Advertisement

The Pulmonary Vascular Barrier: Insights into Structure, Function, and Regulatory Mechanisms

  • Kaushik ParthasarathiEmail author
Chapter
Part of the Advances in Anatomy, Embryology and Cell Biology book series (ADVSANAT, volume 228)

Abstract

Pulmonary blood vessels act as a well-regulated barrier to the flux of fluid and solutes between the lumen and the air space. Perturbation of the barrier function results in excessive fluid leak into the interstitium and alveoli, and impairs gas exchange. Recent studies provide deeper insight into the precise control mechanisms involved in the regulation of the barrier. This chapter will highlight these mechanisms and discuss the current understanding on the fluid and solute transport pathways across the vascular endothelial layer. In addition, the chapter summarizes the contributions of extra-endothelial structures such as pericytes and glycocalyx in regulating fluid flux across pulmonary vessels. The chapter concludes with an analysis on the impact of pulmonary endothelial heterogeneity and experimental models on current interpretations of barrier function and regulatory mechanisms.

Notes

Acknowledgement

The author sincerely thanks Ms. Gayathri Kaushik for the extensive editorial assistance toward preparation of this manuscript.

References

  1. Absi M, Bruce JI, Ward DT (2014) The inhibitory effect of simvastatin and aspirin on histamine responsiveness in human vascular endothelial cells. Am J Physiol Cell Physiol 306:C679–C686.  https://doi.org/10.1152/ajpcell.00304.2013 PubMedCrossRefGoogle Scholar
  2. Adam AP (2015) Regulation of endothelial adherens junctions by tyrosine phosphorylation. Mediators Inflamm 2015:272858.  https://doi.org/10.1155/2015/272858 PubMedPubMedCentralCrossRefGoogle Scholar
  3. Ahmmed GU, Malik AB (2005) Functional role of TRPC channels in the regulation of endothelial permeability. Pflugers Arch 451:131–142.  https://doi.org/10.1007/s00424-005-1461-z PubMedCrossRefGoogle Scholar
  4. Aman J, Weijers EM, van Nieuw Amerongen GP, Malik AB, van Hinsbergh VW (2016) Using cultured endothelial cells to study endothelial barrier dysfunction: challenges and opportunities. Am J Physiol Lung Cell Mol Physiol 311:L453–L466.  https://doi.org/10.1152/ajplung.00393.2015 PubMedPubMedCentralCrossRefGoogle Scholar
  5. Ambrosi C, Ren C, Spagnol G et al (2016) Connexin43 forms supramolecular complexes through non-overlapping binding sites for drebrin, tubulin, and ZO-1. PLoS One 11:e0157073.  https://doi.org/10.1371/journal.pone.0157073 PubMedPubMedCentralCrossRefGoogle Scholar
  6. Ambudkar IS, de Souza LB, Ong HL (2017) TRPC1, Orai1, and STIM1 in SOCE: friends in tight spaces. Cell Calcium 63:33–39.  https://doi.org/10.1016/j.ceca.2016.12.009 PubMedCrossRefGoogle Scholar
  7. An SS, Pennella CM, Gonnabathula A et al (2005) Hypoxia alters biophysical properties of endothelial cells via p38 MAPK- and Rho kinase-dependent pathways. Am J Physiol Cell Physiol 289:C521–C530.  https://doi.org/10.1152/ajpcell.00429.2004 PubMedCrossRefGoogle Scholar
  8. Armstrong SM, Khajoee V, Wang C et al (2012) Co-regulation of transcellular and paracellular leak across microvascular endothelium by dynamin and Rac. Am J Pathol 180:1308–1323.  https://doi.org/10.1016/j.ajpath.2011.12.002 PubMedCrossRefGoogle Scholar
  9. Bai C, Fukuda N, Song Y, Ma T, Matthay MA, Verkman AS (1999) Lung fluid transport in aquaporin-1 and aquaporin-4 knockout mice. J Clin Invest 103:555–561.  https://doi.org/10.1172/JCI4138 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bazzoni G, Martinez-Estrada OM, Orsenigo F, Cordenonsi M, Citi S, Dejana E (2000) Interaction of junctional adhesion molecule with the tight junction components ZO-1, cingulin, and occludin. J Biol Chem 275:20520–20526.  https://doi.org/10.1074/jbc.M905251199 PubMedCrossRefGoogle Scholar
  11. Bichsel CA, Hall SR, Schmid RA, Guenat OT, Geiser T (2015) Primary human lung pericytes support and stabilize in vitro perfusable microvessels. Tissue Eng Part A 21:2166–2176.  https://doi.org/10.1089/ten.TEA.2014.0545 PubMedCrossRefGoogle Scholar
  12. Bijli KM, Fazal F, Slavin SA et al (2016) Phospholipase C-epsilon signaling mediates endothelial cell inflammation and barrier disruption in acute lung injury. Am J Physiol Lung Cell Mol Physiol 311:L517–L524.  https://doi.org/10.1152/ajplung.00069.2016 PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bosma KJ, Taneja R, Lewis JF (2010) Pharmacotherapy for prevention and treatment of acute respiratory distress syndrome: current and experimental approaches. Drugs 70:1255–1282.  https://doi.org/10.2165/10898570-000000000-00000 PubMedCrossRefGoogle Scholar
  14. Buo AM, Tomlinson RE, Eidelman ER, Chason M, Stains JP (2017) Connexin43 and Runx2 interact to affect cortical bone geometry, skeletal development, and osteoblast and osteoclast function. J Bone Miner Res.  https://doi.org/10.1002/jbmr.3152
  15. Cai J, Wei J, Li S, Suber T, Zhao J (2017) AM966, an antagonist of lysophosphatidic acid receptor 1, increases lung microvascular endothelial permeability through activation of Rho signaling pathway and phosphorylation of VE-cadherin. Mediators Inflamm 2017:6893560.  https://doi.org/10.1155/2017/6893560 PubMedPubMedCentralCrossRefGoogle Scholar
  16. Calabrese GC, Gazzaniga S, Oberkersch R, Wainstok R (2011) Decorin and biglycan expression: its relation with endothelial heterogeneity. Histol Histopathol 26:481–490.  10.14670/HH-26.481 PubMedGoogle Scholar
  17. Cao Y, Roursgaard M, Jacobsen NR, Moller P, Loft S (2016) Monocyte adhesion induced by multi-walled carbon nanotubes and palmitic acid in endothelial cells and alveolar-endothelial co-cultures. Nanotoxicology 10:235–244.  https://doi.org/10.3109/17435390.2015.1048325 PubMedGoogle Scholar
  18. Cea LA, Puebla C, Cisterna BA et al (2016) Fast skeletal myofibers of mdx mouse, model of Duchenne muscular dystrophy, express connexin hemichannels that lead to apoptosis. Cell Mol Life Sci 73:2583–2599.  https://doi.org/10.1007/s00018-016-2132-2 PubMedCrossRefGoogle Scholar
  19. Chang SF, Chen LJ, Lee PL, Lee DY, Chien S, Chiu JJ (2014) Different modes of endothelial-smooth muscle cell interaction elicit differential beta-catenin phosphorylations and endothelial functions. Proc Natl Acad Sci U S A 111:1855–1860.  https://doi.org/10.1073/pnas.1323761111 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chiang ET, Camp SM, Dudek SM et al (2009) Protective effects of high-molecular weight polyethylene glycol (PEG) in human lung endothelial cell barrier regulation: role of actin cytoskeletal rearrangement. Microvasc Res 77:174–186.  https://doi.org/10.1016/j.mvr.2008.11.007 PubMedCrossRefGoogle Scholar
  21. Chichger H, Braza J, Duong H, Boni G, Harrington EO (2016) Select Rab GTPases regulate the pulmonary endothelium via endosomal trafficking of vascular endothelial-cadherin. Am J Respir Cell Mol Biol 54:769–781.  https://doi.org/10.1165/rcmb.2015-0286OC PubMedPubMedCentralCrossRefGoogle Scholar
  22. Chonan Y, Taki S, Sampetrean O, Saya H, Sudo R (2017) Endothelium-induced three-dimensional invasion of heterogeneous glioma initiating cells in a microfluidic coculture platform. Integr Biol (Camb).  https://doi.org/10.1039/c7ib00091j
  23. Cioffi DL, Lowe K, Alvarez DF, Barry C, Stevens T (2009) TRPing on the lung endothelium: calcium channels that regulate barrier function. Antioxid Redox Signal 11:765–776.  https://doi.org/10.1089/ARS.2008.2221 PubMedPubMedCentralCrossRefGoogle Scholar
  24. Cioffi DL, Pandey S, Alvarez DF, Cioffi EA (2012) Terminal sialic acids are an important determinant of pulmonary endothelial barrier integrity. Am J Physiol Lung Cell Mol Physiol 302:L1067–L1077.  https://doi.org/10.1152/ajplung.00190.2011 PubMedPubMedCentralCrossRefGoogle Scholar
  25. Clark J, Alvarez DF, Alexeyev M, King JA, Huang L, Yoder MC, Stevens T (2008) Regulatory role for nucleosome assembly protein-1 in the proliferative and vasculogenic phenotype of pulmonary endothelium. Am J Physiol Lung Cell Mol Physiol 294:L431–L439.  https://doi.org/10.1152/ajplung.00316.2007 PubMedCrossRefGoogle Scholar
  26. Collins SR, Blank RS, Deatherage LS, Dull RO (2013) Special article: The endothelial glycocalyx: emerging concepts in pulmonary edema and acute lung injury. Anesth Analg 117:664–674.  https://doi.org/10.1213/ANE.0b013e3182975b85 PubMedPubMedCentralCrossRefGoogle Scholar
  27. Confalonieri M, Salton F, Fabiano F (2017) Acute respiratory distress syndrome. Eur Respir Rev 26.  https://doi.org/10.1183/16000617.0116-2016
  28. Corada M, Zanetta L, Orsenigo F et al (2002) A monoclonal antibody to vascular endothelial-cadherin inhibits tumor angiogenesis without side effects on endothelial permeability. Blood 100:905–911PubMedCrossRefGoogle Scholar
  29. Cosentini R, Aliberti S, Bignamini A, Piffer F, Brambilla AM (2009) Mortality in acute cardiogenic pulmonary edema treated with continuous positive airway pressure. Intensive Care Med 35:299–305.  https://doi.org/10.1007/s00134-008-1281-7 PubMedCrossRefGoogle Scholar
  30. Dejana E (2004) Endothelial cell-cell junctions: happy together. Nat Rev Mol Cell Biol 5:261–270.  https://doi.org/10.1038/nrm1357 PubMedCrossRefGoogle Scholar
  31. Dejana E, Orsenigo F (2013) Endothelial adherens junctions at a glance. J Cell Sci 126:2545–2549.  https://doi.org/10.1242/jcs.124529 PubMedCrossRefGoogle Scholar
  32. Dejana E, Orsenigo F, Lampugnani MG (2008) The role of adherens junctions and VE-cadherin in the control of vascular permeability. J Cell Sci 121:2115–2122.  https://doi.org/10.1242/jcs.017897 PubMedCrossRefGoogle Scholar
  33. Desai R, Sarpal R, Ishiyama N, Pellikka M, Ikura M, Tepass U (2013) Monomeric alpha-catenin links cadherin to the actin cytoskeleton. Nat Cell Biol 15:261–273.  https://doi.org/10.1038/ncb2685 PubMedCrossRefGoogle Scholar
  34. Donoghue L, Tyburski JG, Steffes CP, Wilson RF (2006) Vascular endothelial growth factor modulates contractile response in microvascular lung pericytes. Am J Surg 191:349–352.  https://doi.org/10.1016/j.amjsurg.2005.10.034 PubMedCrossRefGoogle Scholar
  35. Dorland YL, Huveneers S (2017) Cell-cell junctional mechanotransduction in endothelial remodeling. Cell Mol Life Sci 74:279–292.  https://doi.org/10.1007/s00018-016-2325-8 PubMedCrossRefGoogle Scholar
  36. Drab M, Verkade P, Elger M et al (2001) Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science 293:2449–2452.  https://doi.org/10.1126/science.1062688 PubMedCrossRefGoogle Scholar
  37. Dull RO, Cluff M, Kingston J et al (2012) Lung heparan sulfates modulate K(fc) during increased vascular pressure: evidence for glycocalyx-mediated mechanotransduction. Am J Physiol Lung Cell Mol Physiol 302:L816–L828.  https://doi.org/10.1152/ajplung.00080.2011 PubMedCrossRefGoogle Scholar
  38. Duluc L, Wojciak-Stothard B (2014) Rho GTPases in the regulation of pulmonary vascular barrier function. Cell Tissue Res 355:675–685.  https://doi.org/10.1007/s00441-014-1805-0 PubMedCrossRefGoogle Scholar
  39. Eltzschig HK, Carmeliet P (2011) Hypoxia and inflammation. N Engl J Med 364:656–665.  https://doi.org/10.1056/NEJMra0910283 PubMedPubMedCentralCrossRefGoogle Scholar
  40. Eltzschig HK, Bratton DL, Colgan SP (2014) Targeting hypoxia signalling for the treatment of ischaemic and inflammatory diseases. Nat Rev Drug Discov 13:852–869.  https://doi.org/10.1038/nrd4422 PubMedPubMedCentralCrossRefGoogle Scholar
  41. Escue R, Kandasamy K, Parthasarathi K (2017) Thrombin induces inositol trisphosphate-mediated spatially extensive responses in lung microvessels. Am J Pathol 187:921–935.  https://doi.org/10.1016/j.ajpath.2016.12.014 PubMedCrossRefGoogle Scholar
  42. Evans CE, Zhao YY (2017) Impact of thrombosis on pulmonary endothelial injury and repair following sepsis. Am J Physiol Lung Cell Mol Physiol 312:L441–L451.  https://doi.org/10.1152/ajplung.00441.2016 PubMedCrossRefGoogle Scholar
  43. Fainaru O, Adini I, Benny O, Bazinet L, Pravda E, D’Amato R, Folkman J (2008) Doxycycline induces membrane expression of VE-cadherin on endothelial cells and prevents vascular hyperpermeability. FASEB J 22:3728–3735.  https://doi.org/10.1096/fj.08-110494 PubMedCrossRefGoogle Scholar
  44. Gane J, Stockley R (2012) Mechanisms of neutrophil transmigration across the vascular endothelium in COPD. Thorax 67:553–561.  https://doi.org/10.1136/thoraxjnl-2011-200088 PubMedCrossRefGoogle Scholar
  45. Gao X, Kouklis P, Xu N, Minshall RD, Sandoval R, Vogel SM, Malik AB (2000) Reversibility of increased microvessel permeability in response to VE-cadherin disassembly. Am J Physiol Lung Cell Mol Physiol 279:L1218–L1225PubMedCrossRefGoogle Scholar
  46. Garcia-Ponce A, Citalan-Madrid AF, Velazquez-Avila M, Vargas-Robles H, Schnoor M (2015) The role of actin-binding proteins in the control of endothelial barrier integrity. Thromb Haemost 113:20–36.  https://doi.org/10.1160/TH14-04-0298 PubMedCrossRefGoogle Scholar
  47. Gavard J (2014) Endothelial permeability and VE-cadherin: a wacky comradeship. Cell Adh Migr 8:158–164PubMedPubMedCentralCrossRefGoogle Scholar
  48. Geyer M, Huang F, Sun Y, Vogel SM, Malik AB, Taylor CW, Komarova YA (2015) Microtubule-associated protein EB3 regulates IP3 receptor clustering and Ca(2+) signaling in endothelial cells. Cell Rep 12:79–89.  https://doi.org/10.1016/j.celrep.2015.06.001 PubMedPubMedCentralCrossRefGoogle Scholar
  49. Gonzales JN, Lucas R, Verin AD (2015) The acute respiratory distress syndrome: mechanisms and perspective therapeutic approaches. Austin J Vasc Med 2(1)Google Scholar
  50. Gulino-Debrac D (2013) Mechanotransduction at the basis of endothelial barrier function. Tissue Barriers 1:e24180.  https://doi.org/10.4161/tisb.24180 PubMedPubMedCentralCrossRefGoogle Scholar
  51. Hansen CG, Nichols BJ (2010) Exploring the caves: cavins, caveolins and caveolae. Trends Cell Biol 20:177–186.  https://doi.org/10.1016/j.tcb.2010.01.005 PubMedCrossRefGoogle Scholar
  52. Hansen CG, Shvets E, Howard G, Riento K, Nichols BJ (2013) Deletion of cavin genes reveals tissue-specific mechanisms for morphogenesis of endothelial caveolae. Nat Commun 4:1831.  https://doi.org/10.1038/ncomms2808 PubMedPubMedCentralCrossRefGoogle Scholar
  53. Heimerl S, Liebisch G, Le Lay S et al (2008) Caveolin-1 deficiency alters plasma lipid and lipoprotein profiles in mice. Biochem Biophys Res Commun 367:826–833.  https://doi.org/10.1016/j.bbrc.2008.01.010 PubMedCrossRefGoogle Scholar
  54. Henry CB, Duling BR (2000) TNF-alpha increases entry of macromolecules into luminal endothelial cell glycocalyx. Am J Physiol Heart Circ Physiol 279:H2815–H2823PubMedCrossRefGoogle Scholar
  55. Herwig MC, Muller KM, Muller AM (2008) Endothelial VE-cadherin expression in human lungs. Pathol Res Pract 204:725–730.  https://doi.org/10.1016/j.prp.2008.04.014 PubMedCrossRefGoogle Scholar
  56. Huang Y, He Q (2017) Inhibition of c-Src protects paraquat induced microvascular endothelial injury by modulating caveolin-1 phosphorylation and caveolae mediated transcellular permeability. Environ Toxicol Pharmacol 52:62–68.  https://doi.org/10.1016/j.etap.2017.01.023 PubMedCrossRefGoogle Scholar
  57. Hung CF, Chow YH, Liles WC, Altemeier WA, Schnapp LM (2017a) Ablation of pericyte-like cells in lungs by oropharyngeal aspiration of diphtheria toxin. Am J Respir Cell Mol Biol 56:160–167.  https://doi.org/10.1165/rcmb.2016-0083MA PubMedGoogle Scholar
  58. Hung CF, Mittelsteadt KL, Brauer R et al (2017b) Lung pericyte-like cells are functional interstitial immune sentinel cells. Am J Physiol Lung Cell Mol Physiol 312:L556–L567.  https://doi.org/10.1152/ajplung.00349.2016 PubMedCrossRefGoogle Scholar
  59. Huot J, Houle F, Marceau F, Landry J (1997) Oxidative stress-induced actin reorganization mediated by the p38 mitogen-activated protein kinase/heat shock protein 27 pathway in vascular endothelial cells. Circ Res 80:383–392PubMedCrossRefGoogle Scholar
  60. Huppert LA, Matthay MA (2017) Alveolar fluid clearance in pathologically relevant conditions: in vitro and in vivo models of acute respiratory distress syndrome. Front Immunol 8:371.  https://doi.org/10.3389/fimmu.2017.00371 PubMedPubMedCentralCrossRefGoogle Scholar
