Skip to main content

Microtheory of Scintillation in Crystalline Materials

  • Conference paper
  • First Online:
Engineering of Scintillation Materials and Radiation Technologies (ISMART 2016)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 200))

Abstract

The review of the processes in solid state scintillators is presented. All steps of the transformation of energy in scintillators (production of secondary electronic excitations, thermalization, migration and recombination, photon emission) are observed. The processes at these steps are characterized by quite different spatial and time scales. These scales differs for various classes of scintillators, depending on electron structure of conduction and valence bands, energy position of core levels, phonon spectrum, presence of activators and dopants. Therefore the microscopic structure of electronically and vibrationally excited regions is material dependent. In general this structure is characterized by high non-homogeneity. For instance, in crystals consisted from heavy ions with several low-energy core bands the effect of the clusterization of secondary electronic excitations plays important role in formation of new emission centers. We discuss the estimation of the scintillation yield, non-proportionality, energy resolution and decay characteristics based on the analysis of elementary processes in scintillators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.B. Birks, Theory and Practice of Scintillation Counting (Pergamon, NewYork, 1964), pp. 185–199

    Book  Google Scholar 

  2. R.B. Murray, A. Meyer, Scintillation response of activated inorganic crystals to various charged particles. Phys. Rev. 112, 815–826 (1961)

    Article  ADS  Google Scholar 

  3. W.W. Moses, G.A. Bizarri, R.T. Williams, S.A. Payne, A.N. Vasil’ev, J. Singh, Q. Li, J.Q. Grim, W.S. Choong, The origins of scintillator non-proportionality. IEEE Trans. Nucl. Sci. 59(5), 2038–2044 (2012)

    Article  ADS  Google Scholar 

  4. A. Lempicki, A.J. Wojtowicz, E. Berman, Fundamental limits of scintillator performance. Nucl. Instrum. Methods Phys. Res. A 333, 304–311 (1993)

    Article  ADS  Google Scholar 

  5. P. Dorenbos, J.T.M. De Haas, C.W.E. Van Eijk, Non-proportionality in the scintillation response and the energy resolution obtainable with scintillation crystals. IEEE Trans. Nucl. Sci. 42(6), 2190–2202 (1995)

    Article  ADS  Google Scholar 

  6. B.D. Rooney, J.D. Valentine, Scintillator light yield nonproportionality: calculating photon response using measured electron response. IEEE Trans. Nucl. Sci. 44(3), 509–516 (1997)

    Article  ADS  Google Scholar 

  7. W. Mengesha, T.D. Taulbee, B.D. Rooney, J.D. Valentine, Light yield nonproportionality of CsI(Tl), CsI(Na), and YAP. IEEE Trans. Nucl. Sci. 45(3), 456–461 (1998)

    Article  ADS  Google Scholar 

  8. J.D. Valentine, B.D. Rooney, J. Li, The light yield nonproportionality component of scintillator energy resolution. IEEE Trans. Nucl. Sci. 45(3), 512–517 (1998)

    Article  ADS  Google Scholar 

  9. B.D. Rooney, J.D. Valentine, Benchmarking the Compton coincidence technique for measuring electron response non-proportionality in inorganic scintillators. IEEE Trans. Nucl. Sci. 43, 1271–1276 (1996)

    Article  ADS  Google Scholar 

  10. J.D. Valentine, B.D. Rooney, Design of a Compton spectrometer experiment for studying scintillator non-linearity and intrinsic energy resolution. Nucl. Instrum. Methods Phys. Res. A Accel. Spectrom. Detect. Assoc. Equip. 353, 37–40 (1994)

    Google Scholar 

  11. W.S. Choong et al., Performance of a facility for measuring scintillator non-proportionality. IEEE Trans. Nucl. Sci. NS-55(3), 1073–1078 (2008)

    Google Scholar 

  12. W.S. Choong et al., Design of a facility for measuring scintillator nonproportionality. IEEE Trans. Nucl. Sci. 55(3), 1753–1758 (2008)

