Skip to main content

Self-indexed Motion Planning

  • Conference paper
  • First Online:
Book cover Similarity Search and Applications (SISAP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10609))

Included in the following conference series:

  • 1804 Accesses

Abstract

Motion planning is a central problem for robotics. The PRM algorithm is, together with the asymptotically optimal variant PRM*, the standard method to maintain a (collision-free) roadmap in the configuration space. The PRM algorithm is randomized, and requires a large number of high-dimensional point samples generated online, hence a sub-problem to discovering and maintaining a collision-free path is inserting new sample points connecting them with the k-nearest neighbors in the previous set. A standard way to speedup the PRM is by using an external index for making the search. On the other hand, a recent trend in object indexing for proximity search consists in maintaining a so-called Approximate Proximity Graph (APG) connecting each object with its approximate k-nearest neighbors. This hints the idea of using the PRM as a self-index for motion planning. Although similar in principle, the graphs have two incompatible characteristics: (1) The APG needs long-length links for speeding up the searches, while the PRM avoids long links because they increase the probability of collision in the configuration space. (2) The APG requires to connect a large number of neighbors at each node to achieve high precision results which turns out in an expensive construction while the PRM’s goal is to produce a roadmap as fast as possible. In this paper, we solve the above problems with a counter-intuitive, simple and effective procedure. We reinsert the sample points in the configuration space, and compute a collision-free graph after that. This simple step eliminates long links, improves the search time, and reduce the total space needed for the algorithm. We present simulations, showing an improvement in performance for high-dimensional configuration spaces, compared to standard techniques used by the robotics community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Latombe, J.C.: Robot Motion Planning. Academic Publishers, Boston (1991)

    Book  MATH  Google Scholar 

  2. Choset, H., Lynch, K., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L., Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press, Boston (2005)

    MATH  Google Scholar 

  3. LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  4. Kavraki, L.E., Svestka, P., Latombe, J.C., Overmars, M.H.: Probilistic roadmaps for path planning in high dimensional configuration spaces. IEEE Trans. Robot. 12(4), 566–580 (1996)

    Article  Google Scholar 

  5. LaValle, S.M., Kuffner, J.J.: Randomized kinodynamic planning. Int. J. Robot. Res. 20(5), 378–400 (2001)

    Article  Google Scholar 

  6. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 30(7), 846–894 (2011)

    Article  MATH  Google Scholar 

  7. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry. Springer, Heidelberg (2008)

    Book  MATH  Google Scholar 

  8. Chavez, E., Navarro, G., Baeza-Yates, R., Marroquin, J.L.: Searching in metric spaces. ACM Comput. Surv. 33(3), 273–321 (2001)

    Article  Google Scholar 

  9. Malkov, Y., Ponomarenko, A., Logvinov, A., Krylov, V.: Scalable distributed algorithm for approximate nearest neighbor search problem in high dimensional general metric spaces. In: Navarro, G., Pestov, V. (eds.) SISAP 2012. LNCS, vol. 7404, pp. 132–147. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32153-5_10

    Chapter  Google Scholar 

  10. Malkov, Y., Ponomarenko, A., Logvinov, A., Krylov, V.: Approximate nearest neighbor algorithm based on navigable small world graphs. Inf. Syst. 45(2014), 61–68 (2014). Elsevier

    Article  Google Scholar 

  11. Dobson, A., Moustakides, G.V., Bekris, K.E.: Geometric probability results for bounding path quality in sampling-based roadmaps after finite computation. In: International Conference on Robotics and Automation, pp. 4180–4186 (2015)

    Google Scholar 

  12. Janson, L., Ichter, B., Pavone, M., Planning, Deterministic Sampling-Based Motion : Optimality, Complexity, and Performance. CoRR abs/1505.00023 (2015)

    Google Scholar 

  13. Yianilos, P.N.: Data structures and algorithms for nearest neighbor search in general metric spaces. In: ACM-SIAM Symposium Discrete Algorithms (1993)

    Google Scholar 

  14. Yershova, A., LaValle, S.M.: Deterministic sampling methods for spheres and SO(3). In: IEEE International Conference on Robotics and Automation, pp. 3974–3980 (2004)

    Google Scholar 

  15. Ichnowski, J., Alterovitz, R.: Fast nearest neighbor search in SE(3) for sampling-based motion planning. In: Akin, H.L., Amato, N.M., Isler, V., van der Stappen, A.F. (eds.) Algorithmic Foundations of Robotics XI. STAR, vol. 107, pp. 197–214. Springer, Cham (2015). doi:10.1007/978-3-319-16595-0_12

    Google Scholar 

  16. Svenstrup, M., Bak, T., Andersen, H.J.: Minimising computational complexity of the RRT algorithm a practical approach. In: International Conference on Robotics and Automation, pp. 5602–5607 (2011)

    Google Scholar 

  17. Brin, S.: Near neighbor search in large metric spaces. In: International Conference on Very Large Databases (VLDB), pp. 574–584 (1995)

    Google Scholar 

  18. Beygelzimer, A., Kakade, S., Langford, J.: Cover trees for nearest neighbor. In: International Conference on Machine Learning, pp. 97–104 (2006)

    Google Scholar 

  19. Ciaccia, P., Patella, M., Zezula, P.: M-tree: an efficient access method for similarity search in metric spaces. In: International Conference on Very Large Databases, pp. 426–435 (1997)

    Google Scholar 

  20. Yershova, A., LaValle, S.M.: Improving motion-planning algorithms by efficient nearest-neighbor searching. IEEE Trans. Robot. 23(1), 151–157 (2007)

    Article  Google Scholar 

  21. Plaku, E., Kavraki, L.E.: Quantitative analysis of nearest-neighbors search in high-dimensional sampling-based motion planning. In: Akella, S., Amato, N.M., Huang, W.H., Mishra, B. (eds.) Algorithmic Foundation of Robotics VII. Springer Tracts in Advanced Robotics, vol. 47, pp. 3–18. Springer, Heidelberg (2008). doi:10.1007/978-3-540-68405-3_1

    Chapter  Google Scholar 

  22. Kleinbort, M., Salzman, O., Halperin, D.: Efficient high-quality motion planning by fast all-pair \(r\)-nearest-neighbors. In: International Conference on Robotics and Automation, pp. 2985–2990 (2015)

    Google Scholar 

  23. Aiger, D., Kaplan, H., Sharir, M.: Reporting neighbors in high-dimensional Euclidean space. SIAM J. Comput. 43(4), 1363–1395 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Bohlin,R., Kavraki, L.: Path planning using lazy PRM. In: IEEE Conference on Robotics and Automation, pp. 521–528 (2000)

    Google Scholar 

  25. Sanchez, G., Latombe, J.C.: On delaying collision checking in PRM planning: application to multi-robot coordination. Int. J. Robot. Res. 21(1), 5–26 (2002)

    Article  Google Scholar 

  26. Aurenhammer, F.: Voronoi diagrams - a survey of a fundamental geometric data structure. ACM Comput. Surv. (CSUR) 23(3), 345–405 (1991)

    Article  Google Scholar 

  27. Navarro, G.: Searching in metric spaces by spatial approximation. VLDB J. 11(1), 28–46 (2002)

    Article  Google Scholar 

  28. Kleinberg, J.: The small-world phenomenon: an algorithmic perspective. Ann. ACM Symp. Theory Comput. 32, 163–170 (2000)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgar Chavez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Hoyos, A., Ruiz, U., Tellez, E., Chavez, E. (2017). Self-indexed Motion Planning. In: Beecks, C., Borutta, F., Kröger, P., Seidl, T. (eds) Similarity Search and Applications. SISAP 2017. Lecture Notes in Computer Science(), vol 10609. Springer, Cham. https://doi.org/10.1007/978-3-319-68474-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68474-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68473-4

  • Online ISBN: 978-3-319-68474-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics