Skip to main content

Part of the book series: Mechanical Engineering Series ((MES))

  • 1538 Accesses

Abstract

In low temperature combustion (LTC) engines, premixed fuel-air mixture is created in the cylinder, and combustion starts by auto-ignition due to compression of the fuel–air mixture during compression stroke. The LTC process involves various physical processes (atomization, evaporation and mixing) and complex chemical reactions occurring in the cylinder. Fuel properties and fuel composition play an important role in all the physical and chemical processes involved in LTC process. Autoignition depends on the evolution of cylinder pressure and temperature with time and autoignition chemistry of the fuel–air mixture. Autoignition chemistry depends on the fuel composition and fuel-air mixture quality (equivalence ratio). This chapter discusses the autoignition characteristics (autoignition chemistry, impact of fuel molecular structure on autoignition, fuel autoignition quality), fuel effects on autoignition and several fuel indices developed for LTC engines. Fuel design and fuel properties/quality required for LTC engines are also discussed in the present chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kalghatgi G (2014) Fuel/engine interactions, SAE International, Warrendale, ISBN 978-0-7680-6458-2

    Google Scholar 

  2. Boot M (2016) Biofuels from lignocellulosic biomass: innovations beyond bioethanol. Wiley, Weinheim

    Book  Google Scholar 

  3. Boot MD, Tian M, Hensen EJ, Sarathy SM (2017) Impact of fuel molecular structure on auto-ignition behavior–design rules for future high performance gasolines. Prog Energy Combust Sci 60:1–25

    Article  Google Scholar 

  4. Zádor J, Taatjes CA, Fernandes RX (2011) Kinetics of elementary reactions in low-temperature autoignition chemistry. Prog Energy Combust Sci 37(4):371–421

    Article  Google Scholar 

  5. Simmie JM (2003) Detailed chemical kinetic models for the combustion of hydrocarbon fuels. Prog Energy Combust Sci 29(6):599–634

    Article  Google Scholar 

  6. Griffiths JF (1995) Reduced kinetic models and their application to practical combustion systems. Prog Energy Combust Sci 21(1):25–107

    Article  Google Scholar 

  7. Maurya RK, Akhil N (2016) Numerical investigation of ethanol fuelled HCCI engine using stochastic reactor model. Part 1: development of a new reduced ethanol oxidation mechanism. Energy Convers Manag 118:44–54

    Article  Google Scholar 

  8. Maurya RK, Akhil N (2017) Development of a new reduced hydrogen combustion mechanism with NO x and parametric study of hydrogen HCCI combustion using stochastic reactor model. Energy Convers Manag 132:65–81

    Article  Google Scholar 

  9. Farrell JT, Cernansky NP, Dryer FL, Law CK, Friend DG, Hergart CA et al (2007) Development of an experimental database and kinetic models for surrogate diesel fuels (No. 2007-01-0201). SAE technical paper

    Google Scholar 

  10. Naik CV, Pitz WJ, Westbrook CK, Sjöberg M, Dec JE, Orme J et al (2005) Detailed chemical kinetic modeling of surrogate fuels for gasoline and application to an HCCI engine (No. 2005-01-3741). SAE technical paper

    Google Scholar 

  11. Pitz WJ, Mueller CJ (2011) Recent progress in the development of diesel surrogate fuels. Prog Energy Combust Sci 37(3):330–350

    Article  Google Scholar 

  12. Battin-Leclerc F (2008) Detailed chemical kinetic models for the low-temperature combustion of hydrocarbons with application to gasoline and diesel fuel surrogates. Prog Energy Combust Sci 34(4):440–498

    Article  Google Scholar 

  13. Puduppakkam KV, Naik CV, Wang C, Meeks E (2010) Validation studies of a detailed kinetics mechanism for diesel and gasoline surrogate fuels (No. 2010-01-0545). SAE technical paper

    Google Scholar 

  14. Shibata G, Kawaguchi R, Yoshida S, Ogawa H (2014) Molecular structure of hydrocarbons and auto-ignition characteristics of HCCI engines. SAE Int J Fuels Lubr 7(2014-32-0003):1050–1061

    Article  Google Scholar 

  15. Luo. Y (2003) Handbook of bond dissociation energies in organic compounds. CRC Press, Boca Raton

    Google Scholar 

  16. Knocking characteristics of pure hydrocarbons, STP225, American Society for Testing Materials (1958). ASTM International, Philadelphia

    Google Scholar 

  17. Vanhove G, Ribaucour M, Minetti R (2005) On the influence of the position of the double bond on the low-temperature chemistry of hexenes. Proc Combust Inst 30(1):1065–1072

    Article  Google Scholar 

  18. Brezinsky K (1986) The high-temperature oxidation of aromatic hydrocarbons. Prog Energy Combust Sci 12(1):1–24

    Article  Google Scholar 

  19. Saggese C, Frassoldati A, Cuoci A, Faravelli T, Ranzi EA (2013) Wide range kinetic modeling study of pyrolysis and oxidation of benzene. Combust Flame 160(7):1168–1190

    Article  Google Scholar 

  20. Sakai Y, Inamura T, Ogura T, Koshi M, Pitz WJ (2007) Detailed kinetic modeling of toluene combustion over a wide range of temperature and pressure (No. 2007-01-1885). SAE technical paper

    Google Scholar 

  21. Zhao L, Cheng Z, Ye L, Zhang F, Zhang L, Qi F, Li Y (2015) Experimental and kinetic modeling study of premixed o-xylene flames. Proc Combust Inst 35(2):1745–1752

    Article  Google Scholar 

  22. Battin-Leclerc F, Warth V, Bounaceur R, Husson B, Herbinet O, Glaude PA (2015) The oxidation of large alkylbenzenes: an experimental and modeling study. Proc Combust Inst 35(1):349–356

    Article  Google Scholar 

  23. Metcalfe WK, Dooley S, Dryer FL (2011) Comprehensive detailed chemical kinetic modeling study of toluene oxidation. Energy Fuel 25(11):4915–4936

    Article  Google Scholar 

  24. Murakami Y (2009) Progress in elementary reaction kinetics in combustion by quantum chemical models. J Combustion Soc Jpn 51(157):192–199

    Google Scholar 

  25. Risberg P (2006) Describing the auto-ignition quality of fuels in HCCI engines. PhD thesis, Royal Institute of Technology, S-100 44 Stockholm. ISRN/KTH/MMK/R-06/07-SE

    Google Scholar 

  26. Livengood JC, Wu PC (1955) Correlation of autoignition phenomena in internal combustion engines and rapid compression machines. In Symposium (international) on combustion (vol 5, no 1, pp 347–356). Elsevier

    Google Scholar 

  27. Heywood JB (1988) Internal combustion engine fundamentals. McGrawHill, New York

    Google Scholar 

  28. Swan K, Shahbakhti M, Koch CR (2006) Predicting start of combustion using a modified knock integral method for an HCCI engine (No. 2006-01-1086). SAE technical paper

    Google Scholar 

  29. Shaver GM, Gerdes JC, Jain P, Caton PA, Edwards CF (2003) Modeling for control of HCCI engines. In American control conference, 2003. Proceedings of the 2003 (vol 1, pp 749–754). IEEE

    Google Scholar 

  30. Halstead MP, Kirsch LJ, Quinn CP (1977) The autoignition of hydrocarbon fuels at high temperatures and pressures – fitting of a mathematical model. Combust Flame 30:45–60

    Article  Google Scholar 

  31. Turns SR (2000) An introduction to combustion: concepts and applications, 2nd edn. McGraw-Hill, Boston

    Google Scholar 

  32. Shaver GM, Roelle M, Gerdes JC (2005) Tackling the transition: decoupled control of combustion timing and work output in residual-affected HCCI engines. American control conference proceedings, pp 3871–3876. Portland, OR, USA

    Google Scholar 

  33. Rausen DJ, Stefanopoulou AG, Kang J-M, Eng JA, Kuo W (2004) A mean-value model for control of homogeneous charge compression ignition (HCCI) engines. American control conference, pp 125–131

    Google Scholar 

  34. Souder JS, Mehresh P, Hedrick JK Dibble RW (2004) A multi-cylinder HCCI engine model for control. In ASME 2004 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, pp. 307–316

    Google Scholar 

  35. Shahbakhti M (2009) Modeling and experimental study of an HCCI engine for combustion timing control. PhD thesis, University of Alberta

    Google Scholar 

  36. Hernández JJ, Lapuerta M, Sanz-Argent J (2014) Autoignition prediction capability of the Livengood–Wu correlation applied to fuels of commercial interest. International Journal of Engine Research 15(7):817–829

    Article  Google Scholar 

  37. Yates AD, Swarts A, Viljoen CL (2005) Correlating auto-ignition delays and knock-limited spark-advance data for different types of fuel (No. 2005-01-2083). SAE technical paper

    Google Scholar 

  38. Christensen M, Hultqvist A, Johansson B (1999) Demonstrating the multi fuel capability of a homogeneous charge compression ignition engine with variable compression ratio (No. 1999-01-3679). SAE technical paper

    Google Scholar 

  39. Bunting BG, Wildman CB, Szybist JP, Lewis S, Storey J (2007) Fuel chemistry and cetane effects on diesel homogeneous charge compression ignition performance, combustion, and emissions. Int J Engine Res 8(1):15–27

    Article  Google Scholar 

  40. Shibata G, Oyama K, Urushihara T, Nakano T (2004) The effect of fuel properties on low and high temperature heat release and resulting performance of an HCCI engine (No. 2004-01-0553). SAE technical paper

    Google Scholar 

  41. Truedsson I, Tuner M, Johansson B, Cannella W (2012) Pressure sensitivity of HCCI auto-ignition temperature for primary reference fuels. SAE Int J Engines 5(2012-01-1128):1089–1108

    Article  Google Scholar 

  42. Truedsson I, Tuner M, Johansson B, Cannella W (2013) Pressure sensitivity of HCCI auto-ignition temperature for gasoline surrogate fuels (No. 2013-01-1669). SAE technical paper

    Google Scholar 

  43. Truedsson I (2014) The HCCI fuel number – measuring and describing auto-ignition for HCCI combustion engines. PhD thesis, Lund University. ISBN 978-91-7473-949-7

    Google Scholar 

  44. Andrae JC, Head RAHCCI (2009) Experiments with gasoline surrogate fuels modeled by a semidetailed chemical kinetic model. Combust Flame 156(4):842–851

    Article  Google Scholar 

  45. Mehl M, Pitz W, Sarathy M, Yang Y, Dec JE (2012) Detailed kinetic modeling of conventional gasoline at highly boosted conditions and the associated intermediate temperature heat release (No. 2012-01-1109). SAE technical paper

    Google Scholar 

  46. Solaka H (2014) Impact of fuel properties on partially premixed combustion. PhD thesis, Lund University, Sweden

    Google Scholar 

  47. Solaka H, Tuner M, Johansson B (2013) Analysis of surrogate fuels effect on ignition delay and low temperature reaction during partially premixed combustion (No. 2013-01-0903). SAE technical paper

    Google Scholar 

  48. Solaka H, Aronsson U, Tuner M, Johansson B (2012) Investigation of partially premixed combustion characteristics in low load range with regards to fuel octane number in a light-duty diesel engine (No. 2012-01-0684). SAE technical paper

    Google Scholar 

  49. Shibata G, Oyama K, Urushihara T, Nakano T (2005) Correlation of low temperature heat release with fuel composition and HCCI engine combustion (No. 2005-01-0138). SAE technical paper

    Google Scholar 

  50. Tanaka S, Ayala F, Keck JC, Heywood JB (2003) Two-stage ignition in HCCI combustion and HCCI control by fuels and additives. Combust Flame 132(1):219–239

    Article  Google Scholar 

  51. Aronsson HS, Truedsson I, Tuner M, Johansson B, Cannella W (2014) Comparison of fuel effects on low temperature reactions in PPC and HCCI combustion (No. 2014-01-2679). SAE technical paper

    Google Scholar 

  52. Lu X, Han D, Huang Z (2011) Fuel design and management for the control of advanced compression-ignition combustion modes. Prog Energy Combust Sci 37(6):741–783

    Article  Google Scholar 

  53. Leppard WR (1990) The chemical origin of fuel octane sensitivity (No. 902137). SAE technical paper

    Google Scholar 

  54. Yates A, Swarts A, Viljoen C (2003) An investigation of anomalies identified within the ASTM research and motor octane scales (No. 2003-01-1772). SAE technical paper. doi:https://doi.org/10.4271/2003-01-1772.

  55. Swarts A, Yates A, Viljoen C, Coetzer R (2005) A further study of inconsistencies between autoignition and knock intensity in the CFR octane rating engine (No. 2005-01-2081). SAE technical paper

    Google Scholar 

  56. Perumal M, Floweday G (2011) An investigation of cascading autoignition and octane number using a multi-zone model of the CFR engine. SAE Int J Engines 4(2011-01-0850):976–997

    Article  Google Scholar 

  57. Koopmans L, Strömberg E, Denbratt I (2004) The influence of PRF and commercial fuels with high octane number on the auto-ignition timing of an engine operated in HCCI combustion mode with negative valve overlap (No. 2004-01-1967). SAE technical paper

    Google Scholar 

  58. Farrell JT, Bunting BG (2006) Fuel composition effects at constant RON and MON in an HCCI engine operated with negative valve overlap (No. 2006-01-3275). SAE technical paper

    Google Scholar 

  59. Angelos JP, Andreae MM, Green WH, Cheng WK, Kenney T, Xu Y (2007) Effects of variations in market gasoline properties on HCCI load limits (No. 2007-01-1859). SAE technical paper

    Google Scholar 

  60. Kalghatgi G, Risberg P, Ångstrom HE (2003) A method of defining ignition quality of fuels in HCCI engines (No. 2003-01-1816). SAE technical paper

    Google Scholar 

  61. Lacey J, Kameshwaran K, Sathasivam S, Filipi Z, Cannella W, Fuentes-Afflick PA (2017) Effects of refinery stream gasoline property variation on the auto-ignition quality of a fuel and homogeneous charge compression ignition combustion. Int J Engine Res 18(3):226–239

    Article  Google Scholar 

  62. Risberg P, Kalghatgi G, Ångstrom HE (2003) Auto-ignition quality of gasoline-like fuels in HCCI engines (No. 2003-01-3215). SAE technical paper

    Google Scholar 

  63. Liu H, Yao M, Zhang B, Zheng Z (2009) Influence of fuel and operating conditions on combustion characteristics of a homogeneous charge compression ignition engine. Energy Fuel 23(3):1422–1430

    Article  Google Scholar 

  64. Rapp VH, Cannella WJ, Chen JY, Dibble RW (2013) Predicting fuel performance for future HCCI engines. Combust Sci Technol 185(5):735–748

    Article  Google Scholar 

  65. Shibata G, Urushihara T (2007) Auto-ignition characteristics of hydrocarbons and development of HCCI fuel index (No. 2007-01-0220). SAE technical paper

    Google Scholar 

  66. Truedsson I, Cannella W, Johansson B, Tuner M (2014) Development of new test method for evaluating HCCI fuel performance (No. 2014-01-2667). SAE technical paper

    Google Scholar 

  67. Starck L, Lecointe B, Forti L, Jeuland N (2010) Impact of fuel characteristics on HCCI combustion: performances and emissions. Fuel 89(10):3069–3077

    Article  Google Scholar 

  68. Jeuland N, Montagne X, Duret P (2003) Engine and fuel related issues of gasoline CAI (Controlled Auto-Ignition) combustion (No. 2003-01-1856). SAE technical paper

    Google Scholar 

  69. Jeuland N, Montagne X, Duret P (2004) New HCCI/CAI combustion process development: methodology for determination of relevant fuel parameters. Oil Gas Sci Technol – Rev. IFP 59(6):571–579

    Google Scholar 

  70. Niemeyer KE, Daly SR, Cannella WJ, Hagen CL (2015) Investigation of the LTC fuel performance index for oxygenated reference fuel blends. Fuel 155:14–24

    Article  Google Scholar 

  71. Risberg P, Kalghatgi G, Ångstrom HE, Wåhlin F (2005) Auto-ignition quality of diesel-like fuels in HCCI engines (No. 2005-01-2127). SAE technical paper

    Google Scholar 

  72. chun Hou Y, cai Lu X, lin Zu L, bin Ji L, Huang Z (2006) Effect of high-octane oxygenated fuels on n-heptane-fueled HCCI combustion. Energy Fuel 20(4):1425–1433

    Article  Google Scholar 

  73. Manente V, Johansson B, Tunestal P (2009) Partially premixed combustion at high load using gasoline and ethanol, a comparison with diesel (No. 2009-01-0944). SAE technical paper

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maurya, R.K. (2018). LTC Fuel Quality Requirements. In: Characteristics and Control of Low Temperature Combustion Engines. Mechanical Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-319-68508-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68508-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68507-6

  • Online ISBN: 978-3-319-68508-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics