4271/2000-01-0327

  2. Sarathy SM, Oßwald P, Hansen N, Kohse-Höinghaus K (2014) Alcohol combustion chemistry. Prog Energy Combust Sci 44:40–102

    Article  Google Scholar 

  3. Da Silva G, Bozzelli JW, Liang L, Farrell JT (2009) Ethanol oxidation: kinetics of the α-hydroxyethyl radical+ O2 reaction. Chem A Eur J 113(31):8923–8933

    Google Scholar 

  4. Maurya RK, Akhil N (2016) Numerical investigation of ethanol fuelled HCCI engine using stochastic reactor model. Part 1: development of a new reduced ethanol oxidation mechanism. Energy Convers Manag 118:44–54

    Article  Google Scholar 

  5. Maurya RK, Akhil N (2016) Numerical investigation of ethanol fuelled HCCI engine using stochastic reactor model. Part 2: parametric study of performance and emissions characteristics using new reduced ethanol oxidation mechanism. Energy Convers Manag 121:55–70

    Article  Google Scholar 

  6. Vuilleumier DM (2016) The effect of ethanol addition to gasoline on low- and intermediate temperature heat release under boosted conditions in kinetically controlled engines. PhD thesis, University of California, Berkeley

    Google Scholar 

  7. Vuilleumier D, Kozarac D, Mehl M, Saxena S, Pitz WJ, Dibble RW, Chen JY, Sarathy SM (2014) Intermediate temperature heat release in an HCCI engine fueled by ethanol/n-heptane mixtures: an experimental and modeling study. Combust Flame 161(3):680–695

    Article  Google Scholar 

  8. Aranda V, Christensen JM, Alzueta MU, Glarborg P, Gersen S, Gao Y, Marshall P (2013) Experimental and kinetic modeling study of methanol ignition and oxidation at high pressure. In J Chem Kinet 45(5):283–294

    Article  Google Scholar 

  9. Dayma G, Ali KH, Dagaut P (2007) Experimental and detailed kinetic modeling study of the high pressure oxidation of methanol sensitized by nitric oxide and nitrogen dioxide. Proc Combust Inst 31(1):411–418

    Article  Google Scholar 

  10. Amer A, Babiker H, Chang J, Kalghatgi G, Adomeit P, Brassat A, Günther M (2012) Fuel effects on knock in a highly boosted direct injection spark ignition engine. SAE Int J Fuels Lubr 5:1048–1065. (2012-01-1634)

    Article  Google Scholar 

  11. Vandersickel A, Hartmann M, Vogel K, Wright YM, Fikri M, Starke R, Schulz C, Boulouchos K (2012) The autoignition of practical fuels at HCCI conditions: high-pressure shock tube experiments and phenomenological modeling. Fuel 93:492–501

    Article  Google Scholar 

  12. Blomberg CK, Mitakos D, Bardi M, Boulouchos K, Wright YM, Vandersickel A (2016) Extension of the phenomenological 3-Arrhenius auto-ignition model for six surrogate automotive fuels. SAE Int J Engines 9:1544–1558. (2016-01-0755)

    Google Scholar 

  13. Herzler J, Jerig L, Roth P (2005) Shock tube study of the ignition of lean n-heptane/air mixtures at intermediate temperatures and high pressures. Proc Combust Inst 30(1):1147–1153

    Article  Google Scholar 

  14. Ciezki HK, Adomeit G (1993) Shock-tube investigation of self-ignition of n-heptane-air mixtures under engine relevant conditions. Combust Flame 93(4):421–433

    Article  Google Scholar 

  15. Dec JE, Yang Y (2010) Boosted HCCI for high power without engine knock and with ultra-low NOx emissions-using conventional gasoline. SAE Int J Engines 3:750–767. (2010-01-1086)

    Article  Google Scholar 

  16. Splitter DA (2012) High efficiency RCCI combustion. PhD thesis, University of Wisconsin-Madison

    Google Scholar 

  17. Christensen M (2002) HCCI combustion-engine operation and emission characteristics. PhD thesis, Lund University, Sweden, ISBN 91-628-5424-0

    Google Scholar 

  18. Truedsson I, Tuner M, Johansson B, Cannella W (2013) Pressure sensitivity of HCCI auto-ignition temperature for oxygenated reference fuels. J Eng Gas Turbines Power 135(7):072801

    Article  Google Scholar 

  19. Maurya RK, Pal DD, Agarwal AK (2013) Digital signal processing of cylinder pressure data for combustion diagnostics of HCCI engine. Mech Syst Signal Process 36(1):95–109

    Article  Google Scholar 

  20. Maurya RK (2016) Estimation of optimum number of cycles for combustion analysis using measured in-cylinder pressure signal in conventional CI engine. Measurement 94:19–25

    Article  Google Scholar 

  21. Payri F, Broatch A, Tormos B, Marant V (2005) New methodology for in-cylinder pressure analysis in direct injection diesel engines—application to combustion noise. Meas Sci Technol 16(2):540

    Article  Google Scholar 

  22. Maurya RK, Agarwal AK (2013) Investigations on the effect of measurement errors on estimated combustion and performance parameters in HCCI combustion engine. Measurement 46(1):80–88

    Article  Google Scholar 

  23. Singh E, Waqas M, Johansson B, Sarathy M (2017) Simulating HCCI blending octane number of primary reference fuel with ethanol (No. 2017-01-0734). SAE technical paper

    Google Scholar 

  24. Maurya RK (2012) Performance, emissions and combustion characterization and close loop control of HCCI engine employing gasoline like fuels. PhD thesis, Indian Institute of Technology, Kanpur

    Google Scholar 

  25. Dec JE, Yang Y, Dernotte J, Ji C (2015) Effects of gasoline reactivity and ethanol content on boosted, premixed and partially stratified low-temperature gasoline combustion (LTGC). SAE Int J Engines 8:935–955. (2015-01-0813)

    Article  Google Scholar 

  26. Dernotte J, Dec J, Ji C (2017) Efficiency improvement of boosted low-temperature gasoline combustion engines (LTGC) using a double direct-injection strategy (No. 2017-01-0728). SAE technical paper

    Google Scholar 

  27. Solaka H (2014) Impact of fuel properties on partially premixed combustion. PhD thesis, Lund University, Sweden

    Google Scholar 

  28. Solaka H, Tunér M, Johansson B (2012) Investigation on the impact of fuel properties on partially premixed combustion characteristics in a light duty diesel engine. In: ASME 2012 internal combustion engine division spring technical conference. American Society of Mechanical Engineers, p 335–345, 2012, May

    Google Scholar 

  29. Benajes J, Molina S, García A, Belarte E, Vanvolsem M (2014) An investigation on RCCI combustion in a heavy duty diesel engine using in-cylinder blending of diesel and gasoline fuels. Appl Therm Eng 63(1):66–76

    Article  Google Scholar 

  30. Li Y, Jia M, Liu Y, Xie M (2013) Numerical study on the combustion and emission characteristics of a methanol/diesel reactivity controlled compression ignition (RCCI) engine. Appl Energy 106:184–197

    Article  Google Scholar 

  31. Zou X, Wang H, Zheng Z, Reitz R, Yao M (2016) Numerical study of the RCCI combustion processes fuelled with methanol, ethanol, n-butanol and diesel (No. 2016-01-0777). SAE technical paper

    Google Scholar 

  32. Splitter D, Reitz RD, Hanson R (2010) High efficiency, low emissions RCCI combustion by use of a fuel additive. SAE Int J Fuels Lubr 3:742–756. (2010-01-2167)

    Article  Google Scholar 

  33. Hanson R, Kokjohn S, Splitter D, Reitz RD (2011) Fuel effects on reactivity controlled compression ignition (RCCI) combustion at low load. SAE Int J Engines 4:394–411. (2011-01-0361)

    Article  Google Scholar 

  34. Manente V (2010) Gasoline partially premixed combustion-an advanced internal combustion engine concept aimed to high efficiency, low emissions and low acoustic noise in the whole load range. PhD thesis, Lund University, Sweden

    Google Scholar 

  35. Maurya RK, Agarwal AK (2014) Experimental investigations of performance, combustion and emission characteristics of ethanol and methanol fueled HCCI engine. Fuel Process Technol 126:30–48

    Article  Google Scholar 

  36. Sjöberg M, Dec JE, Babajimopoulos A, Assanis DN (2004) Comparing enhanced natural thermal stratification against retarded combustion phasing for smoothing of HCCI heat-release rates (No. 2004-01-2994). SAE technical paper

    Google Scholar 

  37. Zhao H, Xie H, Peng Z (2005) Effect of recycled burned gases on homogeneous charge compression ignition combustion. Combust Sci Technol 177(10):1863–1882

    Article  Google Scholar 

  38. Zhao H, Peng Z, Williams J, Ladommatos N (2001) Understanding the effects of recycled burnt gases on the controlled autoignition (CAI) combustion in four-stroke gasoline engines (No. 2001-01-3607). SAE technical paper

    Google Scholar 

  39. Risberg P, Johansson D, Andrae J, Kalghatgi G, Björnbom P, Ångström HE (2006) The influence of NO on the combustion phasing in an HCCI engine (No. 2006-01-0416). SAE technical paper

    Google Scholar 

  40. Xie H, Lu J, Chen T, Li L, Li C, Zhao H (2014) Chemical effects of the incomplete-oxidation products in residual gas on the gasoline HCCI auto-ignition. Combust Sci Technol 186(3):273–296

    Article  Google Scholar 

  41. Herold RE, Foster DE, Ghandhi JB, Iverson RJ, Eng JA, Najt PM (2007) Fuel unmixedness effects in a gasoline homogeneous charge compression ignition engine. Int J Engine Res 8(3):241–257

    Article  Google Scholar 

  42. Robert Bosch GmbH (2006) Gasoline engine management, 3rd edn. Wiley. Chichester, England ISBN:978-0-470-05757-5

    Google Scholar 

  43. Maurya RK, Agarwal AK (2011) Effect of start of injection on the particulate emission from methanol fuelled HCCI engine. SAE Int J Fuels Lubr 4:204–222. (2011-01-2408)

    Article  Google Scholar 

  44. Dec JE, Yang Y, Dronniou N (2011) Boosted HCCI-controlling pressure-rise rates for performance improvements using partial fuel stratification with conventional gasoline. SAE Int J Engines 4:1169–1189. (2011-01-0897)

    Article  Google Scholar 

  45. Manente V, Zander CG, Johansson B, Tunestal P, Cannella W (2010) An advanced internal combustion engine concept for low emissions and high efficiency from idle to max load using gasoline partially premixed combustion (No. 2010-01-2198). SAE technical paper

    Google Scholar 

  46. Li Y, Jia M, Chang Y, Xie M, Reitz RD (2016) Towards a comprehensive understanding of the influence of fuel properties on the combustion characteristics of a RCCI (reactivity controlled compression ignition) engine. Energy 99:69–82

    Article  Google Scholar 

  47. Desantes JM, Benajes J, García A, Monsalve-Serrano J (2014) The role of the in-cylinder gas temperature and oxygen concentration over low load reactivity controlled compression ignition combustion efficiency. Energy 78:854–868

    Article  Google Scholar 

  48. Wang Y, Yao M, Li T, Zhang W, Zheng Z (2016) A parametric study for enabling reactivity controlled compression ignition (RCCI) operation in diesel engines at various engine loads. Appl Energy 175:389–402

    Article  Google Scholar 

  49. Park SH, Shin D, Park J (2016) Effect of ethanol fraction on the combustion and emission characteristics of a dimethyl ether-ethanol dual-fuel reactivity controlled compression ignition engine. Appl Energy 182:243–252

    Article  Google Scholar 

  50. Li Y, Jia M, Chang Y, Liu Y, Xie M, Wang T, Zhou L (2014) Parametric study and optimization of a RCCI (reactivity controlled compression ignition) engine fueled with methanol and diesel. Energy 65:319–332

    Article  Google Scholar 

  51. Christensen M, Johansson B (1999) Homogeneous charge compression ignition with water injection (No. 1999-01-0182). SAE technical paper

    Google Scholar 

  52. Christensen M, Johansson B, Einewall P (1997) Homogeneous charge compression ignition (HCCI) using isooctane, ethanol and natural gas-a comparison with spark ignition operation (No. 972874). SAE technical paper

    Google Scholar 

  53. Christensen M, Johansson B, Amnéus P, Mauss F (1998) Supercharged homogeneous charge compression ignition (No. 980787). SAE technical paper

    Google Scholar 

  54. Christensen M, Johansson B, Hultqvist A (2001) The effect of piston topland geometry on emissions of unburned hydrocarbons from a homogeneous charge compression ignition (HCCI) engine (No. 2001-01-1893). SAE technical paper

    Google Scholar 

  55. Truedsson I, Tuner M, Johansson B, Cannella W (2013) Emission formation study of HCCI combustion with gasoline surrogate fuels (No. 2013-01-2626). SAE technical paper

    Google Scholar 

  56. Ji C, Dec JE, Dernotte J, Cannella W (2014) Effect of ignition improvers on the combustion performance of regular-grade E10 gasoline in an HCCI engine. SAE Int J Engines 7:790–806. (2014-01-1282)

    Article  Google Scholar 

  57. Manente V, Tunestal P, Johansson B, Cannella WJ (2010) Effects of ethanol and different type of gasoline fuels on partially premixed combustion from low to high load (No. 2010-01-0871). SAE technical paper

    Google Scholar 

  58. Molina S, García A, Pastor JM, Belarte E, Balloul I (2015) Operating range extension of RCCI combustion concept from low to full load in a heavy-duty engine. Appl Energy 143:211–227

    Article  Google Scholar 

  59. Hanson RM (2014) Experimental investigation of transient RCCI combustion in a light duty diesel engine, PhD thesis, University of Wisconsin-Madison

    Google Scholar 

  60. Benajes J, Molina S, García A, Monsalve-Serrano J (2015) Effects of direct injection timing and blending ratio on RCCI combustion with different low reactivity fuels. Energy Convers Manag 99:193–209

    Article  Google Scholar 

  61. Dev S, Divekar P, Xie K, Han X, Chen X, Zheng M (2015) A study of combustion inefficiency in diesel low temperature combustion and gasoline–diesel RCCI via detailed emission measurement. J Eng Gas Turbines Power 137(12):121501

    Article  Google Scholar 

  62. Eng JA (2002) Characterization of pressure waves in HCCI combustion (No. 2002-01-2859). SAE technical paper

    Google Scholar 

  63. Sang W (2013) Knock mitigation on boosted controlled auto-ignition engines with fuel stratification and exhaust gas recycling. Doctoral dissertation, Massachusetts Institute of Technology

    Google Scholar 

  64. Maria AG (2012) On fuel selection in controlled auto-ignition engines: the link between intake conditions, chemical kinetics, and stratification. Doctoral dissertation, Massachusetts Institute of Technology

    Google Scholar 

  65. Andreae MM, Cheng WK, Kenney T, Yang J (2007) On HCCI engine knock (No. 2007-01-1858). SAE technical paper

    Google Scholar 

  66. Yelvington PE, Rallo MBI, Liput S, Tester JW, Green WH, Yang J (2004) Prediction of performance maps for homogeneous-charge compression-ignition engines. Combust Sci Technol 176(8):1243–1282

    Article  Google Scholar 

  67. Draper CS (1938) Pressure waves accompanying detonation in the internal combustion engine. J Aeronaut Sci 5(6):219–226

    Article  Google Scholar 

  68. Dahl D, Andersson M, Denbratt I (2011) The origin of pressure waves in high load HCCI combustion: a high-speed video analysis. Combust Sci Technol 183(11):1266–1281

    Article  Google Scholar 

  69. Hyvönen J, Haraldsson G, Johansson B (2005) Operating conditions using spark assisted HCCI combustion during combustion mode transfer to SI in a multi-cylinder VCR-HCCI engine (No. 2005-01-0109). SAE technical paper

    Google Scholar 

  70. Kim KS (2015) Study of engine knock using a Monte Carlo method. Doctoral dissertation, The University of Wisconsin-Madison

    Google Scholar 

  71. Brunt MF, Pond CR, Biundo J (1998) Gasoline engine knock analysis using cylinder pressure data (No. 980896). SAE technical paper

    Google Scholar 

  72. Shahlari AJ (2016) An investigation of the knock measurement. Doctoral dissertation, The University of Wisconsin-Madison

    Google Scholar 

  73. Dernotte J, Dec JE, Ji C (2014) Investigation of the sources of combustion noise in HCCI engines. SAE Int J Engines 7:730–761. (2014-01-1272)

    Article  Google Scholar 

  74. Johansson T, Johansson B, Tunestål P, Aulin H (2009) HCCI operating range in a turbo-charged multi cylinder engine with VVT and spray-guided DI (No. 2009-01-0494). SAE technical paper

    Google Scholar 

  75. Maria A, Cheng WK, Kar K, Cannella W (2013) Understanding knock metric for controlled auto-ignition engines. SAE Int J Engines 6:533–540. (2013-01-1658)

    Article  Google Scholar 

  76. Wissink M, Wang Z, Splitter D, Shahlari A, Reitz RD (2013) Investigation of pressure oscillation modes and audible noise in RCCI, HCCI, and CDC (No. 2013-01-1652). SAE technical paper

    Google Scholar 

  77. Saxena S, Bedoya ID (2013) Fundamental phenomena affecting low temperature combustion and HCCI engines, high load limits and strategies for extending these limits. Prog Energy Combust Sci 39(5):457–488

    Article  Google Scholar 

  78. Agarwal AK, Singh AP, Maurya RK (2017) Evolution, challenges and path forward for low temperature combustion engines. Prog Energy Combust Sci 61:1–56

    Article  Google Scholar 

  79. Fuerhapter A, Piock WF, Fraidl GK (2003) CSI-controlled auto ignition-the best solution for the fuel consumption-versus emission trade-Off? (No. 2003-01-0754). SAE technical paper

    Google Scholar 

  80. Cairns A, Blaxill H (2005) The effects of combined internal and external exhaust gas recirculation on gasoline controlled auto-ignition (No. 2005-01-0133). SAE technical paper

    Google Scholar 

  81. Milovanovic N, Blundell D, Pearson RJ, Turner JWG, Chen R (2005) Enlarging the operational range of a gasoline HCCI engine by controlling the coolant temperature (No. 2005-01-015). SAE technical paper

    Google Scholar 

  82. Maurya RK, Agarwal AK (2011) Experimental study of combustion and emission characteristics of ethanol fuelled port injected homogeneous charge compression ignition (HCCI) combustion engine. Appl Energy 88(4):1169–1180

    Article  Google Scholar 

  83. Yeom K, Bae C (2009) Knock characteristics in liquefied petroleum gas (LPG)− dimethyl ether (DME) and gasoline− DME homogeneous charge compression ignition engines. Energy Fuel 23(4):1956–1964

    Article  Google Scholar 

  84. Johansson T, Borgqvist P, Johansson B, Tunestal P, Aulin H (2010) HCCI heat release data for combustion simulation, based on results from a turbocharged multi cylinder engine (No. 2010-01-1490). SAE technical paper

    Google Scholar 

  85. Oakley A, Zhao H, Ladommatos N, Ma T (2001) Experimental studies on controlled auto-ignition (CAI) combustion of gasoline in a 4-stroke engine (No. 2001-01-1030). SAE technical paper

    Google Scholar 

  86. Hou J, Qiao X, Wang Z, Liu W, Huang Z (2010) Characterization of knocking combustion in HCCI DME engine using wavelet packet transform. Appl Energy 87(4):1239–1246

    Article  Google Scholar 

  87. Scaringe RJ, Wildman CB, Cheng WK (2010) On the high load limit of boosted gasoline HCCI engine operating in NVO mode. SAE Int J Engines 3(1):35–45. https://doi.org/10.4271/2010-01-0162

    Article  Google Scholar 

  88. Shi L, Cui Y, Deng K, Peng H, Chen Y (2006) Study of low emission homogeneous charge compression ignition (HCCI) engine using combined internal and external exhaust gas recirculation (EGR). Energy 31(14):2665–2676

    Article  Google Scholar 

  89. Wildman C, Scaringe RJ, Cheng W (2009) On the maximum pressure rise rate in boosted HCCI operation (No. 2009-01-2727). SAE technical paper

    Google Scholar 

  90. Kalghatgi GT, Head RA (2006) Combustion limits and efficiency in a homogeneous charge compression ignition engine. Int J Engine Res 7(3):215–236

    Article  Google Scholar 

  91. Livengood JC, Wu PC (1955) Correlation of autoignition phenomena in internal combustion engines and rapid compression machines. Symp (Int) Combust 5(1). Elsevier):347–356

    Article  Google Scholar 

  92. Dahl D, Andersson M, Berntsson A, Denbratt I, Koopmans L (2009) Reducing pressure fluctuations at high loads by means of charge stratification in HCCI combustion with negative valve overlap (No. 2009-01-1785). SAE technical paper

    Google Scholar 

  93. Wildman CBE (2009) High load limits of the controlled autoignition engine. Doctoral dissertation, Massachusetts Institute of Technology

    Google Scholar 

  94. Sjöberg M, Dec JE (2007) EGR and intake boost for managing HCCI low-temperature heat release over wide ranges of engine speed (No. 2007-01-0051). SAE technical paper

    Google Scholar 

  95. Shahlari AJ, Hocking C, Kurtz E, Ghandhi J (2013) Comparison of compression ignition engine noise metrics in low-temperature combustion regimes. SAE Int J Engines 6:541–552. (2013-01-1659)

    Article  Google Scholar 

  96. Bahri B, Shahbakhti M, Aziz AA (2017) Real-time modeling of ringing in HCCI engines using artificial neural networks. Energy 125:509–518

    Article  Google Scholar 

  97. Atkins RD (2009) An introduction to engine testing and development. SAE International, Warrendale. ISBN:978-0-7680-2099-1

    Google Scholar 

  98. Li H, Neill WS, Chippior WL (2012) An experimental investigation of HCCI combustion stability using n-heptane. J Energy Resour Technol 134(2):022204

    Article  Google Scholar 

  99. Yun H, Kang JM, Chang MF, Najt P (2010) Improvement on cylinder-to-cylinder variation using a cylinder balancing control strategy in gasoline HCCI engines (No. 2010-01-0848). SAE technical paper

    Google Scholar 

  100. Shaver GM, Roelle MJ, Gerdes JC (2006) Modeling cycle-to-cycle dynamics and mode transition in HCCI engines with variable valve actuation. Control Eng Pract 14(3):213–222

    Article  Google Scholar 

  101. Jungkunz AF (2013) Actuation strategies for cycle-to-cycle control of homogeneous charge compression ignition combustion engines. Doctoral dissertation, Stanford University

    Google Scholar 

  102. Shahbakhti M, Koch CR (2008) Characterizing the cyclic variability of ignition timing in a homogeneous charge compression ignition engine fuelled with n-heptane/iso-octane blend fuels. Int J Engine Res 9(5):361–397

    Article  Google Scholar 

  103. Koopmans L, Backlund O, Denbratt I (2002) Cycle to cycle variations: their influence on cycle resolved gas temperature and unburned hydrocarbons from a camless gasoline compression ignition engine (No. 2002-01-0110). SAE technical paper

    Google Scholar 

  104. Maurya RK, Agarwal AK (2009) Experimental investigation of cycle-by-cycle variations in CAI/HCCI combustion of gasoline and methanol fuelled engine (No. 2009-01-1345). SAE technical paper

    Google Scholar 

  105. Maurya RK, Agarwal AK (2011) Experimental investigation on the effect of intake air temperature and air–fuel ratio on cycle-to-cycle variations of HCCI combustion and performance parameters. Appl Energy 88(4):1153–1163

    Article  Google Scholar 

  106. Maurya RK, Agarwal AK (2012) Statistical analysis of the cyclic variations of heat release parameters in HCCI combustion of methanol and gasoline. Appl Energy 89(1):228–236

    Article  Google Scholar 

  107. Maurya RK, Agarwal AK (2013) Experimental investigation of cyclic variations in HCCI combustion parameters for gasoline like fuels using statistical methods. Appl Energy 111:310–323

    Article  Google Scholar 

  108. Lü X, Ji L, Ma J, Huang Z (2007) Combustion stabilities and cycle-by-cycle variations of n-heptane homogeneous charge compression ignition combustion. Energy Fuel 21(3):1468–1473

    Article  Google Scholar 

  109. Persson H, Pfeiffer R, Hultqvist A, Johansson B, Ström H (2005) Cylinder-to-cylinder and cycle-to-cycle variations at HCCI operation with trapped residuals (No. 2005-01-0130). SAE technical paper

    Google Scholar 

  110. Richter M, Engström J, Franke A, Aldén M, Hultqvist A, Johansson B (2000) The influence of charge inhomogeneity on the HCCI combustion process (No. 2000-01-2868). SAE technical paper

    Google Scholar 

  111. Aleiferis PG, Charalambides AG, Hardalupas Y, Taylor AMKP, Urata Y (2006) Autoignition initiation and development of n-heptane HCCI combustion assisted by inlet air heating, internal EGR or spark discharge: an optical investigation (No. 2006-01-3273). SAE technical paper

    Google Scholar 

  112. Pan J, Sheppard CGW, Tindall A, Berzins M, Pennington SV, Ware JM (1998) End gas inhomogeneity, autoignition and knock (No. 982616). SAE technical paper

    Google Scholar 

  113. Yu R, Bai XS, Lehtiniemi H, Ahmed SS, Mauss F, Richter M, et al (2006) Effect of turbulence and initial temperature inhomogeneity on homogeneous charge compression ignition combustion (No. 2006-01-3318). SAE technical paper

    Google Scholar 

  114. Dronniou N, Dec JE (2012) Investigating the development of thermal stratification from the near-wall regions to the bulk-gas in an HCCI engine with planar imaging thermometry. SAE Int J Engines 5:1046–1074. (2012-01-1111)

    Article  Google Scholar 

  115. Chiang CJ, Stefanopoulou AG (2007) Stability analysis in homogeneous charge compression ignition (HCCI) engines with high dilution. IEEE Trans Control Syst Technol 15(2):209–219

    Article  Google Scholar 

  116. Olsson JO, Tunestål P, Johansson B, Fiveland S, Agama R, Willi M, Assanis DN (2002) Compression ratio influence on maximum load of a natural gas fueled HCCI engine (No. 2002-01-0111). SAE technical paper

    Google Scholar 

  117. Grünefeld G, Beushausen V, Andresen P, Hentschel W (1994) A major origin of cyclic energy conversion variations in SI engines: cycle-by-cycle variations of the equivalence ratio and residual gas of the initial charge (No. 941880). SAE technical paper

    Google Scholar 

  118. Liu C, Karim GA, Sohrabi A, Xiao F (2006) Combustion and cyclic variation for lean mixture operation. In: Proceedings of ASME ICED 2006 spring technical conference. ASME paper no. ICES2006-01-1564, Aachen

    Google Scholar 

  119. Jung D, Iida N (2017) Thermal and chemical effects of the in-cylinder charge at IVC on cycle-to-cycle variations of DME HCCI combustion with combustion-phasing retard by external and rebreathed EGR. Appl Therm Eng 113:132–149

    Article  Google Scholar 

  120. Borgqvist P, Tunestal P, Johansson B (2013) Comparison of negative valve overlap (NVO) and rebreathing valve strategies on a gasoline PPC engine at low load and idle operating conditions. SAE Int J Engines 6:366–378. (2013-01-0902)

    Article  Google Scholar 

  121. Klos D, Kokjohn SL (2015) Investigation of the sources of combustion instability in low-temperature combustion engines using response surface models. Int J Engine Res 16(3):419–440

    Article  Google Scholar 

  122. Sjöberg M, Dec JE, Cernansky NP (2005) Potential of thermal stratification and combustion retard for reducing pressure-rise rates in HCCI engines, based on multi-zone modeling and experiments (No. 2005-01-0113). SAE technical paper

    Google Scholar 

  123. Guo H, Neill WS, Chippior W, Li H, Taylor JD (2010) An experimental and modeling study of HCCI combustion using n-heptane. J Eng Gas Turbines Power 132(2):022801

    Article  Google Scholar 

  124. Chang J, Filipi Z, Assanis D, Kuo TW, Najt P, Rask R (2005) Characterizing the thermal sensitivity of a gasoline homogeneous charge compression ignition engine with measurements of instantaneous wall temperature and heat flux. Int J Engine Res 6(4):289–310

    Article  Google Scholar 

  125. Jia M, Dempsey AB, Wang H, Li Y, Reitz RD (2015) Numerical simulation of cyclic variability in reactivity-controlled compression ignition combustion with a focus on the initial temperature at intake valve closing. Int J Engine Res 16(3):441–460

    Article  Google Scholar 

  126. Sjöberg M, Dec JE (2007) Comparing late-cycle autoignition stability for single-and two-stage ignition fuels in HCCI engines. Proc Combust Inst 31(2):2895–2902

    Article  Google Scholar 

  127. Ghazimirsaied A (2012) Extending HCCI low load operation using Chaos prediction and feedback control. Doctoral dissertation, University of Alberta

    Google Scholar 

  128. Daw CS, Finney CEA, Green JB, Kennel MB, Thomas JF, Connolly FT (1996) A simple model for cyclic variations in a spark-ignition engine (No. 962086). SAE technical paper

    Google Scholar 

  129. Daw CS, Wagner RM, Edwards KD, Green JB (2007) Understanding the transition between conventional spark-ignited combustion and HCCI in a gasoline engine. Proc Combust Inst 31(2):2887–2894

    Article  Google Scholar 

  130. Green JB, Daw CS, Armfield JS, Finney CEA, Wagner RM, Drallmeier JA et al (1999) Time irreversibility and comparison of cyclic-variability models (No. 1999-01-0221). SAE technical paper

    Google Scholar 

  131. Ghazimirsaied A, Koch CR (2012) Controlling cyclic combustion timing variations using a symbol-statistics predictive approach in an HCCI engine. Appl Energy 92:133–146

    Article  Google Scholar 

  132. Scholl D, Russ S (1999) Air-fuel ratio dependence of random and deterministic cyclic variability in a spark-ignited engine (No. 1999-01-3513). SAE technical paper

    Google Scholar 

  133. Maurya RK, Agarwal AK (2011) Experimental investigation on intake air temperature and air-fuel ratio dependence of random and deterministic cyclic variability in a homogeneous charge compression ignition engine (No. 2011-01-1183). SAE technical paper

    Google Scholar 

  134. Chang J, Filipi Z, Assanis D, Kuo T, Najt P, Rask R (2008) NIST/SEMATECH e-Handbook of statistical methods. http://www.itl.nist.gov/div898/handbook

  135. Sen AK, Litak G, Edwards KD, Finney CE, Daw CS, Wagner RM (2011) Characteristics of cyclic heat release variability in the transition from spark ignition to HCCI in a gasoline engine. Appl Energy 88(5):1649–1655

    Article  Google Scholar 

  136. Maurya RK, Nekkanti A (2016) Combustion instability analysis using wavelets in conventional diesel engine. In: Mathematical concepts and applications in mechanical engineering and mechatronics, IGI Global, Hershey, Pennsylvania, USA. p 390

    Google Scholar 

  137. Hunicz J (2014) On cyclic variability in a residual effected HCCI engine with direct gasoline injection during negative valve overlap. Math Probl Eng 2014:1–11

    Article  Google Scholar 

  138. Maurya RK, Saxena MR (2016) Investigation of effect of butanol addition on cyclic variability in a diesel engine using wavelets. In: The international symposium on intelligent systems technologies and applications. Springer International Publishing, Cham, Switzerland. p 965–976

    Google Scholar 

  139. Sen AK, Longwic R, Litak G, Górski K (2008) Analysis of cycle-to-cycle pressure oscillations in a diesel engine. Mech Syst Signal Process 22(2):362–373

    Article  Google Scholar 

  140. Finney CE, Kaul BC, Daw CS, Wagner RM, Edwards KD, Green JB Jr (2015) Invited review: a review of deterministic effects in cyclic variability of internal combustion engines. Int J Engine Res 16(3):366–378

    Article  Google Scholar 

  141. Kaul BC, Vance JB, Drallmeier JA, Sarangapani J (2009) A method for predicting performance improvements with effective cycle-to-cycle control of highly dilute spark ignition engine combustion. Proc Inst Mech Eng Part D J Automob Eng 223(3):423–438

    Article  Google Scholar 

  142. Finney CEA, Green JB, Daw CS (1998) Symbolic time-series analysis of engine combustion measurements (No. 980624). SAE technical paper

    Google Scholar 

  143. Maurya RK (2017) Experimental investigation of cyclic variability in HCCI engine using symbol sequence analysis. Submitted. Under review

    Google Scholar 

  144. Knierim KL, Park S, Ahmed J, Kojic A, Orlandini I, Kulzer A (2008). Simulation of misfire and strategies for misfire recovery of gasoline HCCI. In: American Control Conference, IEEE, p 3947–3952, June 2008

    Google Scholar 

  145. Haskara I, Mianzo L (2001) Real-time cylinder pressure and indicated torque estimation via second order sliding modes. In Proceedings of the 2001 American Control Conference, IEEE, vol 5, p 3324–3328

    Google Scholar 

  146. VanDyne EA, Burckmyer CL, Wahl AM, Funaioli AE (2000) Misfire detection from ionization feedback utilizing the Smartfire® plasma ignition technology (No. 2000-01-1377). SAE technical paper

    Google Scholar 

  147. Bue FL, Stefano AD, Giaconia C, Pipitone E (2007) Misfire detection system based on the measure of crankshaft angular velocity. In: Proceeding of the 11th annual AMAA conference, Berlin, March 2007

    Google Scholar 

  148. Ghazimirsaied A, Shahbakhti M, Koch CR (2011) Ignition timing criteria for partial burn operation in an HCCI engine. In: Proceedings of CI/CS conference, Winnipeg, Canada, May 2011

    Google Scholar 

  149. Asad U, Zheng M (2008) Fast heat release characterization of a diesel engine. Int J Therm Sci 47(12):1688–1700

    Article  Google Scholar 

  150. Ghazimirsaied A, Shahbakhti M, Koch CR (2010, January). Comparison of crankangle based ignition timing methods on an HCCI engine. In ASME 2010 internal combustion engine division fall technical conference. American Society of Mechanical Engineers, p 379–390

    Google Scholar 

  151. Ghazimirsaied A, Shahbakhti M, Koch CR (2010). Recognizing partial burn operation in an HCCI engine. In: 2010 Combustion Institute-Canadian Section (CICS) spring technical conference, 9–12, May 2010

    Google Scholar 

  152. Ghazimirsaied A, Shahbakhti M, Koch CR (2009) Partial-burn crank angle limit criteria comparison on an experimental HCCI engine. In: Proceeding of Combustion Institute-Canadian Section spring technical meeting, University of Montreal, Quebec, p 11–13, May 2009

    Google Scholar 

  153. Jungkunz AF, Ravi N, Liao HH, Erlien SM, Gerdes JC (2015) An analytical method for reducing combustion instability in homogeneous charge compression ignition engines through cycle-to-cycle control. Int J Engine Res 16(3):485–500

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maurya, R.K. (2018). Combustion Characteristics. In: Characteristics and Control of Low Temperature Combustion Engines. Mechanical Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-319-68508-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68508-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68507-6

  • Online ISBN: 978-3-319-68508-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics