Transcription Factors Regulating Embryonic Development of Pulmonary Vasculature

Part of the Advances in Anatomy, Embryology and Cell Biology book series (ADVSANAT, volume 228)


Lung morphogenesis is a highly orchestrated process beginning with the appearance of lung buds on approximately embryonic day 9.5 in the mouse. Endodermally derived epithelial cells of the primitive lung buds undergo branching morphogenesis to generate the tree-like network of epithelial-lined tubules. The pulmonary vasculature develops in close proximity to epithelial progenitor cells in a process that is regulated by interactions between the developing epithelium and underlying mesenchyme. Studies in transgenic and knockout mouse models demonstrate that normal lung morphogenesis requires coordinated interactions between cells lining the tubules, which end in peripheral saccules, juxtaposed to an extensive network of capillaries. Multiple growth factors, microRNAs, transcription factors, and their associated signaling cascades regulate cellular proliferation, migration, survival, and differentiation during formation of the peripheral lung. Dysregulation of signaling events caused by gene mutations, teratogens, or premature birth causes severe congenital and acquired lung diseases in which normal alveolar architecture and the pulmonary capillary network are disrupted. Herein, we review scientific progress regarding signaling and transcriptional mechanisms regulating the development of pulmonary vasculature during lung morphogenesis.


Pulmonary Vascular Network Lung Bud Alveolar Capillary Dysplasia Lung Development Kalinichenko 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank Ann Maher for excellent editorial assistance. These studies were supported by NIH grants HL84151 and HL123490 (both to V.V.K.), HL132849 (to T.V.K.), and HL110964 and HL122642 (both to J.A.W.).


  1. Aitola M, Carlsson P, Mahlapuu M, Enerback S, Pelto-Huikko M (2000) Forkhead transcription factor FoxF2 is expressed in mesodermal tissues involved in epithelio-mesenchymal interactions. Dev Dyn 218:136–149.<136::AID-DVDY12>3.0.CO;2-U PubMedCrossRefGoogle Scholar
  2. Arora R, Papaioannou VE (2012) The murine allantois: a model system for the study of blood vessel formation. Blood 120:2562–2572. PubMedPubMedCentralCrossRefGoogle Scholar
  3. Aubin J, Lemieux M, Tremblay M, Berard J, Jeannotte L (1997) Early postnatal lethality in Hoxa-5 mutant mice is attributable to respiratory tract defects. Dev Biol 192:432–445. PubMedCrossRefGoogle Scholar
  4. Balli D, Ren X, Chou FS, Cross E, Zhang Y, Kalinichenko VV, Kalin TV (2012) Foxm1 transcription factor is required for macrophage migration during lung inflammation and tumor formation. Oncogene 31:3875–3888. PubMedCrossRefGoogle Scholar
  5. Birdsey GM, Shah AV, Dufton N et al (2015) The endothelial transcription factor ERG promotes vascular stability and growth through Wnt/beta-catenin signaling. Dev Cell 32:82–96. PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bishop NB, Stankiewicz P, Steinhorn RH (2011) Alveolar capillary dysplasia. Am J Respir Crit Care Med 184:172–179. PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bolte C, Zhang Y, Wang IC, Kalin TV, Molkentin JD, Kalinichenko VV (2011) Expression of Foxm1 transcription factor in cardiomyocytes is required for myocardial development. PLoS One 6:e22217. PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bolte C, Zhang Y, York A, Kalin TV, Schultz Jel J, Molkentin JD, Kalinichenko VV (2012) Postnatal ablation of Foxm1 from cardiomyocytes causes late onset cardiac hypertrophy and fibrosis without exacerbating pressure overload-induced cardiac remodeling. PLoS One 7:e48713. PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bolte C, Ren X, Tomley T et al (2015) Forkhead box F2 regulation of platelet-derived growth factor and myocardin/serum response factor signaling is essential for intestinal development. J Biol Chem 290:7563–7575. PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bridges JP, Weaver TE (2006) Use of transgenic mice to study lung morphogenesis and function. ILAR J 47:22–31PubMedCrossRefGoogle Scholar
  11. Cai Y, Bolte C, Le T, Goda C, Xu Y, Kalin TV, Kalinichenko VV (2016) FOXF1 maintains endothelial barrier function and prevents edema after lung injury. Sci Signal 9:ra40. PubMedCrossRefGoogle Scholar
  12. Cardoso WV, Lu J (2006) Regulation of early lung morphogenesis: questions, facts and controversies. Development 133:1611–1624. PubMedCrossRefGoogle Scholar
  13. Carmeliet P, Mackman N, Moons L et al (1996) Role of tissue factor in embryonic blood vessel development. Nature 383:73–75. PubMedCrossRefGoogle Scholar
  14. Casie Chetty S, Rost MS, Enriquez JR et al (2017) Vegf signaling promotes vascular endothelial differentiation by modulating etv2 expression. Dev Biol.
  15. Cheng XH, Black M, Ustiyan V et al (2014) SPDEF inhibits prostate carcinogenesis by disrupting a positive feedback loop in regulation of the Foxm1 oncogene. PLoS Genet 10:e1004656. PubMedPubMedCentralCrossRefGoogle Scholar
  16. Chisaka O, Capecchi MR (1991) Regionally restricted developmental defects resulting from targeted disruption of the mouse homeobox gene hox-1.5. Nature 350:473–479. PubMedCrossRefGoogle Scholar
  17. Costa RH, Kalinichenko VV, Lim L (2001) Transcription factors in mouse lung development and function. Am J Physiol Lung Cell Mol Physiol 280:L823–L838PubMedCrossRefGoogle Scholar
  18. Crivellato E (2011) The role of angiogenic growth factors in organogenesis. Int J Dev Biol 55:365–375. PubMedCrossRefGoogle Scholar
  19. Cushing L, Costinean S, Xu W et al (2015) Disruption of miR-29 leads to aberrant differentiation of smooth muscle cells selectively associated with distal lung vasculature. PLoS Genet 11:e1005238. PubMedPubMedCentralCrossRefGoogle Scholar
  20. De Val S, Black BL (2009) Transcriptional control of endothelial cell development. Dev Cell 16:180–195. PubMedPubMedCentralCrossRefGoogle Scholar
  21. Dellinger MT, Meadows SM, Wynne K, Cleaver O, Brekken RA (2013) Vascular endothelial growth factor receptor-2 promotes the development of the lymphatic vasculature. PLoS One 8:e74686. PubMedPubMedCentralCrossRefGoogle Scholar
  22. Desai TJ, Chen F, Lu J et al (2006) Distinct roles for retinoic acid receptors alpha and beta in early lung morphogenesis. Dev Biol 291:12–24. PubMedCrossRefGoogle Scholar
  23. Dharmadhikari AV, Szafranski P, Kalinichenko VV, Stankiewicz P (2015) Genomic and epigenetic complexity of the FOXF1 locus in 16q24.1: implications for development and disease. Curr Genomics 16:107–116. PubMedPubMedCentralCrossRefGoogle Scholar
  24. Dharmadhikari AV, Sun JJ, Gogolewski K et al (2016) Lethal lung hypoplasia and vascular defects in mice with conditional Foxf1 overexpression. Biol Open 5:1595–1606. PubMedPubMedCentralCrossRefGoogle Scholar
  25. Domyan ET, Ferretti E, Throckmorton K, Mishina Y, Nicolis SK, Sun X (2011) Signaling through BMP receptors promotes respiratory identity in the foregut via repression of Sox2. Development 138:971–981. PubMedPubMedCentralCrossRefGoogle Scholar
  26. El-Hashash AH, Al Alam D, Turcatel G, Bellusci S, Warburton D (2011a) Eyes absent 1 (Eya1) is a critical coordinator of epithelial, mesenchymal and vascular morphogenesis in the mammalian lung. Dev Biol 350:112–126. PubMedCrossRefGoogle Scholar
  27. El-Hashash AH, Al Alam D, Turcatel G, Rogers O, Li X, Bellusci S, Warburton D (2011b) Six1 transcription factor is critical for coordination of epithelial, mesenchymal and vascular morphogenesis in the mammalian lung. Dev Biol 353:242–258. PubMedPubMedCentralCrossRefGoogle Scholar
  28. Ferrara N (1996) Vascular endothelial growth factor. Eur J Cancer 32A:2413–2422PubMedCrossRefGoogle Scholar
  29. Fischer A, Schumacher N, Maier M, Sendtner M, Gessler M (2004) The Notch target genes Hey1 and Hey2 are required for embryonic vascular development. Genes Dev 18:901–911. PubMedPubMedCentralCrossRefGoogle Scholar
  30. Fong GH, Rossant J, Gertsenstein M, Breitman ML (1995) Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376:66–70. PubMedCrossRefGoogle Scholar
  31. Francois M, Caprini A, Hosking B et al (2008) Sox18 induces development of the lymphatic vasculature in mice. Nature 456:643–647. PubMedCrossRefGoogle Scholar
  32. Galambos C, deMello DE (2007) Molecular mechanisms of pulmonary vascular development. Pediatr Dev Pathol 10:1–17. PubMedCrossRefGoogle Scholar
  33. Gao F, Bian F, Ma X, Kalinichenko VV, Das SK (2015) Control of regional decidualization in implantation: role of FoxM1 downstream of Hoxa10 and cyclin D3. Sci Rep 5:13863. PubMedPubMedCentralCrossRefGoogle Scholar
  34. Goss AM, Tian Y, Tsukiyama T et al (2009) Wnt2/2b and beta-catenin signaling are necessary and sufficient to specify lung progenitors in the foregut. Dev Cell 17:290–298. PubMedPubMedCentralCrossRefGoogle Scholar
  35. Grindley JC, Bellusci S, Perkins D, Hogan BL (1997) Evidence for the involvement of the Gli gene family in embryonic mouse lung development. Dev Biol 188:337–348. PubMedCrossRefGoogle Scholar
  36. Grzenda A, Shannon J, Fisher J, Arkovitz MS (2013) Timing and expression of the angiopoietin-1-Tie-2 pathway in murine lung development and congenital diaphragmatic hernia. Dis Model Mech 6:106–114. PubMedCrossRefGoogle Scholar
  37. Habermehl D, Parkitna JR, Kaden S, Brugger B, Wieland F, Grone HJ, Schutz G (2011) Glucocorticoid activity during lung maturation is essential in mesenchymal and less in alveolar epithelial cells. Mol Endocrinol 25:1280–1288. PubMedPubMedCentralCrossRefGoogle Scholar
  38. Herriges M, Morrisey EE (2014) Lung development: orchestrating the generation and regeneration of a complex organ. Development 141:502–513. PubMedPubMedCentralCrossRefGoogle Scholar
  39. Hoffmann AD, Yang XH, Burnicka-Turek O et al (2014) Foxf genes integrate tbx5 and hedgehog pathways in the second heart field for cardiac septation. PLoS Genet 10:e1004604. PubMedPubMedCentralCrossRefGoogle Scholar
  40. Hoggatt AM, Kim JR, Ustiyan V, Ren X, Kalin TV, Kalinichenko VV, Herring BP (2013) The transcription factor Foxf1 binds to serum response factor and myocardin to regulate gene transcription in visceral smooth muscle cells. J Biol Chem 288:28477–28487. PubMedPubMedCentralCrossRefGoogle Scholar
  41. Ihida-Stansbury K, McKean DM, Gebb SA et al (2004) Paired-related homeobox gene Prx1 is required for pulmonary vascular development. Circ Res 94:1507–1514. PubMedCrossRefGoogle Scholar
  42. Ihida-Stansbury K, Ames J, Chokshi M et al (2015) Role played by Prx1-dependent extracellular matrix properties in vascular smooth muscle development in embryonic lungs. Pulm Circ 5:382–397. PubMedPubMedCentralCrossRefGoogle Scholar
  43. Ikeda K, Shaw-White JR, Wert SE, Whitsett JA (1996) Hepatocyte nuclear factor 3 activates transcription of thyroid transcription factor 1 in respiratory epithelial cells. Mol Cell Biol 16:3626–3636PubMedPubMedCentralCrossRefGoogle Scholar
  44. Jones PL (2003) Homeobox genes in pulmonary vascular development and disease. Trends Cardiovasc Med 13:336–345PubMedCrossRefGoogle Scholar
  45. Kalin TV, Meliton L, Meliton AY, Zhu X, Whitsett JA, Kalinichenko VV (2008) Pulmonary mastocytosis and enhanced lung inflammation in mice heterozygous null for the Foxf1 gene. Am J Respir Cell Mol Biol 39:390–399. PubMedPubMedCentralCrossRefGoogle Scholar
  46. Kalinichenko VV, Kalin TV (2015) Is there potential to target FOXM1 for ‘undruggable’ lung cancers? Expert Opin Ther Targets 19:865–867. PubMedPubMedCentralCrossRefGoogle Scholar
  47. Kalinichenko VV, Lim L, Stolz DB et al (2001) Defects in pulmonary vasculature and perinatal lung hemorrhage in mice heterozygous null for the Forkhead Box f1 transcription factor. Dev Biol 235:489–506. PubMedCrossRefGoogle Scholar
  48. Kalinichenko VV, Zhou Y, Shin B, Stolz DB, Watkins SC, Whitsett JA, Costa RH (2002) Wild-type levels of the mouse Forkhead Box f1 gene are essential for lung repair. Am J Physiol Lung Cell Mol Physiol 282:L1253–L1265. PubMedCrossRefGoogle Scholar
  49. Kalinichenko VV, Bhattacharyya D, Zhou Y, Gusarova GA, Kim W, Shin B, Costa RH (2003a) Foxf1 +/- mice exhibit defective stellate cell activation and abnormal liver regeneration following CCl4 injury. Hepatology 37:107–117. PubMedCrossRefGoogle Scholar
  50. Kalinichenko VV, Gusarova GA, Shin B, Costa RH (2003b) The forkhead box F1 transcription factor is expressed in brain and head mesenchyme during mouse embryonic development. Gene Expr Patterns 3:153–158PubMedCrossRefGoogle Scholar
  51. Kalinichenko VV, Gusarova GA, Kim IM et al (2004) Foxf1 haploinsufficiency reduces Notch-2 signaling during mouse lung development. Am J Physiol Lung Cell Mol Physiol 286:L521–L530. PubMedCrossRefGoogle Scholar
  52. Kanai-Azuma M, Kanai Y, Gad JM et al (2002) Depletion of definitive gut endoderm in Sox17-null mutant mice. Development 129:2367–2379PubMedGoogle Scholar
  53. Kataoka H, Hayashi M, Nakagawa R et al (2011) Etv2/ER71 induces vascular mesoderm from Flk1+PDGFRalpha+ primitive mesoderm. Blood 118:6975–6986. PubMedCrossRefGoogle Scholar
  54. Kim IM, Ramakrishna S, Gusarova GA, Yoder HM, Costa RH, Kalinichenko VV (2005) The forkhead box m1 transcription factor is essential for embryonic development of pulmonary vasculature. J Biol Chem 280:22278–22286. PubMedCrossRefGoogle Scholar
  55. Kimura S, Hara Y, Pineau T, Fernandez-Salguero P, Fox CH, Ward JM, Gonzalez FJ (1996) The T/ebp null mouse: thyroid-specific enhancer-binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary. Genes Dev 10:60–69PubMedCrossRefGoogle Scholar
  56. Kimura Y, Suzuki T, Kaneko C et al (2002) Retinoid receptors in the developing human lung. Clin Sci (Lond) 103:613–621CrossRefGoogle Scholar
  57. Kool H, Mous D, Tibboel D, de Klein A, Rottier RJ (2014) Pulmonary vascular development goes awry in congenital lung abnormalities. Birth Defects Res C Embryo Today 102:343–358. PubMedCrossRefGoogle Scholar
  58. Kumar VH, Lakshminrusimha S, El Abiad MT, Chess PR, Ryan RM (2005) Growth factors in lung development. Adv Clin Chem 40:261–316PubMedCrossRefGoogle Scholar
  59. Kume T, Jiang H, Topczewska JM, Hogan BL (2001) The murine winged helix transcription factors, Foxc1 and Foxc2, are both required for cardiovascular development and somitogenesis. Genes Dev 15:2470–2482. PubMedPubMedCentralCrossRefGoogle Scholar
  60. Lange AW, Haitchi HM, LeCras TD et al (2014) Sox17 is required for normal pulmonary vascular morphogenesis. Dev Biol 387:109–120. PubMedPubMedCentralCrossRefGoogle Scholar
  61. Lee D, Park C, Lee H et al (2008) ER71 acts downstream of BMP, Notch, and Wnt signaling in blood and vessel progenitor specification. Cell Stem Cell 2:497–507. PubMedPubMedCentralCrossRefGoogle Scholar
  62. Lee JM, Kwon HJ, Lai WF, Jung HS (2014a) Requirement of Runx3 in pulmonary vasculogenesis. Cell Tissue Res 356:445–449. PubMedCrossRefGoogle Scholar
  63. Lee SH, Lee S, Yang H et al (2014b) Notch pathway targets proangiogenic regulator Sox17 to restrict angiogenesis. Circ Res 115:215–226. PubMedCrossRefGoogle Scholar
  64. Lelievre E, Lionneton F, Soncin F, Vandenbunder B (2001) The Ets family contains transcriptional activators and repressors involved in angiogenesis. Int J Biochem Cell Biol 33:391–407PubMedCrossRefGoogle Scholar
  65. Li A, Hardy R, Stoner S, Tuckermann J, Seibel M, Zhou H (2013) Deletion of mesenchymal glucocorticoid receptor attenuates embryonic lung development and abdominal wall closure. PLoS One 8:e63578. PubMedPubMedCentralCrossRefGoogle Scholar
  66. Liu Y, Sadikot RT, Adami GR et al (2011) FoxM1 mediates the progenitor function of type II epithelial cells in repairing alveolar injury induced by Pseudomonas aeruginosa. J Exp Med 208:1473–1484. PubMedPubMedCentralCrossRefGoogle Scholar
  67. Lu Y, Thomson JM, Wong HY, Hammond SM, Hogan BL (2007) Transgenic over-expression of the microRNA miR-17-92 cluster promotes proliferation and inhibits differentiation of lung epithelial progenitor cells. Dev Biol 310:442–453. PubMedPubMedCentralCrossRefGoogle Scholar
  68. Lufkin T, Dierich A, LeMeur M, Mark M, Chambon P (1991) Disruption of the Hox-1.6 homeobox gene results in defects in a region corresponding to its rostral domain of expression. Cell 66:1105–1119PubMedCrossRefGoogle Scholar
  69. Lyden D, Young AZ, Zagzag D et al (1999) Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts. Nature 401:670–677. PubMedCrossRefGoogle Scholar
  70. Madison BB, McKenna LB, Dolson D, Epstein DJ, Kaestner KH (2009) FoxF1 and FoxL1 link hedgehog signaling and the control of epithelial proliferation in the developing stomach and intestine. J Biol Chem 284:5936–5944. PubMedPubMedCentralCrossRefGoogle Scholar
  71. Mahlapuu M, Enerback S, Carlsson P (2001) Haploinsufficiency of the forkhead gene Foxf1, a target for sonic hedgehog signaling, causes lung and foregut malformations. Development 128:2397–2406PubMedGoogle Scholar
  72. Malin D, Kim IM, Boetticher E et al (2007) Forkhead box F1 is essential for migration of mesenchymal cells and directly induces integrin-beta3 expression. Mol Cell Biol 27:2486–2498. PubMedPubMedCentralCrossRefGoogle Scholar
  73. Marcelo KL, Goldie LC, Hirschi KK (2013) Regulation of endothelial cell differentiation and specification. Circ Res 112:1272–1287. PubMedPubMedCentralCrossRefGoogle Scholar
  74. McGowan S, Jackson SK, Jenkins-Moore M, Dai HH, Chambon P, Snyder JM (2000) Mice bearing deletions of retinoic acid receptors demonstrate reduced lung elastin and alveolar numbers. Am J Respir Cell Mol Biol 23:162–167. PubMedCrossRefGoogle Scholar
  75. Metzger RJ, Klein OD, Martin GR, Krasnow MA (2008) The branching programme of mouse lung development. Nature 453:745–750. PubMedPubMedCentralCrossRefGoogle Scholar
  76. Milewski D, Pradhan A, Wang X et al (2017) FoxF1 and FoxF2 transcription factors synergistically promote rhabdomyosarcoma carcinogenesis by repressing transcription of p21Cip1 CDK inhibitor. Oncogene 36:850–862. PubMedCrossRefGoogle Scholar
  77. Miniati D, Jelin EB, Ng J et al (2010) Constitutively active endothelial Notch4 causes lung arteriovenous shunts in mice. Am J Physiol Lung Cell Mol Physiol 298:L169–L177. PubMedCrossRefGoogle Scholar
  78. Morrisey EE, Hogan BL (2010) Preparing for the first breath: genetic and cellular mechanisms in lung development. Dev Cell 18:8–23. PubMedPubMedCentralCrossRefGoogle Scholar
  79. Motoyama J, Liu J, Mo R, Ding Q, Post M, Hui CC (1998) Essential function of Gli2 and Gli3 in the formation of lung, trachea and oesophagus. Nat Genet 20:54–57. PubMedCrossRefGoogle Scholar
  80. Niederreither K, Subbarayan V, Dolle P, Chambon P (1999) Embryonic retinoic acid synthesis is essential for early mouse post-implantation development. Nat Genet 21:444–448. PubMedCrossRefGoogle Scholar
  81. Park HL, Bai C, Platt KA et al (2000) Mouse Gli1 mutants are viable but have defects in SHH signaling in combination with a Gli2 mutation. Development 127:1593–1605PubMedGoogle Scholar
  82. Park C, Kim TM, Malik AB (2013) Transcriptional regulation of endothelial cell and vascular development. Circ Res 112:1380–1400. PubMedPubMedCentralCrossRefGoogle Scholar
  83. Pereira FA, Qiu Y, Zhou G, Tsai MJ, Tsai SY (1999) The orphan nuclear receptor COUP-TFII is required for angiogenesis and heart development. Genes Dev 13:1037–1049PubMedPubMedCentralCrossRefGoogle Scholar
  84. Peterson RS, Lim L, Ye H, Zhou H, Overdier DG, Costa RH (1997) The winged helix transcriptional activator HFH-8 is expressed in the mesoderm of the primitive streak stage of mouse embryos and its cellular derivatives. Mech Dev 69:53–69PubMedCrossRefGoogle Scholar
  85. Petrova TV, Karpanen T, Norrmen C et al (2004) Defective valves and abnormal mural cell recruitment underlie lymphatic vascular failure in lymphedema distichiasis. Nat Med 10:974–981. PubMedCrossRefGoogle Scholar
  86. Pradhan A, Ustiyan V, Zhang Y, Kalin TV, Kalinichenko VV (2016) Forkhead transcription factor FoxF1 interacts with Fanconi anemia protein complexes to promote DNA damage response. Oncotarget 7:1912–1926.  10.18632/oncotarget.6422 PubMedCrossRefGoogle Scholar
  87. Ren X, Zhang Y, Snyder J, Cross ER, Shah TA, Kalin TV, Kalinichenko VV (2010) Forkhead box M1 transcription factor is required for macrophage recruitment during liver repair. Mol Cell Biol 30:5381–5393. PubMedPubMedCentralCrossRefGoogle Scholar
  88. Ren X, Shah TA, Ustiyan V et al (2013) FOXM1 promotes allergen-induced goblet cell metaplasia and pulmonary inflammation. Mol Cell Biol 33:371–386. PubMedPubMedCentralCrossRefGoogle Scholar
  89. Ren X, Ustiyan V, Pradhan A et al (2014) FOXF1 transcription factor is required for formation of embryonic vasculature by regulating VEGF signaling in endothelial cells. Circ Res 115:709–720. PubMedPubMedCentralCrossRefGoogle Scholar
  90. Sakamoto Y, Hara K, Kanai-Azuma M et al (2007) Redundant roles of Sox17 and Sox18 in early cardiovascular development of mouse embryos. Biochem Biophys Res Commun 360:539–544. PubMedCrossRefGoogle Scholar
  91. Sauvageau M, Goff LA, Lodato S et al (2013) Multiple knockout mouse models reveal lincRNAs are required for life and brain development. Elife 2:e01749. PubMedPubMedCentralCrossRefGoogle Scholar
  92. Sen P, Dharmadhikari AV, Majewski T et al (2014) Comparative analyses of lung transcriptomes in patients with alveolar capillary dysplasia with misalignment of pulmonary veins and in foxf1 heterozygous knockout mice. PLoS One 9:e94390. PubMedPubMedCentralCrossRefGoogle Scholar
  93. Sengupta A, Kalinichenko VV, Yutzey KE (2013) FoxO1 and FoxM1 transcription factors have antagonistic functions in neonatal cardiomyocyte cell-cycle withdrawal and IGF1 gene regulation. Circ Res 112:267–277. PubMedCrossRefGoogle Scholar
  94. Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu XF, Breitman ML, Schuh AC (1995) Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376:62–66. PubMedCrossRefGoogle Scholar
  95. Shaw-White JR, Bruno MD, Whitsett JA (1999) GATA-6 activates transcription of thyroid transcription factor-1. J Biol Chem 274:2658–2664PubMedCrossRefGoogle Scholar
  96. Spyropoulos DD, Pharr PN, Lavenburg KR, Jackers P, Papas TS, Ogawa M, Watson DK (2000) Hemorrhage, impaired hematopoiesis, and lethality in mouse embryos carrying a targeted disruption of the Fli1 transcription factor. Mol Cell Biol 20:5643–5652PubMedPubMedCentralCrossRefGoogle Scholar
  97. Stankiewicz P, Sen P, Bhatt SS et al (2009) Genomic and genic deletions of the FOX gene cluster on 16q24.1 and inactivating mutations of FOXF1 cause alveolar capillary dysplasia and other malformations. Am J Hum Genet 84:780–791. PubMedPubMedCentralCrossRefGoogle Scholar
  98. Szafranski P, Dharmadhikari AV, Brosens E et al (2013) Small noncoding differentially methylated copy-number variants, including lncRNA genes, cause a lethal lung developmental disorder. Genome Res 23:23–33. PubMedPubMedCentralCrossRefGoogle Scholar
  99. Tibboel J, Groenman FA, Selvaratnam J et al (2015) Hypoxia-inducible factor-1 stimulates postnatal lung development but does not prevent O2-induced alveolar injury. Am J Respir Cell Mol Biol 52:448–458. PubMedCrossRefGoogle Scholar
  100. Tiozzo C, Carraro G, Al Alam D et al (2012) Mesodermal Pten inactivation leads to alveolar capillary dysplasia-like phenotype. J Clin Invest 122:3862–3872. PubMedPubMedCentralCrossRefGoogle Scholar
  101. Ustiyan V, Wang IC, Ren X et al (2009) Forkhead box M1 transcriptional factor is required for smooth muscle cells during embryonic development of blood vessels and esophagus. Dev Biol 336:266–279. PubMedPubMedCentralCrossRefGoogle Scholar
  102. Ustiyan V, Wert SE, Ikegami M, Wang IC, Kalin TV, Whitsett JA, Kalinichenko VV (2012) Foxm1 transcription factor is critical for proliferation and differentiation of Clara cells during development of conducting airways. Dev Biol 370:198–212. PubMedPubMedCentralCrossRefGoogle Scholar
  103. Ustiyan V, Zhang Y, Perl AK, Whitsett JA, Kalin TV, Kalinichenko VV (2016) beta-Catenin and Kras/Foxm1 signaling pathway are critical to restrict Sox9 in basal cells during pulmonary branching morphogenesis. Dev Dyn 245:590–604. PubMedPubMedCentralCrossRefGoogle Scholar
  104. van Tuyl M, Liu J, Groenman F et al (2006) Iroquois genes influence proximo-distal morphogenesis during rat lung development. Am J Physiol Lung Cell Mol Physiol 290:L777–L789. PubMedCrossRefGoogle Scholar
  105. van Tuyl M, Groenman F, Wang J, Kuliszewski M, Liu J, Tibboel D, Post M (2007) Angiogenic factors stimulate tubular branching morphogenesis of sonic hedgehog-deficient lungs. Dev Biol 303:514–526. PubMedCrossRefGoogle Scholar
  106. Ventura A, Young AG, Winslow MM et al (2008) Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 132:875–886. PubMedPubMedCentralCrossRefGoogle Scholar
  107. Wang X, Bhattacharyya D, Dennewitz MB, Kalinichenko VV, Zhou Y, Lepe R, Costa RH (2003) Rapid hepatocyte nuclear translocation of the Forkhead Box M1B (FoxM1B) transcription factor caused a transient increase in size of regenerating transgenic hepatocytes. Gene Expr 11:149–162PubMedCrossRefGoogle Scholar
  108. Wang IC, Zhang Y, Snyder J et al (2010) Increased expression of FoxM1 transcription factor in respiratory epithelium inhibits lung sacculation and causes Clara cell hyperplasia. Dev Biol 347:301–314. PubMedPubMedCentralCrossRefGoogle Scholar
  109. Wang IC, Snyder J, Zhang Y et al (2012) Foxm1 mediates cross talk between Kras/mitogen-activated protein kinase and canonical Wnt pathways during development of respiratory epithelium. Mol Cell Biol 32:3838–3850. PubMedPubMedCentralCrossRefGoogle Scholar
  110. Wang IC, Ustiyan V, Zhang Y, Cai Y, Kalin TV, Kalinichenko VV (2014) Foxm1 transcription factor is required for the initiation of lung tumorigenesis by oncogenic Kras(G12D). Oncogene 33:5391–5396. PubMedCrossRefGoogle Scholar
  111. Warburton D, Schwarz M, Tefft D, Flores-Delgado G, Anderson KD, Cardoso WV (2000) The molecular basis of lung morphogenesis. Mech Dev 92:55–81PubMedCrossRefGoogle Scholar
  112. Warburton D, El-Hashash A, Carraro G et al (2010) Lung organogenesis. Curr Top Dev Biol 90:73–158. PubMedPubMedCentralCrossRefGoogle Scholar
  113. White AC, Xu J, Yin Y, Smith C, Schmid G, Ornitz DM (2006) FGF9 and SHH signaling coordinate lung growth and development through regulation of distinct mesenchymal domains. Development 133:1507–1517. PubMedCrossRefGoogle Scholar
  114. Wigle JT, Oliver G (1999) Prox1 function is required for the development of the murine lymphatic system. Cell 98:769–778PubMedCrossRefGoogle Scholar
  115. Wilhelm K, Happel K, Eelen G et al (2016) FOXO1 couples metabolic activity and growth state in the vascular endothelium. Nature 529:216–220. PubMedPubMedCentralCrossRefGoogle Scholar
  116. Xia H, Ren X, Bolte CS et al (2015) Foxm1 regulates resolution of hyperoxic lung injury in newborns. Am J Respir Cell Mol Biol 52:611–621. PubMedPubMedCentralCrossRefGoogle Scholar
  117. Xu J, Liu H, Lan Y, Aronow BJ, Kalinichenko VV, Jiang R (2016) A Shh-Foxf-Fgf18-Shh molecular circuit regulating palate development. PLoS Genet 12:e1005769. PubMedPubMedCentralCrossRefGoogle Scholar
  118. Yun EJ, Lorizio W, Seedorf G, Abman SH, Vu TH (2016) VEGF and endothelium-derived retinoic acid regulate lung vascular and alveolar development. Am J Physiol Lung Cell Mol Physiol 310:L287–L298. PubMedCrossRefGoogle Scholar
  119. Zeng X, Wert SE, Federici R, Peters KG, Whitsett JA (1998) VEGF enhances pulmonary vasculogenesis and disrupts lung morphogenesis in vivo. Dev Dyn 211:215–227.<215::AID-AJA3>3.0.CO;2-K PubMedCrossRefGoogle Scholar
  120. Zeng X, Gray M, Stahlman MT, Whitsett JA (2001) TGF-beta1 perturbs vascular development and inhibits epithelial differentiation in fetal lung in vivo. Dev Dyn 221:289–301. PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Center for Lung Regenerative MedicinePerinatal Institute, Cincinnati Children’s Research FoundationCincinnatiUSA
  2. 2.Division of Pulmonary BiologyCincinnati Children’s Research FoundationCincinnatiUSA
  3. 3.Division of Developmental BiologyPerinatal Institute, Cincinnati Children’s Research FoundationCincinnatiUSA

Personalised recommendations