Skip to main content

A New Universal Quantum Gates and Its Simulation on GPGPU

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10602))

Abstract

Classic quantum computer simulation will be a hotspot for years until the realistic quantum computers are available. As an essential component of quantum computers, the effects of the basic quantum gate and the equivalent relation are first briefly concluded in this paper. Base on the general-purpose graphics processing units (GPGPU) environment, the novel basic quantum gate simulation platform is achieved, on which any arbitrary quantum algorithm can be simulated. Our platform provides an user-friendly graphical interface for generating quantum circuit and observing the transformation of probability amplitude. Whats more, with the analyse of the combination of the existing universal quantum gates, a new universal quantum gates including Controlled-Z (C-Z), Hadamard (H), T is put forward. The proposed universal gates are considered to be more suitable for GPGPU, and it can be widely used to construct the quantum teleportation circuit and Grover’s search algorithm. The new quantum circuit of Grover’s search algorithm is conducted in our novel simulation platform. Results of the experiments show that the Grover’s search algorithm will acquire quadratic acceleration when solving the search problem, which reflects the validity of the proposed gates.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21(6), 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  2. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information: 10th anniversary edition. 21(1), 1–59 (2010)

    Google Scholar 

  3. Tian, Q., Chen, S.: Cross-heterogeneous-database age estimation through correlation representation learning. Neurocomputing 238, 286–295 (2017)

    Article  Google Scholar 

  4. Ferrando-Soria, J., Pineda, E.M., Chiesa, A., Fernandez, A., et al.: A modular design of molecular qubits to implement universal quantum gate. Nat. Commun. 7 (2016)

    Google Scholar 

  5. Hu, Y., Zhao, Y.X., Xue, Z.-Y., Wang, Z.D.: Realizing universal quantum gates with topological bases in quantum-simulated superconducting chains. NPJ Quantum Inf. 3, 1 (2017)

    Article  Google Scholar 

  6. Raychev, N., Racheva, E.: Interactive environment for implementation and simulation of quantum algorithms. In: Proceedings of the 16th International Conference on Computer Systems and Technologies, pp. 54–60. ACM (2015)

    Google Scholar 

  7. Prokopenya, A.N.: Mathematica package “QuantumCircuit” for simulation of quantum computation. In: International Mathematica Symposium (2015)

    Google Scholar 

  8. Barenco, A., Bennett, C.H.: Elementary gates for quantum computation. Phy. Rev. A 52(5), 3457 (1995)

    Article  Google Scholar 

  9. Kitaev, A.Y.: Quantum computations: algorithms and error correction. Russ. Math. Surv. 52(6), 53–112 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. Boykin, P.O., Mor, T., Pulver, M., Roychowdhury, V., Vatan, F.: A new universal and fault-tolerant quantum basis. Inf. Process Lett. 75(3), 101–107 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Raychev, N.: Universal quantum operators. Int. J. Sci. Eng. Res. (IJSR) 6(6), 1369–1371 (2015)

    Google Scholar 

  12. Shi, Y.: Both Toffoli and controlled-NOT need little help to do universal quantum computing. Quantum Inf. Comput. 3(1), 84–92 (2002)

    MATH  MathSciNet  Google Scholar 

  13. Kliuchnikov, V., Maslov, D., Mosca, M.: Fast and efficient exact synthesis of single qubit unitaries generated by Clifford and T gates. Comput. Sci. 13(7–8), 607–630 (2012)

    MathSciNet  Google Scholar 

  14. Qu, Z., Keeney, J., Robitzsch, S., Zaman, F., Wang, X.: Multilevel pattern mining architecture for automatic network monitoring in heterogeneous wireless communication networks. China Commun. 13(7), 108–116 (2016)

    Article  Google Scholar 

  15. Fu, Z., Ren, K., Shu, J., Sun, X., Huang, F.: Enabling personalized search over encrypted outsourced data with efficiency improvement. IEEE Trans. Neural Netw. Learn. 27(9), 2546–2559 (2016)

    Google Scholar 

  16. Sharma, M.S., De, A., Kulkarni, S.N., De, A.: Quantum teleportation circuit using Matlab and Mathematica. Int. J. Comput. Sci. Eng. (IJCSET) 2(5), 1597–1600 (2010)

    Google Scholar 

  17. Xue, Y., Jiang, J., Zhao, B., Ma, T.: A self-adaptive artificial bee colony algorithm based on global best for global optimization. Soft Comput. 1–18 (2017)

    Google Scholar 

  18. Welch, J., Greenbaum, D., Mostame, S., Aspuruguzik, A.: Efficient quantum circuits for diagonal unitaries without ancillas. New J. Phys. 16(3) (2013)

    Google Scholar 

  19. De Vos, A., De Baerdemacker, S.: The block-ZXZ synthesis of an arbitrary quantum circuit. Physics 94(5) (2016)

    Google Scholar 

  20. Zhang, P., Yuan, J., Lu, X.: Quantum computer simulation on multi-GPU incorporating data locality. In: Wang, G., Zomaya, A., Perez, G.M., Li, K. (eds.) ICA3PP 2015. LNCS, vol. 9528, pp. 241–256. Springer, Cham (2015). doi:10.1007/978-3-319-27119-4_17

    Chapter  Google Scholar 

  21. Gu, B., Sheng, V.S.: A robust regularization path algorithm for \(\nu \)-support vector classification. IEEE Trans. Neural. Netw. Learn. PP(99), 1–8 (2016)

    Google Scholar 

  22. Gu, B., Sun, X., Sheng, V.S.: Structural minimax probability machine. IEEE Trans. Neural Netw. Learn. PP(99), 1–11 (2016)

    Google Scholar 

  23. Gerdt, V.P., Kragler, R., Prokopenya, A.N.: A mathematica package for simulation of quantum computation. In: Gerdt, V.P., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2009. LNCS, vol. 5743, pp. 106–117. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04103-7_11

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by Funding of National Natural Science Foundation of China (Grant No. 61571226), Natural Science Foundation of Jiangsu Province, China (Grant No. BK20140823).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huimin Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Luo, H., Yuan, J., Dai, W. (2017). A New Universal Quantum Gates and Its Simulation on GPGPU. In: Sun, X., Chao, HC., You, X., Bertino, E. (eds) Cloud Computing and Security. ICCCS 2017. Lecture Notes in Computer Science(), vol 10602. Springer, Cham. https://doi.org/10.1007/978-3-319-68505-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68505-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68504-5

  • Online ISBN: 978-3-319-68505-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics