Skip to main content

Scintillation Detectors in Experiments on High Energy Physics

  • Conference paper
  • First Online:
Engineering of Scintillation Materials and Radiation Technologies (ISMART 2016)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 200))

Abstract

Scintillation counters have been serving as one of the main particle detector for more than hundred years. By now a number of scintillation detectors types and detector systems were developed and used widely in high energy physics experiments to detect charged and neutral particles in a large energy range from 1 keV to hundreds of GeV. Main classes of the scintillation materials are inorganic and organic scintillators. However, liquid and gaseous scintillators are exploited as well in some experiments. This review includes the present status of the scintillation technique use in high energy physics experiments, main characteristics of the existing scintillators, examples of experiments and a consideration of the further development of this type of detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Rutherford, J. Chadwick, C.D. Ellis, Radiation from Radioactive Substances, Cambridge (1930)

    Google Scholar 

  2. R. Hofstadter, Alkali Halide scintillation counters. Phys. Rev. 74, 100 (1948)

    Article  ADS  Google Scholar 

  3. R. Hofstadter, J.A. McIntyre, Gamma-Ray spectroscopy with crystals of NaI(Tl). Nucleonics 7, 32–37 (1950)

    Google Scholar 

  4. K.A. Olive et al., Review of particle physics. Chin. Phys. C 38, 1 (2014)

    Article  ADS  Google Scholar 

  5. J.B. Birks, The Theory and Practice of Scintillation Counting, Pergamon Press, Oxford (1964,1967), and J.B. Birks, Scintillation Counters, Pergamon Press, Oxford (1953)

    Google Scholar 

  6. C. Grupen, I. Buvat (eds.), Handbook of Particle Detection and Imaging, Chapter 15 (Springer-Verlag, Berlin Heidelberg, 2012)

    Google Scholar 

  7. C. Grupen, B.A. Shwartz, Particle Detectors (Cambridge University Press, Cambridge, 2008)

    Book  Google Scholar 

  8. YuN Kharzheev, Scintillation counters in modern high energy physics experiments. Phys. Part. Nucl. 46, 678 (2015)

    Article  Google Scholar 

  9. P. Lecoq, A. Gektin, M. Korzhik, Inorganic Scintillators for Detector Systems Physical Principles and Crystal Engineering, Springer International Publishing (2017)

    Google Scholar 

  10. R. Partridge et al., Decay \( J/\varPsi \to 3\gamma \) and a Search for the \( \eta_{c} \). Phys. Rev. Lett. 44, 712 (1980) M. Oreglia et al., Study of the reaction \( \varPsi^{\prime } \to \gamma \gamma J/\varPsi \). Phys. Rev. D25, 2259 (1982)

    Google Scholar 

  11. B.G. Cheon et al., Electromagnetic calorimeter trigger at Belle. Nucl. Instr. Meth. A 494, 548 (2002)

    Article  ADS  Google Scholar 

  12. B. Aubert et al., (BaBar collaboration), the BABAR detector. Nucl. Instr. Meth. A 479, 1 (2002)

    Article  ADS  Google Scholar 

  13. V. Prasad, Performance of the cesium iodide calorimeter at the KTeV experiment at Fermilab. Nucl. Instr. Meth. A. 461, 341 (2001)

    Google Scholar 

  14. M.N. Achasov et al., Time resolution of the SND electromagnetic calorimeter. JINST 10, T06002 (2015)

    Article  ADS  Google Scholar 

  15. V.M. Aulchenko et al., CsI calorimeter of the CMD-3 detector. JINST 10, P10006 (2015)

    Article  Google Scholar 

  16. V.V. Anashin et al., The KEDR detector Phys. Part. Nucl. 44, 657 (2013)

    Article  Google Scholar 

  17. C. Bargholtz et al., The WASA detector facility at CELSIUS. Nucl. Instr. Meth A594, 339 (2008)

    Article  ADS  Google Scholar 

  18. A. Abashian et al., The Belle detector, 2002 Nucl. Instr. Meth. A 479, 117 (2002)

    Article  ADS  Google Scholar 

  19. S. Kurokawa et al., Overview of the KEKB accelerators. Nucl. Instr. Meth. A 499, 1 (2003)

    Article  ADS  Google Scholar 

  20. T. Abe et al., Belle II technical design report, KEK Report 2010–1 (2010)

    Google Scholar 

  21. K. Kazui et al., Study of the radiation hardness of CsI(Tl) crystals for the BELLE detector. Nucl. Inst. and Meth. A 394, 46 (1997) D.M Beylin et al., Study of the radiation hardness of CsI(Tl) scintillation crystals. Nucl. Inst. Meth. A 541, 501 (2005)

    Google Scholar 

  22. B. Shwartz, Belle calorimeter upgrade. Nucl. Inst. Meth. A 598, 220 (2009)

    Google Scholar 

  23. CMS Collaboration, JINST 3, S08004 (2008)

    ADS  Google Scholar 

  24. The CMS collaboration, The electromagnetic calorimeter project: technical design report. CERN/LHCC 97–33, 1997 (2012)

    Google Scholar 

  25. P. Adzic et al., The CMS electromagnetic calorimeter group. Energy Resolut. Barrel CMS Electromagn. Calorimeter JINST 2, P04004 (2007)

    Google Scholar 

  26. CMS collaboration, energy, calibration and resolution of the CMS e.m. calorimeter. JINST. 8, P09009 (2013)

    Google Scholar 

  27. C. Biino, The CMS electromagnetic calorimeter: overview, lessons learned during run 1 and future projections. J. Phys. Conf. Ser. 587, 012001 (2015)

    Google Scholar 

  28. C.L. Melcher et al., Crystal growth and scintillation properties of the rare earth orthosilicates. Inorganic Scintillators and Their Applications, Delft Unviersity Press (SCINT95), pp. 309–315 (1996)

    Google Scholar 

  29. P.R. Menge et al., Performance of large lanthanum bromide scintillators. Nucl. Inst. Meth. A 579, 6 (2007)

    Article  ADS  Google Scholar 

  30. S. Kawamura et al., Investigation of Ce-doped Gd2Si2O7 as a scintillator material. Nucl. Inst. Meth. A 583, 356 (2007)

    Article  ADS  Google Scholar 

  31. K.Kamada et al., 2-inch size single crystal growth and scintillation properties of new scintillator; Ce:Gd3Al2Ga3O12. IEEE Nucl. Sci. Symp. Conf. Rec. 1927 (2011)

    Google Scholar 

  32. R.-Y. Zhu, The next generation of crystal detectors. J. Phys. Conf. Ser. 587, 012055 (2015)

    Article  Google Scholar 

  33. Scintillation materials & detectors, Catalogue of Amcrys-H (Kharkov, Ukraine, 2000)

    Google Scholar 

  34. Saint-Gobain, Crystals and detectors, organic scintillators; general characteristics and technical data; www.detectors.saint-gobain.com

  35. G.I. Britvich et al., The main characteristics of polystyrene scintillators produced at the institute of high-energy physics and detectors on their basis. Instr. Exp. Tech. 58, 211 (2015)

    Article  Google Scholar 

  36. R. Wigmans, Energy measurement in particle physics (Clarendon Press, Oxford, 2000)

    Google Scholar 

  37. Scintillation materials, Catalogue, Kuraray Co. Ltd. (2000)

    Google Scholar 

  38. Scintillation products, Scintillating optical fibers, Saint-Gobain brochure, Saint-gobain ceramics & plastics Inc. (2005)

    Google Scholar 

  39. A.A. Alves et al., (LHCb collaboration), The LHCb detector at the LHC. JINST, 3, S08005 (2008). S. Amato et al., LHCb calorimeters: technical design report, CERN, Geneva, LHCb-TDR-2 (2000)

    Google Scholar 

  40. G. Aad et al., (The ATLAS collaboration), readiness of the ATLAS tile calorimeter for LHC collisions. Eur. Phys. J. C 70, 1193 (2010)

    Google Scholar 

  41. G.S. Atoian et al., Development of shashlyk calorimeter for KOPIO. Nucl. Inst. Meth. A 531, 467 (2004) G.S. Atoian et al., An improved Shashlyk calorimeter. Nucl. Inst. Meth. A 584, 291 (2008)

    Google Scholar 

  42. D. Acosta et al., Lateral shower profiles in a lead scintillating-fiber calorimeter. Nucl. Inst. Meth. A 316, 184 (1992)

    Google Scholar 

  43. M. Adinolfi et al., The KLOE electromagnetic calorimeter. Nucl. Inst. Meth. A482, 364 (2002)

    Article  ADS  Google Scholar 

  44. J. Adam et al., The MEG detector for \( \upmu^{ + } \to e^{ + } \gamma \) decay search. Eur. Phys. J. C 73, 2365 (2013)

    Google Scholar 

  45. A.M. Baldini et al., Search for the lepton flavour violating decay \( \upmu^{ + } \to e^{ + } \gamma \) with the full dataset of the MEG experiment. Eur. Phys. J. C 76, 434 (2016)

    Google Scholar 

  46. S Ogawa (MEG II collaboration), Liquid xenon calorimeter for MEG II experiment with VUV-sensitive MPPCs. Nucl. Inst. Meth. A845, 528 (2017)

    Google Scholar 

  47. G. Lehaut et al., Scintillation properties of N2 and CF4 and performances of a scintillating ionization chamber. Nucl. Inst. Meth. A797, 57 (2015)

    Article  ADS  Google Scholar 

  48. A. Aab et al., (The pierre auger collaboration), the pierre auger cosmic ray observatory. Nucl. Inst. Meth. A798, 172 (2015)

    Google Scholar 

  49. H. Kawai et al., Telescope array experiment, Nucl. Phys. B Proc. Suppl. 175–176, 221 (2008) T. Abu-Zayyad et al., The surface detector array of the telescope array experiment. Nucl. Inst. Meth. A689, 87 (2012)

    Google Scholar 

  50. M. Kleifges for the Pierre Auger Collaboration, Extension of the Pierre Auger Observatory using high-elevation fluorescence telescopes (HEAT), https://arxiv.org/abs/0906.2354, Operations of and Future Plans for the Pierre Auger Observatory, Presentations for the 31st International Cosmic Ray Conference, Lodz, Poland, July 2009

Download references

Acknowledgements

Work on this review was supported by the Russian Science Foundation (project N 14-50-00080).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Shwartz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shwartz, B.A. (2017). Scintillation Detectors in Experiments on High Energy Physics. In: Korzhik, M., Gektin, A. (eds) Engineering of Scintillation Materials and Radiation Technologies. ISMART 2016. Springer Proceedings in Physics, vol 200. Springer, Cham. https://doi.org/10.1007/978-3-319-68465-9_13

Download citation

Publish with us

Policies and ethics