Skip to main content

A Hybrid Artificial Bee Colony Algorithm to Solve Multi-objective Hybrid Flowshop in Cloud Computing Systems

  • Conference paper
  • First Online:
Cloud Computing and Security (ICCCS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10602))

Included in the following conference series:

Abstract

This paper proposes a local search enhanced hybrid artificial bee colony algorithm (LABC) for solving the multi-objective flexible task scheduling problem in Cloud computing system. The task scheduling is modeled as a hybrid flow shop scheduling (HFS) problem. In multiple objectives HFS problems, three objectives, i.e., minimum of the makespan, maximum workload, and total workload are considered simultaneously. In the proposed algorithm, each solution is represented as an integer string. A deep-exploitation function is developed, which is used by the onlooker bee and the best food source found so far to complete a deep level of search. The proposed algorithm is tested on sets of the well-known benchmark instances. Through the analysis of experimental results, the highly effective performance of the proposed LABC algorithm is shown against several efficient algorithms from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xia, Z., Wang, X., Sun, X., et al.: A secure and dynamic multi-keyword ranked search scheme over encrypted cloud data. IEEE Trans. Parallel Distrib. Syst. 27(2), 340–352 (2016)

    Article  Google Scholar 

  2. Fu, Z., Ren, K., Shu, J., et al.: Enabling personalized search over encrypted outsourced data with efficiency improvement. IEEE Trans. Parallel Distrib. Syst. 27(9), 2546–2559 (2016)

    Article  Google Scholar 

  3. Guo, P., Wang, J., Li, B., Lee, S.: A variable threshold-value authentication architecture for wireless mesh networks. J. Internet Technol. 15(6), 929–936 (2014)

    Google Scholar 

  4. Fu, Z., Sun, X., Liu, Q., et al.: Achieving efficient cloud search services: multi-keyword ranked search over encrypted cloud data supporting parallel computing. IEICE Trans. Commun. 98(1), 190–200 (2015)

    Article  Google Scholar 

  5. Ren, Y., Shen, J., Wang, J., et al.: Mutual verifiable provable data auditing in public cloud storage. J. Internet Technol. 16(2), 317–323 (2015)

    Google Scholar 

  6. Buyya, R., Yeo, C.S., Venugopal, S., et al.: Cloud computing and emerging IT platforms: vision, hype, and reality for delivering computing as the 5th utility. Future Gener. Comput. Syst. 25(6), 599–616 (2009)

    Article  Google Scholar 

  7. Li, J., Qiu, M., Ming, Z., et al.: Online optimization for scheduling preemptable tasks on IaaS cloud systems. J. Parallel Distrib. Comput. 72(5), 666–677 (2012)

    Article  Google Scholar 

  8. Ruiz, R., Vázquez-Rodríguez, J.A.: The hybrid flow shop scheduling problem. Eur. J. Oper. Res. 205(1), 1–18 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ribas, I., Leisten, R., Framiñan, J.M.: Review and classification of hybrid flow shop scheduling problems from a production system and a solutions procedure perspective. Comput. Oper. Res. 37(8), 1439–1454 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gupta, J.N.D.: Two-stage, hybrid flowshop scheduling problem. J. Oper. Res. Soc. 39, 359–364 (1988)

    Article  MATH  Google Scholar 

  11. Lin, H.T., Liao, C.J.: A case study in a two-stage hybrid flow shop with setup time and dedicated machines. Int. J. Prod. Econ. 86(2), 133–143 (2003)

    Article  Google Scholar 

  12. Gupta, J.N.D., Tunc, E.A.: Scheduling a two-stage hybrid flowshop with separable setup and removal times. Eur. J. Oper. Res. 77, 415–428 (1994)

    Article  MATH  Google Scholar 

  13. Lee, G.C., Kim, Y.D.: A branch-and-bound algorithm for a two-stage hybrid flowshop scheduling problem minimizing total tardiness. Int. J. Prod. Res. 42, 4731–4743 (2004)

    Article  MATH  Google Scholar 

  14. Yang, J.: A new complexity proof for the two-stage hybrid flow shop scheduling problem with dedicated machines. Int. J. Prod. Res. 48(5), 1531–1538 (2010)

    Article  MATH  Google Scholar 

  15. Riane, F., Artiba, A., Elmaghraby, S.E.: A hybrid three-stage flowshop problem: efficient heuristics to minimize makespan. Eur. J. Oper. Res. 109(2), 321–329 (1998)

    Article  MATH  Google Scholar 

  16. Babayan, A., He, D.: Solving the n-job three-stage flexible flowshop scheduling problem using an agent-based approach. Int. J. Prod. Res. 42, 777–799 (2004)

    Article  MATH  Google Scholar 

  17. Jin, Z.H., Ohno, K., Ito, T., Elmaghraby, S.E.: Scheduling hybrid flowshops in printed circuit board assembly lines. Prod. Oper. Manag. 11, 216–230 (2002)

    Article  Google Scholar 

  18. Chang, S.C., Liao, D.Y.: Scheduling flexible flow shops with no setup effects. IEEE Trans. Robot. Autom. 10(2), 112–122 (1994)

    Article  Google Scholar 

  19. Portmann, M.C., Vignier, A., Dardilhac, D., Dezalay, D.: Branch and bound crossed with GA to solve hybrid flowshops. Eur. J. Oper. Res. 107, 389–400 (1998)

    Article  MATH  Google Scholar 

  20. Oguz, C., Ercan, M.: A genetic algorithm for hybrid flow-shop scheduling with multiprocessor tasks. J. Sched. 8, 323–351 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Engin, O., Ceran, G., Yilmaz, M.K.: An efficient genetic algorithm for hybrid flow shop scheduling with multiprocessor task problems. Appl. Soft Comput. 11(3), 3056–3065 (2011)

    Article  Google Scholar 

  22. Niu, Q., Zhou, T., Ma, S.: A quantum-inspired immune algorithm for hybrid flow shop with makespan criterion. J. Univ. Comput. Sci. 15, 765–785 (2009)

    MathSciNet  Google Scholar 

  23. Ying, K.C., Lin, S.W.: Multiprocessor task scheduling in multistage hybrid flow-shops: an ant colony system approach. Int. J. Prod. Res. 44(16), 3161–3177 (2006)

    Article  MATH  Google Scholar 

  24. Liao, C.J., Tjandradjaja, E., Chung, T.P.: An approach using particle swarm optimization and bottleneck heuristic to solve hybrid flow shop scheduling problem. Appl. Soft Comput. 12, 1755–1764 (2012)

    Article  Google Scholar 

  25. Chou, F.D.: Particle swarm optimization with cocktail decoding method for hybrid flow shop scheduling problems with multiprocessor tasks. Int. J. Prod. Econ. 141(1), 137–145 (2013)

    Article  Google Scholar 

  26. Pan, Q.K., Dong, Y.: An improved migrating birds optimisation for a hybrid flowshop scheduling with total flowtime minimisation. Inf. Sci. 277, 643–655 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  27. Pan, Q.K., Wang, L., Li, J.Q., et al.: A novel discrete artificial bee colony algorithm for the hybrid flowshop scheduling problem with makespan minimisation. Omega 45, 42–56 (2014)

    Article  Google Scholar 

  28. Marichelvam, M.K., Prabaharan, T., Yang, X.S.: Improved cuckoo search algorithm for hybrid flow shop scheduling problems to minimize makespan. Appl. Soft Comput. 19, 93–101 (2014)

    Article  Google Scholar 

  29. Savsani, P., Jhala, R.L., Savsani, V.: Effect of hybridizing Biogeography-Based Optimization (BBO) technique with Artificial Immune Algorithm (AIA) and Ant Colony Optimization (ACO). Appl. Soft Comput. 21, 542–553 (2014)

    Article  Google Scholar 

  30. Chamnanlor, C., Sethanan, K., Gen, M., et al.: Embedding ant system in genetic algorithm for re-entrant hybrid flow shop scheduling problems with time window constraints. J. Intell. Manuf. (2015). doi:10.1007/s10845-015-1078-9

  31. Dugardin, F., Yalaoui, F., Amodeo, L.: New multi-objective method to solve reentrant hybrid flow shop scheduling problem. Eur. J. Oper. Res. 203(1), 22–31 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  32. Behnamian, J., Ghomi, S.F., Zandieh, M.: A multi-phase covering Pareto-optimal front method to multi-objective scheduling in a realistic hybrid flowshop using a hybrid metaheuristic. Expert Syst. Appl. 36(8), 11057–11069 (2009)

    Article  Google Scholar 

  33. Rashidi, E., Jahandar, M., Zandieh, M.: An improved hybrid multi-objective parallel genetic algorithm for hybrid flow shop scheduling with unrelated parallel machines. Int. J. Adv. Manuf. Technol. 49(9–12), 1129–1139 (2010)

    Article  Google Scholar 

  34. Karimi, N., Zandieh, M., Karamooz, H.R.: Bi-objective group scheduling in hybrid flexible flowshop: a multi-phase approach. Expert Syst. Appl. 37(6), 4024–4032 (2010)

    Article  Google Scholar 

  35. Marichelvam, M.K., Prabaharan, T., Yang, X.S.: A discrete firefly algorithm for the multi-objective hybrid flowshop scheduling problems. IEEE Trans. Evol. Comput. 18(2), 301–305 (2014)

    Article  Google Scholar 

  36. Zandieh, M., Karimi, N.: An adaptive multi-population genetic algorithm to solve the multi-objective group scheduling problem in hybrid flexible flowshop with sequence-dependent setup times. J. Intell. Manuf. 22(6), 979–989 (2011)

    Article  Google Scholar 

  37. Cho, H.M., Bae, S.J., Kim, J., Jeong, I.J.: Bi-objective scheduling for reentrant hybrid flow shop using Pareto genetic algorithm. Comput. Ind. Eng. 61(3), 529–541 (2011)

    Article  Google Scholar 

  38. Wang, S., Liu, M.: Two-stage hybrid flow shop scheduling with preventive maintenance using multi-objective tabu search method. Int. J. Prod. Res. 52(5), 1495–1508 (2014)

    Article  Google Scholar 

  39. Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technical report-TR06, Computer Engineering Department, Engineering Faculty, Erciyes University (2005)

    Google Scholar 

  40. Karaboga, D., Basturk, B.: On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. 8(1), 687–697 (2008)

    Article  Google Scholar 

  41. Karaboga, D., Akay, B.: A comparative study of artificial bee colony algorithm. Appl. Math. Comput. 214(1), 108–132 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  42. Pan, Q.K., Tasgetiren, M.F., Suganthan, P.N., et al.: A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling problem. Inf. Sci. 181(12), 2455–2468 (2011)

    Article  MathSciNet  Google Scholar 

  43. Li, J.Q., Pan, Q.K., Gao, K.Z.: Pareto-based discrete artificial bee colony algorithm for multi-objective flexible job shop scheduling problems. Int. J. Adv. Manuf. Technol. 55(9), 1159–1169 (2011)

    Article  Google Scholar 

  44. Pan, Q.K., Wang, L., Mao, K., Zhao, J.H., Zhang, M.: An effective artificial bee colony algorithm for a real-world hybrid flowshop problem in steelmaking process. IEEE Trans. Autom. Sci. Eng. 10(2), 307–322 (2013)

    Article  Google Scholar 

  45. Wang, S., Wang, L., Liu, M., et al.: An effective estimation of distribution algorithm for solving the distributed permutation flow-shop scheduling problem. Int. J. Prod. Econ. 145(1), 387–396 (2013)

    Article  Google Scholar 

  46. Engin, O., Döyen, A.: A new approach to solve hybrid flow shop scheduling problems by artificial immune system. Future Gener. Comput. Syst. 20(6), 1083–1095 (2004)

    Article  Google Scholar 

  47. Alaykýran, K., Engin, O., Döyen, A.: Using ant colony optimization to solve hybrid flow shop scheduling problems. Int. J. Adv. Manuf. Technol. 35(5), 541–550 (2007)

    Article  Google Scholar 

  48. Liu, F., Zhang, X., Zou, F., et al.: Immune clonal selection algorithm for hybrid flow-shop scheduling problem. In: Control and Decision Conference, CCDC 2009, pp. 2605–2609. IEEE (2009). (In Chinese)

    Google Scholar 

  49. Xu, Y., Wang, L., Zhou, G., Wang, S.: An effective shuffled frog leaping algorithm for solving hybrid flow-shop scheduling problem. In: Huang, D.-S., Gan, Y., Bevilacqua, V., Figueroa, J.C. (eds.) ICIC 2011. LNCS, vol. 6838, pp. 560–567. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24728-6_76

    Chapter  Google Scholar 

  50. Deng, G.L., Xu, Z.H., Gu, X.S.: A discrete artificial bee colony algorithm for minimizing the total flow time in the blocking flow shop scheduling. Chin. J. Chem. Eng. 20(6), 1067–1073 (2012)

    Article  Google Scholar 

  51. Han, Y.Y., Liang, J.J., Pan, Q.K., Li, J.Q., Sang, H.Y., Cao, N.N.: Effective hybrid discrete artificial bee colony algorithms for the total flowtime minimization in the blocking flowshop problem. Int. J. Adv. Manuf. Technol. 67(1–4), 397–414 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This research is partially supported by National Science Foundation of China under Grant 61573178, 61374187, 61603169 and 61503170, basic scientific research foundation of Northeastern University under Grant N110208001, starting foundation of Northeastern University under Grant 29321006, Science Foundation of Liaoning Province in China (2013020016), Key Laboratory Basic Research Foundation of Education Department of Liaoning Province (LZ2014014), Shandong Province Higher Educational Science and Technology Program (J14LN28), Postdoctoral Science Foundation of China (2015T80798, 2014M552040), and State Key Laboratory of Synthetical Automation for Process Industries (PAL-N201602).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-qing Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Jq., Han, Yy., Wang, Cg. (2017). A Hybrid Artificial Bee Colony Algorithm to Solve Multi-objective Hybrid Flowshop in Cloud Computing Systems. In: Sun, X., Chao, HC., You, X., Bertino, E. (eds) Cloud Computing and Security. ICCCS 2017. Lecture Notes in Computer Science(), vol 10602. Springer, Cham. https://doi.org/10.1007/978-3-319-68505-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68505-2_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68504-5

  • Online ISBN: 978-3-319-68505-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics