Skip to main content

Oriented Crystal Applications in High Energy Physics

  • Conference paper
  • First Online:
Engineering of Scintillation Materials and Radiation Technologies (ISMART 2016)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 200))

  • 896 Accesses

Abstract

Effective fields of atomic strings and planes, which govern fast particle motion in oriented crystals, hundreds and thousands times exceed that of superconducting magnets. These fields naturally find unique applications in high energy physics. Channeling effect of oscillatory particle motion in the field of crystal planes can be used for both high energy beam deflection and collimation. Strong crystal fields also can enhance both the gamma-radiation by electrons and electron-positron pair production by gamma-quanta. We consider possible crystal applications for the beam collimation of the Large Hadron Collider and Future Circular Collider and acceleration of electromagnetic shower development in lead tungstate crystals of the Compact Muon Solenoid of the Large Hadron Collider.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Auchmann et al., Phys. Rev. ST Accel. Beams 18(6), 061002 (2015). doi:10.1103/PhysRevSTAB.18.061002

    Article  ADS  Google Scholar 

  2. J.B. Jeanneret et al., LHC Project Rep. 44, 16 (1996)

    Google Scholar 

  3. S. Redaelli, CERN Yellow Rep. (2016). doi:10.5170/CERN-2016-002.403

    Google Scholar 

  4. M. Lamont, LHC Project Rep. 375, 15 (2005)

    Google Scholar 

  5. L. Rossi, LHC upgrade plans: options and strategy, in Proceedings of the 2nd International Particle Accelerator Conference. San Sebastian, 2011 [Conf. Proc. C 110904 (2011) 908]

    Google Scholar 

  6. L. Rossi et al., HL-LHC preliminary design report, CERN-ACC-2014-0300 (2014) https://cds.cern.ch/record/1972604/files/CERN-ACC-2014-0300.pdf

  7. A. Ball et al., Future circular collider study hadron collider parameters, CERN, Geneva, Switzerland, Rep. FCC-ACC-SPC-0001, Jan 2014

    Google Scholar 

  8. M. Fiascaris et al., Proceedings of IPAC2016 (Busan, Korea, 2016), pp. 2423–2426

    Google Scholar 

  9. M.A. Maslov, N.V. Mokhov, I.A. Yazynin, Beam loss handling in the SSC, SSCL report SSCL-484, Dallas, USA (1991)

    Google Scholar 

  10. J. Lindhard, Mat. Fys. Medd. Dan. Vid. Selsk. 34(N14), 64 (1965)

    Google Scholar 

  11. E. Tsyganov, Fermilab report FNAL-TM-682 (Fermilab, Batavia, USA, 1976)

    Google Scholar 

  12. A.G. Afonin et al., JETP Lett. 84(7), 37276 (2006)

    Google Scholar 

  13. A.G. Afonin et al., Phys. Rev. ST Accel. Beams 15, 081001 (1–9) (2012)

    Google Scholar 

  14. W. Scandale et al., Phys. Rev. ST Accel. Beams 11, 063501 (1–10) (2008)

    Google Scholar 

  15. W. Scandale et al., Phys. Lett. B 680, 129–132 (2009)

    Article  ADS  Google Scholar 

  16. W. Scandale et al., Phys. Lett. B 714, 231–236 (2012)

    Article  ADS  Google Scholar 

  17. N.V. Mokhov et al., Int. J. Mod. Phys. A 25(Suppl. 1), 9875 (2010)

    Google Scholar 

  18. N.V. Mokhov et al., JINST 6, T08005 (2011)

    Article  Google Scholar 

  19. W. Scandale et al., Phys. Lett. B 758, 129–133 (2016)

    Article  ADS  Google Scholar 

  20. A.A. Asseev, E.A. Myae, S.V. Sokolov, YuS Fedotov, Nucl. Instrum. Methods A 324, 31 (1993)

    Article  ADS  Google Scholar 

  21. A.A. Asseev et al., in: Proceedings of the Fourth European. Part. Act Conference, ed. by V. Suller, C. Petit-Jean-Genaz. London, 1993 (World Scientific, 1994), p. 2388

    Google Scholar 

  22. K. Elsener et al., Nucl. Instr. and Meth. in Phys. Res. B 119, 215–230 (1996)

    Google Scholar 

  23. R. Carrigan et al., Phys. Rev. ST Accel. Beams 5, 043501 (2002)

    Article  ADS  Google Scholar 

  24. A. Apyan, Nucl. Instrum. B 225, 269 (2007)

    Article  ADS  Google Scholar 

  25. V.V. Tikhomirov, A.I. Sytov, Problems of Atomic Science and Technology, vol. 1 (Kharkov, Ukraine, 2012), pp. 88–92. e-Print: arXiv:1109.5051

  26. A. Mazzolari et al., Phys. Rev. Lett. 112, 135503 (2014)

    Article  ADS  Google Scholar 

  27. A.M. Taratin, S.A. Vorobiev, Phys. Lett. A 119(8), 425 (1987)

    Article  ADS  Google Scholar 

  28. V.A. Maisheev, Phys. Rev. ST Acc. Beams 10, 084701 (2007)

    Google Scholar 

  29. W. Scandale et al., Phys. Lett. B 681, 233–236 (2009)

    Article  ADS  Google Scholar 

  30. A.I. Sytov, V.V. Tikhomirov, Nucl. Instrum. Methods Phys. Res. B 355, 383–386 (2015)

    Google Scholar 

  31. A.I. Sytov, Vestn. BSU, Ser. 1(2), 48–52 (2014)

    Google Scholar 

  32. V. Guidi, A. Mazzolari, V.V. Tikhomirov, J. Appl. Phys. 107, 114908 (1–8) (2010)

    Google Scholar 

  33. V.V. Tikhomirov, Phys. Lett. B 655, 217–222 (2007)

    Article  ADS  Google Scholar 

  34. V.V. Tikhomirov, A.I. Sytov, Nucl. Instrum. Methods Phys. Res. B 309, 109–114 (2013)

    Article  ADS  Google Scholar 

  35. A.G. Afonin et al., JETP Lett. 93(4), 187–190 (2011)

    Article  ADS  Google Scholar 

  36. W. Scandale et al., Phys. Lett. B 682, 274–277 (2009)

    Article  ADS  Google Scholar 

  37. W. Scandale et al., EPL 93, 56002 (2011)

    Article  ADS  Google Scholar 

  38. W. Scandale et al., Phys. Lett. B 688, 284–288 (2010)

    Article  ADS  Google Scholar 

  39. V. Guidi, A. Mazzolari, V.V. Tikhomirov, J. Phys. D Appl. Phys. 42 165301 (1–6) (2009)

    Google Scholar 

  40. V.V. Tikhomirov, JINST 2, P08006 (1–11) (2007)

    Google Scholar 

  41. V.A. Baskov et al., Nucl. Instr. B 122, 194 (1997)

    Article  ADS  Google Scholar 

  42. V.A. Baskov et al., Phys. Lett. B 456, 86 (1999)

    Article  ADS  Google Scholar 

  43. A. Baurichter et al., Nucl. Phys. B (Proc. Suppl.) 44, 79 (1995)

    Google Scholar 

  44. A. Baurichter et al., Nucl. Instrum. Methods B 152, 472 (1999)

    Article  ADS  Google Scholar 

  45. B. Ferretti, Nuovo Cimento 7, 118 (1950)

    Article  Google Scholar 

  46. M. Ter-Mikaelian, Zh. Exp. Teor. Fiz. 25, 296 (1953)

    Google Scholar 

  47. M.L. Ter-Mikaelian, High-Energy Electromagnetic Processes in Condensed Media (Wiley, New York, 1972), p. 457

    Google Scholar 

  48. H. Uberall, Phys. Rev. 103, 1055 (1956)

    Article  ADS  Google Scholar 

  49. G. Diambrinni, Palazzi. Rev. Mod. Phys. 40, 611 (1968)

    Article  Google Scholar 

  50. V.G. Baryshevsky, Channeling, Radiation and Reactions in Crystals at High Energies (Minsk. Belorussian State University, 1982), p. 256 (in Russian)

    Google Scholar 

  51. V.G. Baryshevsky, V.V. Tikhomirov, Sov. J. Nucl. Phys. 36, 153 (1982); J. Techn. Fiz. 52, 1476 (1982); Sov. Phys. JETP 58, 135 (1983)

    Google Scholar 

  52. V.G. Baryshevskii and V.V. Tikhomirov, Usp. Fiz. Nauk 159, 529 (1989) [Sov. Phys. Usp. 32, 1013 (1989)]

    Google Scholar 

  53. A.I. Akhiezer, N.F. Shulga, High-Energy Electrodynamics in Matter (Gordon & Breach, New York, 1996), p. 400

    Google Scholar 

  54. V.N. Baier, V.M. Katkov, V.M. Strakhovenko, Electromagnetic Processes at High Energies in Oriented Single Crystals (World Scientific, Singapore, 1998), p. 568

    Google Scholar 

  55. J.C. Kimball, N. Cue, Phys. Rep. 69, 125 (1985)

    Google Scholar 

  56. A. Belkacem et al., Phys. Lett. B 177, 211 (1986)

    Article  ADS  Google Scholar 

  57. X. Artru, Nucl. Instrum. B 48, 278 (1990)

    Article  Google Scholar 

  58. V.V. Tikhomirov, Phys. Lett. A 125, 411 (1987); V.V. Tikhomirov, Nucl. Instrum. B 36, 282 (1989)

    Google Scholar 

  59. L. Bandiera, E. Bagli, V. Guidi, A. Mazzolari, A. Berra, D. Lietti, M. Prest, E. Vallazza, D. De Salvador, V. Tikhomirov, Phys. Rev. Lett. 111, 255502 (2013)

    Article  ADS  Google Scholar 

  60. L. Bandiera et al., Phys. Rev. Lett. 15, 025504 (2015)

    Article  ADS  Google Scholar 

  61. V. Guidi, L. Bandiera, V.V. Tikhomirov, Phys. Rev. A 86, 042903 (2012)

    Article  ADS  Google Scholar 

  62. L.D. Landau, E.M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory, vol. 3, 3rd edn. (Pergamon Press, 1977). ISBN 978-0-08-020940-1

    Google Scholar 

  63. V.V. Tikhomirov, Vestn. BSU, Ser. 1, Fiz. Mat. Inform. 3, 9 (2015). (in Russian)

    Google Scholar 

  64. V.V. Tikhomirov, A Benchmark Construction of Positron Crystal Undulator. e-Print: arXiv:1502.06588v1

  65. V.G. Baryshevskii, V.V. Tikhomirov, Sov. Phys. JETP 63, 1116 (1986)

    Google Scholar 

  66. V.V. Tikhomirov, J. Phys. (Paris) 48, 1009 (1987)

    Article  Google Scholar 

  67. J.M. Moreau, R.E. Gladyshevskii, P. Galez, J.P. Peigneux, M.V. Korzhik, J. Alloy. Compd. 284, 104 (1999)

    Google Scholar 

  68. The CMS Collaboration, JINST 8, P09009 (2013)

    Article  Google Scholar 

  69. A.G. Bonch-Osmolovsky, M.I. Podgoretsky, Yad. Fiz. 29, 432 (1979)

    Google Scholar 

  70. D.A. Petyt, for the CMS Collaboration, J. Phys. Conf. Ser. 404, 012043 (2012)

    Google Scholar 

Download references

Acknowledgements

We acknowledge Prof. V.G. Baryshevsky and V. Guidi for continuous fruitful cooperation. We also acknowledge the CINECA award under the ISCRA initiative for the availability of high performance computing resources and support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tikhomirov, V.V., Haurylavets, V.V., Lobko, A.S., Mechinsky, V.A. (2017). Oriented Crystal Applications in High Energy Physics. In: Korzhik, M., Gektin, A. (eds) Engineering of Scintillation Materials and Radiation Technologies. ISMART 2016. Springer Proceedings in Physics, vol 200. Springer, Cham. https://doi.org/10.1007/978-3-319-68465-9_16

Download citation

Publish with us

Policies and ethics