  61. Ichimiya H, Maeda K, Enomoto A, Weng L, Takahashi M, Murohara T (2015) Girdin/GIV regulates transendothelial permeability by controlling VE-cadherin trafficking through the small GTPase, R-Ras. Biochem Biophys Res Commun 461:260–267.  https://doi.org/10.1016/j.bbrc.2015.04.012 PubMedCrossRefGoogle Scholar
  62. Ieguchi K, Omori T, Komatsu A, Tomita T, Deguchi A, Maru Y (2013) Ephrin-A1 expression induced by S100A8 is mediated by the toll-like receptor 4. Biochem Biophys Res Commun 440:623–629.  https://doi.org/10.1016/j.bbrc.2013.09.119 PubMedCrossRefGoogle Scholar
  63. Iyer S, Ferreri DM, DeCocco NC, Minnear FL, Vincent PA (2004) VE-cadherin-p120 interaction is required for maintenance of endothelial barrier function. Am J Physiol Lung Cell Mol Physiol 286:L1143–L1153.  https://doi.org/10.1152/ajplung.00305.2003 PubMedCrossRefGoogle Scholar
  64. Jerng JS, Yu CJ, Wang HC, Chen KY, Cheng SL, Yang PC (2006) Polymorphism of the angiotensin-converting enzyme gene affects the outcome of acute respiratory distress syndrome. Crit Care Med 34:1001–1006.  https://doi.org/10.1097/01.CCM.0000206107.92476.39 PubMedCrossRefGoogle Scholar
  65. Kandasamy K, Parthasarathi K (2014) Quantifying single microvessel permeability in isolated blood-perfused rat lung preparation. J Vis Exp:e51552.  https://doi.org/10.3791/51552
  66. Kandasamy K, Bezavada L, Escue RB, Parthasarathi K (2013) Lipopolysaccharide induces endoplasmic store Ca2+-dependent inflammatory responses in lung microvessels. PLoS One 8:e63465.  https://doi.org/10.1371/journal.pone.0063465 PubMedPubMedCentralCrossRefGoogle Scholar
  67. Kandasamy K, Escue R, Manna J, Adebiyi A, Parthasarathi K (2015) Changes in endothelial connexin 43 expression inversely correlate with microvessel permeability and VE-cadherin expression in endotoxin-challenged lungs. Am J Physiol Lung Cell Mol Physiol 309:L584–L592.  https://doi.org/10.1152/ajplung.00211.2014 PubMedPubMedCentralCrossRefGoogle Scholar
  68. Kerkar S, Williams M, Blocksom JM, Wilson RF, Tyburski JG, Steffes CP (2006) TNF-alpha and IL-1beta increase pericyte/endothelial cell co-culture permeability. J Surg Res 132:40–45.  https://doi.org/10.1016/j.jss.2005.06.033 PubMedCrossRefGoogle Scholar
  69. Kim HR, Cho HS, Shin DY, Chung KH (2017) Novel approach to study the cardiovascular effects and mechanism of action of urban particulate matter using lung epithelial-endothelial tetra-culture system. Toxicol In Vitro 38:33–40.  https://doi.org/10.1016/j.tiv.2016.11.001 PubMedCrossRefGoogle Scholar
  70. King LS, Nielsen S, Agre P, Brown RH (2002) Decreased pulmonary vascular permeability in aquaporin-1-null humans. Proc Natl Acad Sci U S A 99:1059–1063.  https://doi.org/10.1073/pnas.022626499 PubMedPubMedCentralCrossRefGoogle Scholar
  71. Kuebler WM, Wittenberg C, Lee WL et al (2016) Thrombin stimulates albumin transcytosis in lung microvascular endothelial cells via activation of acid sphingomyelinase. Am J Physiol Lung Cell Mol Physiol 310:L720–L732.  https://doi.org/10.1152/ajplung.00157.2015 PubMedCrossRefGoogle Scholar
  72. Kumar NM, Gilula NB (1996) The gap junction communication channel. Cell 84:381–388PubMedCrossRefGoogle Scholar
  73. Le Lay S, Kurzchalia TV (2005) Getting rid of caveolins: phenotypes of caveolin-deficient animals. Biochim Biophys Acta 1746:322–333.  https://doi.org/10.1016/j.bbamcr.2005.06.001 PubMedCrossRefGoogle Scholar
  74. Li HH, Li J, Wasserloos KJ et al (2013) Caveolae-dependent and -independent uptake of albumin in cultured rodent pulmonary endothelial cells. PLoS One 8:e81903.  https://doi.org/10.1371/journal.pone.0081903 PubMedPubMedCentralCrossRefGoogle Scholar
  75. Lonigro AJ, McMurdo L, Stephenson AH, Sprague RS, Weintraub NL (1996) Hypotheses regarding the role of pericytes in regulating movement of fluid, nutrients, and hormones across the microcirculatory endothelial barrier. Diabetes 45(Suppl 1):S38–S43PubMedCrossRefGoogle Scholar
  76. Lowe K, Alvarez D, King J, Stevens T (2007) Phenotypic heterogeneity in lung capillary and extra-alveolar endothelial cells. Increased extra-alveolar endothelial permeability is sufficient to decrease compliance. J Surg Res 143:70–77.  https://doi.org/10.1016/j.jss.2007.03.047 PubMedCrossRefGoogle Scholar
  77. Lucas R, Yang G, Gorshkov BA et al (2012) Protein kinase C-alpha and arginase I mediate pneumolysin-induced pulmonary endothelial hyperpermeability. Am J Respir Cell Mol Biol 47:445–453.  https://doi.org/10.1165/rcmb.2011-0332OC PubMedPubMedCentralCrossRefGoogle Scholar
  78. Malczyk M, Erb A, Veith C et al (2017) The role of transient receptor potential channel 6 channels in the pulmonary vasculature. Front Immunol 8:707.  https://doi.org/10.3389/fimmu.2017.00707 PubMedPubMedCentralCrossRefGoogle Scholar
  79. Maniatis NA, Chernaya O, Shinin V, Minshall RD (2012) Caveolins and lung function. Adv Exp Med Biol 729:157–179.  https://doi.org/10.1007/978-1-4614-1222-9_11 PubMedPubMedCentralCrossRefGoogle Scholar
  80. Matthay MA, Ware LB, Zimmerman GA (2012) The acute respiratory distress syndrome. J Clin Invest 122:2731–2740.  https://doi.org/10.1172/JCI60331 PubMedPubMedCentralCrossRefGoogle Scholar
  81. Matthay MA, McAuley DF, Ware LB (2017) Clinical trials in acute respiratory distress syndrome: challenges and opportunities. Lancet Respir Med 5:524–534.  https://doi.org/10.1016/S2213-2600(17)30188-1 PubMedCrossRefGoogle Scholar
  82. McMahon TJ, Moon RE, Luschinger BP et al (2002) Nitric oxide in the human respiratory cycle. Nat Med 8:711–717.  https://doi.org/10.1038/nm718 PubMedCrossRefGoogle Scholar
  83. Mikelis CM, Simaan M, Ando K et al (2015) RhoA and ROCK mediate histamine-induced vascular leakage and anaphylactic shock. Nat Commun 6:6725.  https://doi.org/10.1038/ncomms7725 PubMedPubMedCentralCrossRefGoogle Scholar
  84. Milici AJ, Watrous NE, Stukenbrok H, Palade GE (1987) Transcytosis of albumin in capillary endothelium. J Cell Biol 105:2603–2612PubMedCrossRefGoogle Scholar
  85. Mounier N, Arrigo AP (2002) Actin cytoskeleton and small heat shock proteins: how do they interact? Cell Stress Chaperones 7:167–176PubMedPubMedCentralCrossRefGoogle Scholar
  86. Muramatsu F, Kidoya H, Naito H, Hayashi Y, Iba T, Takakura N (2017) Plakoglobin maintains the integrity of vascular endothelial cell junctions and regulates VEGF-induced phosphorylation of VE-cadherin. J Biochem doi.  https://doi.org/10.1093/jb/mvx001
  87. Nagasawa K, Chiba H, Fujita H, Kojima T, Saito T, Endo T, Sawada N (2006) Possible involvement of gap junctions in the barrier function of tight junctions of brain and lung endothelial cells. J Cell Physiol 208:123–132.  https://doi.org/10.1002/jcp.20647 PubMedCrossRefGoogle Scholar
  88. Nagendran M, McAuley DF, Kruger PS et al (2017) Statin therapy for acute respiratory distress syndrome: an individual patient data meta-analysis of randomised clinical trials. Intensive Care Med 43:663–671.  https://doi.org/10.1007/s00134-016-4649-0 PubMedCrossRefGoogle Scholar
  89. Navarro R, Compte M, Alvarez-Vallina L, Sanz L (2016) Immune regulation by pericytes: modulating innate and adaptive immunity. Front Immunol 7:480.  https://doi.org/10.3389/fimmu.2016.00480 PubMedPubMedCentralCrossRefGoogle Scholar
  90. Network TANAftA (2000) Ketoconazole for early treatment of acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. The ARDS Network. JAMA 283:1995–2002CrossRefGoogle Scholar
  91. Ochoa CD, Wu S, Stevens T (2010) New developments in lung endothelial heterogeneity: Von Willebrand factor, P-selectin, and the Weibel-Palade body. Semin Thromb Hemost 36:301–308.  https://doi.org/10.1055/s-0030-1253452 PubMedPubMedCentralCrossRefGoogle Scholar
  92. Oldenburg J, de Rooij J (2014) Mechanical control of the endothelial barrier. Cell Tissue Res 355:545–555.  https://doi.org/10.1007/s00441-013-1792-6 PubMedCrossRefGoogle Scholar
  93. Orsenigo F, Giampietro C, Ferrari A et al (2012) Phosphorylation of VE-cadherin is modulated by haemodynamic forces and contributes to the regulation of vascular permeability in vivo. Nat Commun 3:1208.  https://doi.org/10.1038/ncomms2199 PubMedPubMedCentralCrossRefGoogle Scholar
  94. Paffett ML, Walker BR (2007) Vascular adaptations to hypoxia: molecular and cellular mechanisms regulating vascular tone. Essays Biochem 43:105–119.  https://doi.org/10.1042/BSE0430105 PubMedCrossRefGoogle Scholar
  95. Palade GE (1953) Fine structure of blood capillaries. J Appl Phys 24:1424Google Scholar
  96. Palade GE (1961) Blood capillaries of the heart and other organs. Circulation 24:368–388PubMedCrossRefGoogle Scholar
  97. Park JH, Okayama N, Gute D, Krsmanovic A, Battarbee H, Alexander JS (1999) Hypoxia/aglycemia increases endothelial permeability: role of second messengers and cytoskeleton. Am J Physiol 277:C1066–C1074PubMedCrossRefGoogle Scholar
  98. Parker WH, Qu ZC, May JM (2015) Intracellular ascorbate prevents endothelial barrier permeabilization by thrombin. J Biol Chem 290:21486–21497.  https://doi.org/10.1074/jbc.M115.662098 PubMedPubMedCentralCrossRefGoogle Scholar
  99. Parthasarathi K (2012) Endothelial connexin43 mediates acid-induced increases in pulmonary microvascular permeability. Am J Physiol Lung Cell Mol Physiol 303:L33–L42.  https://doi.org/10.1152/ajplung.00219.2011 PubMedPubMedCentralCrossRefGoogle Scholar
  100. Parthasarathi K, Bhattacharya J (2011) Localized acid instillation by a wedged-catheter method reveals a role for vascular gap junctions in spatial expansion of acid injury. Anat Rec (Hoboken) 294:1585–1591.  https://doi.org/10.1002/ar.21460 CrossRefGoogle Scholar
  101. Parthasarathi K, Quadri SK (2009) Cadherins and connexins in pulmonary endothelial function, pp 33–50.  https://doi.org/10.1002/9780470747490.ch3
  102. Parthasarathi K, Ichimura H, Quadri S, Issekutz A, Bhattacharya J (2002) Mitochondrial reactive oxygen species regulate spatial profile of proinflammatory responses in lung venular capillaries. J Immunol 169:7078–7086PubMedCrossRefGoogle Scholar
  103. Parthasarathi K, Ichimura H, Monma E, Lindert J, Quadri S, Issekutz A, Bhattacharya J (2006) Connexin 43 mediates spread of Ca2+-dependent proinflammatory responses in lung capillaries. J Clin Invest 116:2193–2200.  https://doi.org/10.1172/JCI26605 PubMedPubMedCentralCrossRefGoogle Scholar
  104. Parton RG, del Pozo MA (2013) Caveolae as plasma membrane sensors, protectors and organizers. Nat Rev Mol Cell Biol 14:98–112.  https://doi.org/10.1038/nrm3512 PubMedCrossRefGoogle Scholar
  105. Piotrowicz RS, Levin EG (1997) Basolateral membrane-associated 27-kDa heat shock protein and microfilament polymerization. J Biol Chem 272:25920–25927PubMedCrossRefGoogle Scholar
  106. Pires-Neto RC, Del Carlo Bernardi F, Alves de Araujo P, Mauad T, Dolhnikoff M (2016) The expression of water and ion channels in diffuse alveolar damage is not dependent on DAD etiology. PLoS One 11:e0166184.  https://doi.org/10.1371/journal.pone.0166184 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Potente M, Makinen T (2017) Vascular heterogeneity and specialization in development and disease. Nat Rev Mol Cell Biol 18:477–494.  https://doi.org/10.1038/nrm.2017.36 PubMedCrossRefGoogle Scholar
  108. Quadri SK (2012) Cross talk between focal adhesion kinase and cadherins: role in regulating endothelial barrier function. Microvasc Res 83:3–11.  https://doi.org/10.1016/j.mvr.2011.08.001 PubMedCrossRefGoogle Scholar
  109. Radeva MY, Waschke J (2017) Mind the gap: mechanisms regulating the endothelial barrier. Acta Physiol (Oxf).  https://doi.org/10.1111/apha.12860
  110. Reitsma S, Slaaf DW, Vink H, van Zandvoort MA, oude Egbrink MG (2007) The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch 454:345–359.  https://doi.org/10.1007/s00424-007-0212-8 PubMedPubMedCentralCrossRefGoogle Scholar
  111. Rice TW, Wheeler AP, Thompson BT et al (2011) Enteral omega-3 fatty acid, gamma-linolenic acid, and antioxidant supplementation in acute lung injury. JAMA 306:1574–1581.  https://doi.org/10.1001/jama.2011.1435 PubMedPubMedCentralCrossRefGoogle Scholar
  112. Richter T, Floetenmeyer M, Ferguson C et al (2008) High-resolution 3D quantitative analysis of caveolar ultrastructure and caveola-cytoskeleton interactions. Traffic 9:893–909.  https://doi.org/10.1111/j.1600-0854.2008.00733.x PubMedCrossRefGoogle Scholar
  113. Saez JC, Berthoud VM, Branes MC, Martinez AD, Beyer EC (2003) Plasma membrane channels formed by connexins: their regulation and functions. Physiol Rev 83:1359–1400.  https://doi.org/10.1152/physrev.00007.2003 PubMedCrossRefGoogle Scholar
  114. Salmon AH, Satchell SC (2012) Endothelial glycocalyx dysfunction in disease: albuminuria and increased microvascular permeability. J Pathol 226:562–574.  https://doi.org/10.1002/path.3964 PubMedCrossRefGoogle Scholar
  115. Satoh T, Satoh K, Yaoita N et al (2017) Activated TAFI promotes the development of chronic thromboembolic pulmonary hypertension: a possible novel therapeutic target. Circ Res 120:1246–1262.  https://doi.org/10.1161/CIRCRESAHA.117.310640 PubMedCrossRefGoogle Scholar
  116. Sawada J, Li F, Komatsu M (2015) R-Ras inhibits VEGF-induced p38MAPK activation and HSP27 phosphorylation in endothelial cells. J Vasc Res 52:347–359.  https://doi.org/10.1159/000444526 PubMedCrossRefGoogle Scholar
  117. Sawant DA, Tharakan B, Hunter FA, Smythe WR, Childs EW (2011) Role of beta-catenin in regulating microvascular endothelial cell hyperpermeability. J Trauma 70:481–487; discussion 487–488.  https://doi.org/10.1097/TA.0b013e31820b3ed7
  118. Schallek J, Geng Y, Nguyen H, Williams DR (2013) Morphology and topography of retinal pericytes in the living mouse retina using in vivo adaptive optics imaging and ex vivo characterization. Invest Ophthalmol Vis Sci 54:8237–8250.  https://doi.org/10.1167/iovs.13-12581 PubMedPubMedCentralCrossRefGoogle Scholar
  119. Schlegel N, Waschke J (2014) cAMP with other signaling cues converges on Rac1 to stabilize the endothelial barrier – a signaling pathway compromised in inflammation. Cell Tissue Res 355:587–596.  https://doi.org/10.1007/s00441-013-1755-y PubMedCrossRefGoogle Scholar
  120. Schnittler H, Taha M, Schnittler MO, Taha AA, Lindemann N, Seebach J (2014) Actin filament dynamics and endothelial cell junctions: the Ying and Yang between stabilization and motion. Cell Tissue Res 355:529–543.  https://doi.org/10.1007/s00441-014-1856-2 PubMedCrossRefGoogle Scholar
  121. Schnitzer JE, Oh P (1996) Aquaporin-1 in plasma membrane and caveolae provides mercury-sensitive water channels across lung endothelium. Am J Physiol 270:H416–H422PubMedGoogle Scholar
  122. Schnoor M, Garcia Ponce A, Vadillo E, Pelayo R, Rossaint J, Zarbock A (2017) Actin dynamics in the regulation of endothelial barrier functions and neutrophil recruitment during endotoxemia and sepsis. Cell Mol Life Sci 74:1985–1997.  https://doi.org/10.1007/s00018-016-2449-x PubMedCrossRefGoogle Scholar
  123. Schubert W, Frank PG, Woodman SE, Hyogo H, Cohen DE, Chow CW, Lisanti MP (2002) Microvascular hyperpermeability in caveolin-1 (-/-) knock-out mice. Treatment with a specific nitric-oxide synthase inhibitor, L-NAME, restores normal microvascular permeability in Cav-1 null mice. J Biol Chem 277:40091–40098.  https://doi.org/10.1074/jbc.M205948200 PubMedCrossRefGoogle Scholar
  124. Schwartz AV, Chen H, Ambrosius WT et al (2015) Effects of TZD use and discontinuation on fracture rates in ACCORD bone study. J Clin Endocrinol Metab 100:4059–4066.  https://doi.org/10.1210/jc.2015-1215 PubMedPubMedCentralCrossRefGoogle Scholar
  125. Scott DW, Vallejo MO, Patel RP (2013) Heterogenic endothelial responses to inflammation: role for differential N-glycosylation and vascular bed of origin. J Am Heart Assoc 2:e000263.  https://doi.org/10.1161/JAHA.113.000263 PubMedPubMedCentralCrossRefGoogle Scholar
  126. Shang D, Peng T, Gou S, Li Y, Wu H, Wang C, Yang Z (2016) High mobility group box protein 1 boosts endothelial albumin transcytosis through the RAGE/Src/Caveolin-1 pathway. Sci Rep 6:32180.  https://doi.org/10.1038/srep32180 PubMedPubMedCentralCrossRefGoogle Scholar
  127. Shinde AV, Motiani RK, Zhang X et al (2013) STIM1 controls endothelial barrier function independently of Orai1 and Ca2+ entry. Sci Signal 6:ra18.  https://doi.org/10.1126/scisignal.2003425 PubMedPubMedCentralCrossRefGoogle Scholar
  128. Singleton PA, Dudek SM, Chiang ET, Garcia JG (2005) Regulation of sphingosine 1-phosphate-induced endothelial cytoskeletal rearrangement and barrier enhancement by S1P1 receptor, PI3 kinase, Tiam1/Rac1, and alpha-actinin. FASEB J 19:1646–1656.  https://doi.org/10.1096/fj.05-3928com PubMedCrossRefGoogle Scholar
  129. Sinha B, Koster D, Ruez R et al (2011) Cells respond to mechanical stress by rapid disassembly of caveolae. Cell 144:402–413.  https://doi.org/10.1016/j.cell.2010.12.031 PubMedPubMedCentralCrossRefGoogle Scholar
  130. Soni D, Regmi SC, Wang DM et al (2017) Pyk2 phosphorylation of VE-PTP downstream of STIM1-induced Ca2+ entry regulates disassembly of adherens junctions. Am J Physiol Lung Cell Mol Physiol 312:L1003–L1017.  https://doi.org/10.1152/ajplung.00008.2017 PubMedCrossRefGoogle Scholar
  131. Soon AS, Chua JW, Becker DL (2016) Connexins in endothelial barrier function – novel therapeutic targets countering vascular hyperpermeability. Thromb Haemost 116:852–867.  https://doi.org/10.1160/TH16-03-0210 PubMedCrossRefGoogle Scholar
  132. Sowa G (2012) Caveolae, caveolins, cavins, and endothelial cell function: new insights. Front Physiol 2:120.  https://doi.org/10.3389/fphys.2011.00120 PubMedPubMedCentralCrossRefGoogle Scholar
  133. Speyer CL, Steffes CP, Ram JL (1999) Effects of vasoactive mediators on the rat lung pericyte: quantitative analysis of contraction on collagen lattice matrices. Microvasc Res 57:134–143.  https://doi.org/10.1006/mvre.1998.2134 PubMedCrossRefGoogle Scholar
  134. Stack A, Derksen FJ, Williams KJ, Robinson NE, Jackson WF (2016) Regional heterogeneity in the reactivity of equine small pulmonary blood vessels. J Appl Physiol (1985) 120:599–607.  https://doi.org/10.1152/japplphysiol.00975.2015 CrossRefGoogle Scholar
  135. Steppan J, Hofer S, Funke B et al (2011) Sepsis and major abdominal surgery lead to flaking of the endothelial glycocalix. J Surg Res 165:136–141.  https://doi.org/10.1016/j.jss.2009.04.034 PubMedCrossRefGoogle Scholar
  136. Stevens T (2005) Molecular and cellular determinants of lung endothelial cell heterogeneity. Chest 128:558S–564S.  https://doi.org/10.1378/chest.128.6_suppl.558S PubMedCrossRefGoogle Scholar
  137. Stevens T (2011) Functional and molecular heterogeneity of pulmonary endothelial cells. Proc Am Thorac Soc 8:453–457.  https://doi.org/10.1513/pats.201101-004MW PubMedCrossRefGoogle Scholar
  138. Sundivakkam PC, Freichel M, Singh V et al (2012) The Ca(2+) sensor stromal interaction molecule 1 (STIM1) is necessary and sufficient for the store-operated Ca(2+) entry function of transient receptor potential canonical (TRPC) 1 and 4 channels in endothelial cells. Mol Pharmacol 81:510–526.  https://doi.org/10.1124/mol.111.074658 PubMedPubMedCentralCrossRefGoogle Scholar
  139. Sverdlov M, Shinin V, Place AT, Castellon M, Minshall RD (2009) Filamin A regulates caveolae internalization and trafficking in endothelial cells. Mol Biol Cell 20:4531–4540.  https://doi.org/10.1091/mbc.E08-10-0997 PubMedPubMedCentralCrossRefGoogle Scholar
  140. Tabuchi A, Kuebler WM (2008) Endothelium-platelet interactions in inflammatory lung disease. Vascul Pharmacol 49:141–150.  https://doi.org/10.1016/j.vph.2008.06.004 PubMedCrossRefGoogle Scholar
  141. Takai Y, Sasaki T, Matozaki T (2001) Small GTP-binding proteins. Physiol Rev 81:153–208PubMedCrossRefGoogle Scholar
  142. Taveau JC, Dubois M, Le Bihan O et al (2008) Structure of artificial and natural VE-cadherin-based adherens junctions. Biochem Soc Trans 36:189–193.  https://doi.org/10.1042/BST0360189 PubMedPubMedCentralCrossRefGoogle Scholar
  143. Tien T, Barrette KF, Chronopoulos A, Roy S (2013) Effects of high glucose-induced Cx43 downregulation on occludin and ZO-1 expression and tight junction barrier function in retinal endothelial cells. Invest Ophthalmol Vis Sci 54:6518–6525.  https://doi.org/10.1167/iovs.13-11763 PubMedPubMedCentralCrossRefGoogle Scholar
  144. Tiruppathi C, Ahmmed GU, Vogel SM, Malik AB (2006) Ca2+ signaling, TRP channels, and endothelial permeability. Microcirculation 13:693–708.  https://doi.org/10.1080/10739680600930347 PubMedCrossRefGoogle Scholar
  145. Tiruppathi C, Shimizu J, Miyawaki-Shimizu K et al (2008) Role of NF-kappaB-dependent caveolin-1 expression in the mechanism of increased endothelial permeability induced by lipopolysaccharide. J Biol Chem 283:4210–4218.  https://doi.org/10.1074/jbc.M703153200 PubMedCrossRefGoogle Scholar
  146. Tsukita S, Furuse M, Itoh M (2001) Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol 2:285–293.  https://doi.org/10.1038/35067088 PubMedCrossRefGoogle Scholar
  147. Uhlig S, Yang Y, Waade J, Wittenberg C, Babendreyer A, Kuebler WM (2014) Differential regulation of lung endothelial permeability in vitro and in situ. Cell Physiol Biochem 34:1–19.  https://doi.org/10.1159/000362980 PubMedCrossRefGoogle Scholar
  148. Uzu M, Sato H, Shimizu A, Shibata Y, Ueno K, Hisaka A (2017) Connexin 43 enhances Bax activation via JNK activation in sunitinib-induced apoptosis in mesothelioma cells. J Pharmacol Sci 134:101–107.  https://doi.org/10.1016/j.jphs.2017.05.005 PubMedCrossRefGoogle Scholar
  149. Vadasz I, Sznajder JI (2017) Gas exchange disturbances regulate alveolar fluid clearance during acute lung injury. Front Immunol 8:757.  https://doi.org/10.3389/fimmu.2017.00757 PubMedPubMedCentralCrossRefGoogle Scholar
  150. Vahatupa M, Prince S, Vataja S et al (2016) Lack of R-Ras leads to increased vascular permeability in ischemic retinopathy. Invest Ophthalmol Vis Sci 57:4898–4909.  https://doi.org/10.1167/iovs.16-19212 PubMedPubMedCentralCrossRefGoogle Scholar
  151. Vandenbroucke St Amant E, Tauseef M, Vogel SM, Gao XP, Mehta D, Komarova YA, Malik AB (2012) PKCalpha activation of p120-catenin serine 879 phospho-switch disassembles VE-cadherin junctions and disrupts vascular integrity. Circ Res 111:739–749.  https://doi.org/10.1161/CIRCRESAHA.112.269654 PubMedCrossRefGoogle Scholar
  152. Verkman AS (2007) Role of aquaporins in lung liquid physiology. Respir Physiol Neurobiol 159:324–330.  https://doi.org/10.1016/j.resp.2007.02.012 PubMedPubMedCentralCrossRefGoogle Scholar
  153. Villalta PC, Townsley MI (2013) Transient receptor potential channels and regulation of lung endothelial permeability. Pulm Circ 3:802–815.  https://doi.org/10.1086/674765 PubMedPubMedCentralCrossRefGoogle Scholar
  154. Vogel SM, Malik AB (2012) Cytoskeletal dynamics and lung fluid balance. Compr Physiol 2:449–478.  https://doi.org/10.1002/cphy.c100006 PubMedCrossRefGoogle Scholar
  155. Wang L, Yin J, Nickles HT et al (2012) Hypoxic pulmonary vasoconstriction requires connexin 40-mediated endothelial signal conduction. J Clin Invest 122:4218–4230.  https://doi.org/10.1172/JCI59176 PubMedPubMedCentralCrossRefGoogle Scholar
  156. Wang N, Zhang D, Sun G, Zhang H, You Q, Shao M, Yue Y (2015) Lipopolysaccharide-induced caveolin-1 phosphorylation-dependent increase in transcellular permeability precedes the increase in paracellular permeability. Drug Des Devel Ther 9:4965–4977.  https://doi.org/10.2147/DDDT.S77646 PubMedPubMedCentralGoogle Scholar
  157. Wang G, Zhang J, Xu C, Han X, Gao Y, Chen H (2016) Inhibition of SOCs attenuates acute lung injury induced by severe acute pancreatitis in rats and PMVECs injury induced by lipopolysaccharide. Inflammation 39:1049–1058.  https://doi.org/10.1007/s10753-016-0335-1 PubMedGoogle Scholar
  158. Wang T, Gross C, Desai AA et al (2017) Endothelial cell signaling and ventilator-induced lung injury: molecular mechanisms, genomic analyses, and therapeutic targets. Am J Physiol Lung Cell Mol Physiol 312:L452–L476.  https://doi.org/10.1152/ajplung.00231.2016 PubMedCrossRefGoogle Scholar
  159. Ware LB, Fremont RD, Bastarache JA, Calfee CS, Matthay MA (2010) Determining the aetiology of pulmonary oedema by the oedema fluid-to-plasma protein ratio. Eur Respir J 35:331–337.  https://doi.org/10.1183/09031936.00098709 PubMedCrossRefGoogle Scholar
  160. Weidenfeld S, Kuebler WM (2017) Cytokine-regulation of Na+-K+-Cl- cotransporter 1 and cystic fibrosis transmembrane conductance regulator-potential role in pulmonary inflammation and edema formation. Front Immunol 8:393.  https://doi.org/10.3389/fimmu.2017.00393 PubMedPubMedCentralCrossRefGoogle Scholar
  161. Wojciak-Stothard B, Leiper J (2008) Rho GTPases and hypoxia in pulmonary vascular endothelial cells. Methods Enzymol 439:267–283.  https://doi.org/10.1016/S0076-6879(07)00420-X PubMedCrossRefGoogle Scholar
  162. Wojciak-Stothard B, Torondel B, Zhao L, Renne T, Leiper JM (2009) Modulation of Rac1 activity by ADMA/DDAH regulates pulmonary endothelial barrier function. Mol Biol Cell 20:33–42.  https://doi.org/10.1091/mbc.E08-04-0395 PubMedPubMedCentralCrossRefGoogle Scholar
  163. Woodcock TE, Woodcock TM (2012) Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy. Br J Anaesth 108:384–394.  https://doi.org/10.1093/bja/aer515 PubMedCrossRefGoogle Scholar
  164. Wu MM, Covington ED, Lewis RS (2014) Single-molecule analysis of diffusion and trapping of STIM1 and Orai1 at endoplasmic reticulum-plasma membrane junctions. Mol Biol Cell 25:3672–3685.  https://doi.org/10.1091/mbc.E14-06-1107 PubMedPubMedCentralCrossRefGoogle Scholar
  165. Wu F, Peng Z, Park PW, Kozar RA (2017) Loss of Syndecan-1 abrogates the pulmonary protective phenotype induced by plasma after hemorrhagic shock. Shock.  https://doi.org/10.1097/SHK.0000000000000832
  166. Yamada S, Pokutta S, Drees F, Weis WI, Nelson WJ (2005) Deconstructing the cadherin-catenin-actin complex. Cell 123:889–901.  https://doi.org/10.1016/j.cell.2005.09.020 PubMedPubMedCentralCrossRefGoogle Scholar
  167. Yan Z, Wang ZG, Segev N et al (2016) Rab11a mediates vascular endothelial-cadherin recycling and controls endothelial barrier function. Arterioscler Thromb Vasc Biol 36:339–349.  https://doi.org/10.1161/ATVBAHA.115.306549 PubMedCrossRefGoogle Scholar
  168. Yazbeck P, Tauseef M, Kruse K et al (2017) STIM1 phosphorylation at Y361 recruits Orai1 to STIM1 puncta and induces Ca2+ entry. Sci Rep 7:42758.  https://doi.org/10.1038/srep42758 PubMedPubMedCentralCrossRefGoogle Scholar
  169. Ying X, Minamiya Y, Fu C, Bhattacharya J (1996) Ca2+ waves in lung capillary endothelium. Circ Res 79:898–908PubMedCrossRefGoogle Scholar
  170. Zeng H, He X, Tuo QH, Liao DF, Zhang GQ, Chen JX (2016) LPS causes pericyte loss and microvascular dysfunction via disruption of Sirt3/angiopoietins/Tie-2 and HIF-2alpha/Notch3 pathways. Sci Rep 6:20931.  https://doi.org/10.1038/srep20931 PubMedPubMedCentralCrossRefGoogle Scholar
  171. Zhou C, Townsley MI, Alexeyev M, Voelkel NF, Stevens T (2016) Endothelial hyperpermeability in severe pulmonary arterial hypertension: role of store-operated calcium entry. Am J Physiol Lung Cell Mol Physiol 311:L560–L569.  https://doi.org/10.1152/ajplung.00057.2016 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of PhysiologyUniversity of Tennessee Health Science CenterMemphisUSA

Personalised recommendations