Skip to main content

Development of YAG:Ce,Mg and YAGG:Ce Scintillation Fibers

  • Conference paper
  • First Online:
Engineering of Scintillation Materials and Radiation Technologies (ISMART 2016)

Abstract

The chapter overviews the status of works on fabrication of long garnet fibers for application in high energy physics experiments. Y3Al5O12:Ce,Mg (YAG:Ce,Mg) and Y3Al5−xGaxO12:Ce (YAGG:Ce) fibers are grown by the µ-PD method. The scintillation and optical parameters of fibers are controlled by optimization of concentration of isovalent (Ga3+) and aliovalent (Mg2+) codoping, as well as by choice of growth parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Mavromanolakis, E. Auffray, P. Lecoq, Studies on sampling and homogeneous dual readout calorimetry with meta-crystals. J. Instrum. 6, P10012 (2011)

    Article  Google Scholar 

  2. M. Lucchini, T. Medvedeva, K. Pauwels et al., Test beam results with LuAG fibers for next-generation calorimeters. J. Instrum. 8, P10017 (2013)

    Article  Google Scholar 

  3. A. Benaglia, M. Lucchini, K. Pauwels et al., Test beam results of a high granularity LuAG fibre calorimeter prototype. J. Instrum. 11, P05004 (2016)

    Article  Google Scholar 

  4. M. Vasilyev, Neutron and gamma sensitive fiber scintillators. US Patent 9,482,763, 1 Nov 2016

    Google Scholar 

  5. K. Lebbou, Single crystals fiber technology design. Where we are today? Opt. Mater. 63, 13–18 (2017)

    Article  ADS  Google Scholar 

  6. G. Blasse, A. Bril, A new phosphor for flying-spot cathode-ray tubes for color television: yellow-emitting Y3al5o12–Ce3. Appl. Phys. Lett. 11, 53–55 (1967)

    Article  ADS  Google Scholar 

  7. V.G. Baryshevsky, M.V. Korzhik, V.I. Moroz et al., YAlO3: Ce-fast-acting scintillators for detection of ionizing radiation. Nucl. Instrum. Methods Phys. Res. Sect. B 58, 291–293 (1991)

    Article  ADS  Google Scholar 

  8. B.I. Minkov, Promising new lutetium based single crystals for fast scintillators. Funct. Mater. 1, 103–105 (1994)

    Google Scholar 

  9. C.L. Melcher, J.S. Schweitzer, A promising new scintillator: cerium-doped lutetium oxyorthosilicate. Nucl. Instrum. Methods Phys. Res. Sect. A 314, 212–214 (1992)

    Article  ADS  Google Scholar 

  10. D.W. Cooke, K.J. McClellan, B.L. Bennett et al., Crystal growth and optical characterization of cerium-doped Lu 1.8 Y 0.2 SiO 5. J. Appl. Phys. 88, 7360–7362 (2000)

    Article  ADS  Google Scholar 

  11. T. Kamada, K. Endo, T. Tsutumi et al., Composition engineering in cerium-doped (Lu, Gd) 3 (Ga, Al) 5O12 single-crystal scintillators. Cryst. Growth Des. 11, 4484–4490 (2011)

    Article  Google Scholar 

  12. K. Kamada, S. Kurosawa, P. Prusa et al., Cz grown 2-in. size Ce: Gd 3 (Al, Ga) 5 O 12 single crystal; relationship between Al, Ga site occupancy and scintillation properties. Opt. Mater. 36, 1942–1945 (2014)

    Article  ADS  Google Scholar 

  13. C. Wang, Y. Wu, D. Ding, Optical and scintillation properties of Ce-doped (Gd2Y1)Ga2.7Al2.3O12 single crystal grown by Czochralski method. Nucl. Instrum. Methods Phys. Res. Sect. A 820, 8–12 (2016)

    Article  ADS  Google Scholar 

  14. A. Giaz, G. Hull, V. Fossati et al., Preliminary investigation of scintillator materials properties: SrI2:Eu, CeBr 3 and GYGAG: Ce for gamma rays up to 9 MeV. Nucl. Instrum. Methods Phys. Res. Sect. A 804, 212–220 (2015)

    Article  ADS  Google Scholar 

  15. E. Auffray, A. Barysevich, A. Fedorov et al., Radiation damage of LSO crystals under γ-and 24 GeV protons irradiation. Nucl. Instrum. Methods Phys. Res. Sect. A 721, 76–82 (2013)

    Article  ADS  Google Scholar 

  16. E. Auffray, A. Barysevich, A. Gektin et al., Radiation damage effects in Y2SiO5: Ce scintillation crystals under γ-quanta and 24 GeV protons. Nucl. Instrum. Methods Phys. Res. Sect. A 783, 117–120 (2015)

    Article  ADS  Google Scholar 

  17. Y. Zorenko, Luminescence of isoelectronic impurities and antisite defects in garnets. Phys Stat Sol C 2, 375–379 (2005)

    Article  Google Scholar 

  18. C. Stanek, K. McClellan, M. Levy et al., The effect of intrinsic defects on RE3Al5O12 garnet scintillator performance. Nucl. Instrum. Methods Phys. Res. Sect. A 579, 27–30 (2007)

    Article  ADS  Google Scholar 

  19. M. Nikl, E. Mihokova, J. Pejchal et al., The antisite LuAl defect-related trap in Lu3Al5O12: Ce single crystal. Phys. Stat. Sol. B 242, R119–R121 (2005)

    Article  Google Scholar 

  20. Y. Zorenko, V. Gorbenko, I. Konstankevych et al., Single-crystalline films of Ce-doped YAG and LuAG phosphors: advantages over bulk crystals analogues. J. Lumin. 114, 85–94 (2005)

    Article  Google Scholar 

  21. P. Dorenbos, Light output and energy resolution of Ce 3 + -doped scintillators. Nucl. Instrum. Methods Phys. Res. Sect. A 486, 208–213 (2002)

    Article  ADS  Google Scholar 

  22. K. Kamada, M. Nikl, S. Kurosawa et al., Alkali earth co-doping effects on luminescence and scintillation properties of Ce doped Gd3Al2Ga3O12 scintillator. Opt. Mater. 41, 63–66 (2015)

    Article  ADS  Google Scholar 

  23. Y. Wu, F. Meng, Q. Li et al., Role of Ce4+ in the scintillation mechanism of codoped Gd3Ga3Al2 O12 Ce. Phys. Rev. Appl. 2, 044009 (2014)

    Article  ADS  Google Scholar 

  24. A. Nagura, K. Kamada, M. Nikl et al., Improvement of scintillation properties on Ce doped Y3Al5O12 scintillator by divalent cations co-doping. Jpn. J. Appl. Phys. 54, 04DH17 (2015)

    Article  Google Scholar 

  25. M. Nikl, K. Kamada, V. Babin et al., Defect engineering in Ce-doped aluminum garnet single crystal scintillators. Cryst. Growth Des. 14, 4827–4833 (2014)

    Article  Google Scholar 

  26. O. Sidletskiy, I. Gerasymov, D. Kurtsev, Engineering of bulk and fiber-shaped YAGG: Ce scintillator crystals. Cryst. Eng. Comm. 19, 1001 (2017)

    Article  Google Scholar 

  27. V. Kononets, E. Auffray, C. Dujardin et al., Growth of long undoped and Ce-doped LuAG single crystal fibers for dual readout calorimetry. J. Cryst. Growth 435, 31–36 (2016)

    Article  ADS  Google Scholar 

  28. A. Djebli, F. Boudjada, K. Pauwels, Growth and characterization of Ce-doped YAG and LuAG fibers. Opt. Mater. 65, 66–68 (2016)

    Article  ADS  Google Scholar 

  29. V. Kononets, O. Benamara, G. Patton, Growth of Ce-doped LGSO fiber-shaped crystals by the micro pulling down technique. J. Cryst. Growth 412, 95–102 (2015)

    Article  ADS  Google Scholar 

  30. Y. Zorenko, A. Voloshinovskii, V. Savchyn et al., Exciton and antisite defect-related luminescence in Lu3Al5O12 and Y3Al5O12 garnets. Phys. Stat. Sol. B 244, 1289–2180 (2007)

    Google Scholar 

  31. J. Carruthers, M. Kokta, R. Barns et al., Nonstoichiometry and crystal growth of gadolinium gallium garnet. J. Cryst. Growth 19, 204–208 (1973)

    Article  ADS  Google Scholar 

  32. O. Sidletskiy, V. Kononets, K. Lebbou et al., Structure and scintillation yield of Ce-doped Al–Ga substituted yttrium garnet. Mater. Res. Bull. 47, 3249–3252 (2012)

    Article  Google Scholar 

  33. C. Brandle, A. Valentino, Czochralski growth of rare earth gallium garnets. J. Cryst. Growth 12, 3–8 (1972)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was performed in the framework of the Crystal Clear Collaboration and received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skodowska-Curie grant agreement no. 644,260 (Intelum) and Polish NCBR NANOLUX#286 project. The Ukrainian and French teams also acknowledge the support from Ukrainian-French PICS project between CNRS (Project no.6598) and National Academy of Sciences of Ukraine (Project F1-2017). Authors are grateful to Dr. Martin Nikl (Institute of Physics AS CR, Prague, Czech Republic) and Dr. Ashot Petrosyan (Institute for Physical Research, National Academy of Sciences, Ashtarak, Armenia) for providing the raw materials for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Sidletskiy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kononets, V. et al. (2017). Development of YAG:Ce,Mg and YAGG:Ce Scintillation Fibers. In: Korzhik, M., Gektin, A. (eds) Engineering of Scintillation Materials and Radiation Technologies. ISMART 2016. Springer Proceedings in Physics, vol 200. Springer, Cham. https://doi.org/10.1007/978-3-319-68465-9_7

Download citation

Publish with us

Policies and ethics