Skip to main content

Fast Optical Phenomena in Self-Activated and Ce-Doped Materials Prospective for Fast Timing in Radiation Detectors

  • Conference paper
  • First Online:
Engineering of Scintillation Materials and Radiation Technologies (ISMART 2016)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 200))

Abstract

The prospect of 10 picoseconds for timing of scintillation detectors is discussed. Time-resolved photoluminescence spectroscopy and nonlinear optical absorption techniques in different modes of pump and probe configuration are reviewed as tools for study of fast processes in scintillators. The original results on subpicosecond rise time of luminescence response, two-photon absorption and free carrier absorption in self-activated PWO and cerium-doped garnet-type scintillators YAGG:Ce and GAGG:Ce are presented and discussed in view of the study of excitation transfer processes and possible applications for fast timing in radiation detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Breskin, R. Voss (eds.), The CERN large hadron collider: accelerator and experiments (CERN, Geneva, 2009)

    Google Scholar 

  2. M. Harrison, International Linear Collider Technical Design Report (Volumes 1 through 4) (2013)

    Google Scholar 

  3. W.W. Moses, Time of flight in PET revisited. IEEE Trans. Nucl. Sci. 50, 1325–1330 (2003)

    Article  ADS  Google Scholar 

  4. C. Fong, A.W. Dong, A.J. Hill, B.J. Boyd, C.J. Drummond, Positron annihilation lifetime spectroscopy (PALS): a probe for molecular organisation in self-assembled biomimetic systems. Phys. Chem. Chem. Phys. 17, 17527–17540 (2015)

    Article  Google Scholar 

  5. P. Lecoq, M. Korzhik, A. Vasiliev, Can transient phenomena help improving time resolution in scintillators. IEEE Trans. Nucl. Sci. 61, 229–234 (2014)

    Article  ADS  Google Scholar 

  6. D.R. Schaart, E. Charbon, T. Frach, V. Schulz, Advances in digital SiPMs and their application in biomedical imaging. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 809, 31–52 (2016)

    Google Scholar 

  7. M. Kavatsyuk, D. Bremer, V. Dormenev, P. Drexler, T. Eissner, W. Erni, E. Guliyev, T. Hennino, B. Krusche, B. Lewandowski, H. Löhner, M. Moritz, R.W. Novotny, K. Peters, J. Pouthas, P. Rosier, M. Steinacher, G. Tambave, A. Wilms, Performance of the prototype of the Electromagnetic Calorimeter for PANDA. Nucl. Instrum. Methods Phys. Res. Sect. A. 648, 77–91 (2011); doi:10.1016/j.nima.2011.06.044

  8. M.V. Nemallapudi, S. Gundacker, P. Lecoq, E. Auffray, A. Ferri, A. Gola, C. Piemonte, Sub-100 ps coincidence time resolution for positron emission tomography with LSO: Ce codoped with Ca. Phys. Med. Biol. 60, 4635–4649 (2015)

    Article  Google Scholar 

  9. D.N. ter Weele, D.R. Schaart, P. Dorenbos, Intrinsic scintillation pulse shape measurements by means of picosecond x-ray excitation for fast timing applications. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 767, 206–211 (2014)

    Google Scholar 

  10. S. Gundacker, E. Auffray, K. Pauwels, P. Lecoq, Measurement of intrinsic rise times for various L(Y)SO and LuAG scintillators with a general study of prompt photons to achieve 10 ps in TOF-PET. Phys. Med. Biol. 61, 2802–2837 (2016)

    Article  Google Scholar 

  11. M.A. Spurrier, P. Szupryczynski, K. Yang, A.A. Carey, C.L. Melcher, Effects of Ca2+ Co-Doping on the scintillation properties of LSO:Ce. IEEE Trans. Nucl. Sci. 55, 1178–1182 (2008)

    Article  ADS  Google Scholar 

  12. S. Blahuta, A. Bessiere, B. Viana, P. Dorenbos, V. Ouspenski, Evidence and consequences of Ce4+ in LYSO: Ce, Ca and LYSO: Ce, Mg single crystals for medical imaging applications. IEEE Trans. Nucl. Sci. 60, 3134–3141 (2013)

    Article  ADS  Google Scholar 

  13. A. Benaglia, S. Gundacker, P. Lecoq, M.T. Lucchini, A. Para, K. Pauwels, E. Auffray: Detection of high energy muons with sub-20 ps timing resolution using L(Y)SO crystals and SiPM readout. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 830, 30–35 (2016)

    Google Scholar 

  14. M.T. Lucchini, S. Gundacker, P. Lecoq, A. Benaglia, M. Nikl, K. Kamada, A. Yoshikawa, E. Auffray, Timing capabilities of garnet crystals for detection of high energy charged particles. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 852, 1–9 (2017)

    Google Scholar 

  15. K. Kamada, T. Yanagida, J. Pejchal, M. Nikl, T. Endo, K. Tsutsumi, Y. Fujimoto, A. Fukabori, A. Yoshikawa, Crystal growth and scintillation properties of Ce doped Gd3(Ga, Al)5O12 single crystals. IEEE Trans. Nucl. Sci. 59, 2112–2115 (2012)

    Article  ADS  Google Scholar 

  16. E. Auffray, R. Augulis, A. Borisevich, V. Gulbinas, A. Fedorov, M. Korjik, M.T. Lucchini, V. Mechinsky, S. Nargelas, E. Songaila, G. Tamulaitis, A. Vaitkevičius, S. Zazubovich, Luminescence rise time in self-activated PbWO4 and Ce-doped Gd3Al2Ga3O12 scintillation crystals. J. Lumin. 178, 54–60 (2016)

    Article  Google Scholar 

  17. R.A. Lerche, D.W. Phillon, Rise time of BC-422 plastic scintillator less than 20 ps, Conf. Rec. 1991 IEEE Nucl. Sci. Symp. Med. Imaging Conf. (1991). doi:10.1109/NSSMIC.1991.258899

  18. Y. Arikawa, M. Nakai, T. Watari, H. Hosoda, K. Takeda, T. Fujiwara, Y. Furukawa, T. Norimatsu, H. Shiraga, N. Sarukura, H. Azechi, Fast response neutron scintillation detector for FIRE-X. J. Phys: Conf. Ser. 112, 32082 (2008)

    Google Scholar 

  19. D. Cester, G. Nebbia, L. Stevanato, F. Pino, G. Viesti, Experimental tests of the new plastic scintillator with pulse shape discrimination capabilities EJ-299-33. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 735, 202–206 (2014)

    Google Scholar 

  20. E. Auffray, O. Buganov, A. Fedorov, M. Korjik, V. Mechinsky, A. Tikhomirov, A. Vasil’ev, P. Lecoq, Picosecond transient absorption rise time for ultrafast tagging of the interaction of ionizing radiation with scintillating crystals in high energy physics experiments. J. Instrum. 9, P07017–P07017 (2014)

    Article  Google Scholar 

  21. S.I. Omelkov, V. Nagirnyi, A.N. Vasil’Ev, A.N. Vasil’Ev, M. Kirm, New features of hot intraband luminescence for fast timing. J. Lumin. 176, 309–317 (2016)

    Article  Google Scholar 

  22. S.I. Omelkov, V. Nagirnyi, E. Feldbach, R. Martinez, E. Auffray, M. Kirm, P. Lecoq, Intraband luminescence excited in new ways : low-power x-ray and electron beams. J. Lumin. 1–7 (2017)

    Google Scholar 

  23. E. Auffray, M. Korjik, M.T. Lucchini, S. Nargelas, O. Sidletskiy, G. Tamulaitis, Y. Tratsiak, A. Vaitkevicius, Free carrier absorption in self-activated PbWO4 and Ce-doped Y3(Al0.25Ga0.75)3O12 and Gd3Al2Ga3O12 garnet scintillators. Opt. Mater. (Amst). 58, 461–465 (2016)

    Google Scholar 

  24. A.A. Annenkov, M. V. Korzhik, P. Lecoq, Lead tungstate scintillation material. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 490, 30–50 (2002)

    Google Scholar 

  25. M. Nikl, P. Bohacek, E. Mihokova, M. Kobayashi, M. Ishii, Y. Usuki, V. Babin, A. Stolovich, S. Zazubovich, M. Bacci, Excitonic emission of scheelite tungstates AWO4 (A = Pb, Ca, Ba, Sr). J. Lumin. 87, 1136–1139 (2000)

    Article  Google Scholar 

  26. M.T. Lucchini, V. Babin, P. Bohacek, S. Gundacker, K. Kamada, M. Nikl, A. Petrosyan, A. Yoshikawa, E. Auffray, Effect of Mg2+ ions co-doping on timing performance and radiation tolerance of Cerium doped Gd3Al2Ga3O12 crystals. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 816, 176–183 (2016)

    Google Scholar 

  27. J.M. Ogieglo, Luminescence and Energy Transfer in Garnet Scintillators (2012), http://dspace.library.uu.nl/handle/1874/257552

  28. P. Dorenbos, A review on how lanthanide impurity levels change with chemistry and structure of inorganic compounds. ECS J. Solid State Sci. Technol. 2, R3001–R3011 (2013)

    Article  Google Scholar 

  29. G. Tamulaitis, A. Vaitkevičius, S. Nargelas, R. Augulis, V. Gulbinas, P. Bohacek, M. Nikl, A. Borisevich, A. Fedorov, M. Korjik, E. Auffray, Subpicosecond luminescence rise time in magnesium codoped GAGG:Ce scintillator, Nucl. Instrum. Methods Phys. Res., A 870, 25–29 (2017)

    Google Scholar 

  30. E. Auffray, O. Buganov, A. Fedorov, M. Korjik, P. Lecoq, G. Tamulaitis, S. Tikhomirov, A. Vasil’ev, New detecting techniques for a future calorimetry. J. Phys Conf. Ser. 587, 12056 (2015)

    Article  Google Scholar 

  31. E. Auffray, O. Buganov, M. Korjik, A. Fedorov, S. Nargelas, G. Tamulaitis, S. Tikhomirov, A. Vaitkevičius, Application of two-photon absorption in PWO scintillator for fast timing of interaction with ionizing radiation. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 804, 194–200 (2015)

    Google Scholar 

  32. G.M. Sessler, M.G. Broadhurst (eds.), Electrets (Springer, Berlin, New York, 1980)

    Google Scholar 

  33. V.I. Barisnikov, T.A. Kolesnikova, Femtosecond mechanisms of electronic excitation of crystalline materials. Solid State Phys. 47, 1776–1780 (2005)

    Google Scholar 

  34. Y. Zhang, N.A.W. Holzwarth, R.T. Williams, Electronic band structures of the scheelite materials CaMoO4, CaWO4, PbMoO4, and PbWO4. Phys. Rev. B Condens. Matter. 57, 12738–12750 (1998)

    Google Scholar 

Download references

Acknowledgements

The key results reviewed here are obtained in collaboration with E. Auffray, R. Augulis, A. Borisevich, O. Buganov, V. Gulbinas, A. Fedorov, M. Korjik, M.T. Lucchini, V. Mechinsky, S. Nargelas, O. Sidletskiy, E. Songaila, S. Tikhomirov, Y. Tratsiak, A. Vaitkevicius, and S. Zazubovich; their contribution is acknowledged. The research has been carried out in line with the targets of the Crystal Clear Collaboration and was partially supported by COST Action TD1401 “Fast Advanced Scintillator Timing (FAST)” and by H2020-INFRAIA-2014-2015 project no. 654168 (AIDA-2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gintautas Tamulaitis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tamulaitis, G. (2017). Fast Optical Phenomena in Self-Activated and Ce-Doped Materials Prospective for Fast Timing in Radiation Detectors. In: Korzhik, M., Gektin, A. (eds) Engineering of Scintillation Materials and Radiation Technologies. ISMART 2016. Springer Proceedings in Physics, vol 200. Springer, Cham. https://doi.org/10.1007/978-3-319-68465-9_2

Download citation

Publish with us

Policies and ethics