    Article  ADS  Google Scholar 

  13. M. Moszyński, A. Syntfeld-Każuch, L. Swiderski, P. Sibczyński, M. Grodzicka et al., Energy resolution and slow components in undoped CsI crystals. IEEE Trans. Nucl. Sci. 63(2), 459–466 (2016)

    Article  ADS  Google Scholar 

  14. I.V. Khodyuk, J.T.M. de Haas, P. Dorenbos, Nonproportional response between 0.1–100 keV energy by means of highly monochromatic synchrotron X-rays. IEEE Trans. Nucl. Sci. 57(3), 1175–1181 (2010)

    Article  ADS  Google Scholar 

  15. I.V. Khodyuk, P. Dorenbos, Nonproportional response of LaBr:Ce and LaCl :Ce scintillators to synchrotron X-ray irradiation. J. Phys. Condens. Matter 22, 485402 (2010)

    Google Scholar 

  16. I.V. Khodyuk, P.A. Rodnyi, P. Dorenbos, Nonproportional scintillation response of NaI:Tl to low energy X-ray photons and electrons. J. Appl. Phys. 107, 113513-113513-8 (2010)

    Google Scholar 

  17. A. Belsky, I. Kamenskikh, A. Filippov, P. Martin, E. Meltchakov, S. Nannarone, A.N. Vasil’ev, Energy conversion of sub-KeV electronic excitations in inorganic scintillators, in Proceedings of 8th International Conference on Inorganic Scintillators and their use in Scientific and Industrial Applications (SCINT2005), Kharkov, Ukraine, 2006, pp. 22–25

    Google Scholar 

  18. J.E. Jaffe, Energy nonlinearity in radiation detection materials: causes and consequences. Nucl. Instrum. Methods Phys. Res. A 580, 1378–1382 (2007)

    Article  ADS  Google Scholar 

  19. A.N. Vasil’ev, From luminescence non-linearity to scintillation nonproportionality. IEEE Trans. Nucl. Sci. 55(3), 1054–1061 (2008)

    Google Scholar 

  20. G. Bizarri, W.W. Moses, J. Singh, A.N. Vasil’ev, R.T. Williams, An analytical model of nonproportional scintillator light yield in terms of recombination rates. J. Appl. Phys. 105, 044507-1-15 (2009)

    Google Scholar 

  21. G. Bizarri, W.W. Moses, J. Singh, A.N. Vasil’ev, R.T. Williams, The role of different linear and non-linear channels of relaxation in scintillator non-proportionality. J. Lumin. 129, 1790–1793 (2009)

    Article  Google Scholar 

  22. G. Bizarri, N.J. Cherepy, W.S. Choong, G. Hull, W.W. Moses, S.A. Payne, J. Singh, J.D. Valentine, A.N. Vasil’ev, R.T. Williams, Progress in studying scintillator proportionality: phenomenological model. IEEE Trans. Nucl. Sci. 56(4), 2313–2320 (2009)

    Article  ADS  Google Scholar 

  23. S.A. Payne, N.J. Cherepy, G. Hull, J.D. Valentine, W.W. Moses, W.-S. Choong, Nonproportionality of scintillator detectors: theory and experiment. IEEE Trans. Nucl. Sci. 56, 2506–2512 (2009)

    Article  ADS  Google Scholar 

  24. S.A. Payne, W.W. Moses, S. Sheets, L. Ahle, N.J. Cherepy, B. Sturm, S. Dazeley, G. Bizarri, W.-S. Choong, Nonproportionality of scintillator detectors: theory and experiment II. IEEE Trans. Nucl. Sci. 58, 3392–3402 (2011)

    Article  ADS  Google Scholar 

  25. S.A. Payne, S. Hunter, L. Ahle, N.J. Cherepy, E. Swanberg, Nonproportionality of scintillator detectors. III. Temperature dependence studies. IEEE Trans. Nucl. Sci. 61(5), 2771–2777 (2014)

    Article  ADS  Google Scholar 

  26. S.A. Payne, Nonproportionality of scintillator detectors. IV. Resolution contribution from delta-rays. IEEE Trans. Nucl. Sci. 62(1), 372–380 (2015)

    Article  ADS  Google Scholar 

  27. P.R. Beck, S.A. Payne, S. Hunter, L. Ahle, N.J. Cherepy, E.L. Swanberg, Nonproportionality of scintillator detectors. V. Comparing the gamma and electron response. IEEE Trans. Nucl. Sci. 62(3), 1429–1436 (2015)

    Article  ADS  Google Scholar 

  28. A.N. Vasil’ev, A.V. Gektin, Multiscale approach to estimation of scintillation characteristics. IEEE Trans. Nucl. Sci. 61, 235–245 (2014)

    Google Scholar 

  29. A. Gektin, A. Vasil’ev, Scintillation, phonon and defect channel balance; the sources for fundamental yield increase. Funct. Mater. 23(2), 183–190 (2016)

    Google Scholar 

  30. A.N. Vasil’ev, I.A. Markov, A.S. Zakharov, Usage of polarization approximation for the estimation of scintillator intrinsic energy resolution. Radiat. Meas. 45, 258–261 (2010)

    Google Scholar 

  31. S. Agostinelliae, J. Allisonas, K. Amakoe et al., Geant4—a simulation toolkit. Nucl. Instrum. Methods Phys. Res. A 506, 250–303 (2003)

    Article  ADS  Google Scholar 

  32. J. Allison, K. Amako, J. Apostolakis et al., Geant4 developments and applications. IEEE Trans. Nucl. Sci. 53(1), 270–278 (2006)

    Article  ADS  Google Scholar 

  33. F. Gao, Y. Xie, S. Kerisit, L.W. Campbell, W.J. Weber, Yield, variance and spatial distribution of electron–hole pairs in CsI. Nucl. Instrum. Methods Phys. Res. A 652, 564–567 (2011)

    Article  ADS  Google Scholar 

  34. Z. Wang, Y. Xie, B.D. Cannon, L.W. Campbell, F. Gao, S. Kerisit, Computer simulation of electron thermalization in CsI and CsI(Tl). J. Appl. Phys. 110, 064903 (2011)

    Article  ADS  Google Scholar 

  35. Z. Wang, Y. Xie, L.W. Campbell, F. Gao, S. Kerisit, Monte Carlo simulations of electron thermalization in alkali iodide and alkaline-earth fluoride scintillators. J. Appl. Phys. 112, 014906 (2012)

    Article  ADS  Google Scholar 

  36. R. Kirkin, V.V. Mikhailin, A.N. Vasil’ev, Recombination of correlated electron–hole pairs with account of hot capture with emission of optical phonons. IEEE Trans. Nucl. Sci. 59(5), 2057–2064 (2012)

    Google Scholar 

  37. A. Belsky, K. Ivanovskikh, A. Vasil’ev, M.F. Joubert, C. Dujardin, Estimation of the electron thermalization length in ionic materials. J. Phys. Chem. Lett. 4, 3534–3538 (2013)

    Article  Google Scholar 

  38. M.P. Prange, L.W. Campbell, D. Wu, F. Gao, S. Kerisit, Calculation of energy relaxation rates of fast particles by phonons in crystals. Phys. Rev. B 91, 104305 (2015)

    Google Scholar 

  39. W. Setyawan, R.M. Gaume, R.S. Feigelson, S. Curtarolo, Comparative study of nonproportionality and electronic band structures features in scintillator materials. IEEE Trans. Nucl. Sci. 56(5), 2989–2996 (2009)

    Article  ADS  Google Scholar 

  40. A. Canning, R. Boutchko, A. Chaudhry, S.E. Derenzo, First-principles studies and predictions of scintillation in Ce-doped materials. IEEE Trans. Nucl. Sci. 56(3), 944–948 (2009)

    Article  ADS  Google Scholar 

  41. A. Canning, A. Chaudhry, R. Boutchko, N. Grønbech-Jensen, First-principles study of luminescence in Ce-doped inorganic scintillators. Phys. Rev. B Condens. Matter. 83, 125115 1–125115 12 (2011)

    Google Scholar 

  42. H. Huang, Q. Li, X. Lu, Y. Qian, Y. Wu, R.T. Williams, Role of hot electron transport in scintillators: a theoretical study. Phys. Status Solidi (RRL)-Rapid Res. Lett. 10(10), 762–768 (2016)

    Google Scholar 

  43. X. Lu, Q. Li, G.A. Bizarri, K. Yang, M.R. Mayhugh, P.R. Menge, R.T. Williams, Coupled rate and transport equations modeling proportionality of light yield in high-energy electron tracks: CsI at 295 K and 100 K; CsI: Tl at 295 K. Phys. Rev. B 92(11), 115207 (2015)

    Article  ADS  Google Scholar 

  44. J.Q. Grim, Q. Li, K.B. Ucer, A. Burger, G.A. Bizarri, W.W. Moses, R.T. Williams, The roles of thermalized and hot carrier diffusion in determining light yield and proportionality of scintillators. Phys. Status Solidi (a) 209(12), 2421–2426 (2012)

    Google Scholar 

  45. Q. Li, J.Q. Grim, K.B. Ucer, A. Burger, G.A. Bizarri, W.W. Moses, R.T. Williams, Host structure dependence of light yield and proportionality in scintillators in terms of hot and thermalized carrier transport. Phys. Status Solidi (RRL)-Rapid Res. Lett. 6(8), 346–348 (2012)

    Google Scholar 

  46. Q. Li, J.Q. Grim, R.T. Williams, G.A. Bizarri, W.W. Moses, A transport-based model of material trends in nonproportionality of scintillators. J. Appl. Phys. 109(12), 123716 (2011)

    Article  ADS  Google Scholar 

  47. R.T. Williams, J.Q. Grim, Q. Li, K.B. Ucer, W.W. Moses, Excitation density, diffusion‐drift, and proportionality in scintillators. Phys. Status Solidi (b) 248(2), 426–438 (2011)

    Google Scholar 

  48. S.A. Gorbunov, P.N. Terekhin, N.A. Medvedev, A.E. Volkov, Combined model of the material excitation and relaxation in swift heavy ion tracks. Nucl. Instrum. Methods Phys. Res. B 315, 173–178 (2013)

    Article  ADS  Google Scholar 

  49. A. Kozorezov, J.K. Wigmore, A. Owens, Picosecond dynamics of hot carriers and phonons and scintillator nonproportionality. J. Appl. Phys. 112, 053709 (2012)

    Article  ADS  Google Scholar 

  50. L.W. Campbell, F. Gao, Excited state electronic properties of sodium iodide and cesium iodide. J. Lumin. 137, 121–131 (2013)

    Article  Google Scholar 

  51. S. Kerisit, Z. Wang, R.T. Williams, J.Q. Grim, F. Gao, Kinetic Monte Carlo simulations of scintillation processes in NaI (Tl). IEEE Trans. Nucl. Sci. 61(2), 860–869 (2014)

    Article  ADS  Google Scholar 

  52. Z. Wang, R.T. Williams, J.Q. Grim, F. Gao, S. Kerisit, Kinetic Monte Carlo simulations of excitation density dependent scintillation in CsI and CsI (Tl). Phys. Status Solidi (b) 250(8), 1532–1540 (2013)

    Google Scholar 

  53. M. Kirm, V. Nagirnyi, E. Feldbach, M. De Grazia, B. Carre, H. Merdji, S. Guizard, G. Geoffroy, J. Gaudin, N. Fedorov, P. Martin, A. Vasil’ev, A. Belsky, Exciton-exciton interactions in CdWO4 irradiated by intense femtosecond vacuum ultraviolet pulses. Phys. Rev. B 79, 233103 (2009)

    Article  ADS  Google Scholar 

  54. N. Fedorov, A. Belsky, E. Constant, D. Descamps, P. Martin, A.N. Vasil’ev, Quenching of excitonic luminescence of alkaline earth fluorides excited by VUV harmonics of femtosecond laser. J. Lumin. 129, 1813–1816 (2009)

    Article  Google Scholar 

  55. J.Q. Grim, K.B. Ucer, A. Burger, P. Bhattacharya, E. Tupitsyn, E. Rowe et al., Nonlinear quenching of densely excited states in wide-gap solids. Phys. Rev. B 87(12), 125117 (2013)

    Article  ADS  Google Scholar 

  56. S. Gridin, A. Belsky, C. Dujardin, A. Gektin, N. Shiran, A. Vasil’ev, Kinetic model of energy relaxation in CsI: A (A = Tl and In) scintillators. J. Phys. Chem. C 119, 20578–20590 (2015)

    Article  Google Scholar 

  57. S. Gridin, A.N. Vasil’ev, A. Belsky, N. Shiran, A. Gektin, Excitonic and activator recombination channels in binary halide scintillation crystals. Phys. Status Solidi B 251, 942–949 (2014)

    Article  ADS  Google Scholar 

  58. L.D. Landau, E.M. Lifshitz, The Classical Theory of Fields (Volume 2 of A Course of Theoretical Physics) (Pergamon Press, UK, 1971)

    Google Scholar 

  59. N.P. Kalashnikov, V.S. Remizovich, M.I. Ryazanov, Collisions of Fast Charged Particles in Solids (Gordon and Breach, New York, 1985)

    Google Scholar 

  60. A.N. Vasil’ev, Y. Fang, V.V. Mikhailin, Impact production of secondary electronic excitations in insulators: multiple-parabolic-branch band model. Phys. Rev. B 60, 5340–5347 (1999)

    Google Scholar 

  61. D.E. Cullen, J.H. Hubbell, L. Kissel, EPDL97, the evaluated photon data library, ’97 version, Lawrence Livermore National Laboratory. UCRL-50400 6(5) (1997)

    Google Scholar 

  62. M. Inokuti, Inelastic collisions of fast charged particles with atoms and molecules—the bethe theory revisited. Rev. Mod. Phys. 43, 297 (1971)

    Article  ADS  Google Scholar 

  63. R. Mayol, F. Salvat, Cross sections for K-shell ionisation by electron impact. J. Phys. B 23, 2117 (1990)

    Article  ADS  Google Scholar 

  64. J.C. Ashley, Simple model for electron inelastic mean free paths: application to condensed organic materials. J. Electron Spectrosc. Relat. Phenom. 28, 177 (1982)

    Article  Google Scholar 

  65. J.C. Ashley, Interaction of low-energy electrons with condensed matter: stopping powers and inelastic mean free paths from optical data. J. Electron Spectrosc. Relat. Phenom. 46, 199 (1988)

    Article  Google Scholar 

  66. D.R. Penn, Electron mean-free-path calculations using a model dielectric function. Phys. Rev. B 35, 482 (1987)

    Article  ADS  Google Scholar 

  67. L.D. Landau, On the energy loss of fast particles by ionization. J. Exp. Phys. (USSR) 8, 201–205 (1944), in Collected Papers of L.D. Landau, ed. by D. Ter Haar (Gordon and Breach Science Publishers, NY/London/Paris, 1965)

    Google Scholar 

  68. L.V. Keldysh, Concerning the theory of impact ionization in semiconductors. Sov. Phys. JETP 21, 1135 (1965)

    MathSciNet  ADS  Google Scholar 

  69. A.N. Vasil’ev, V.V. Mikhailin, The role of relaxation through phonon emission in cascade process of multiplication of electronic excitations generated by X-ray quantum. Bull. Acad. Sci. USSR. Phys. Ser. 50(3), 113–116 (1986)

    Google Scholar 

  70. T. Luo, J. Garg, J. Shiomi, K. Esfarjani, G. Chen, Gallium arsenide thermal conductivity and optical phonon relaxation times from first-principles calculations. Europhys. Lett. 101, 16001 (2013)

    Article  ADS  Google Scholar 

  71. T. Feng, X. Ruan, Prediction of spectral phonon mean free path and thermal conductivity with applications to thermoelectrics and thermal management: a review. J. Nanomater. 2014, 206370 (2014)

    Google Scholar 

  72. J.P. Freedman, J.H. Leach, E.A. Preble, Z. Sitar, R.F. Davis, Universal phonon mean free path spectra in crystalline semiconductors at high temperature. Sci. Rep. 3, 2963 (2013)

    Article  ADS  Google Scholar 

  73. P. Lecoq, M. Korzhik, A. Vasil’ev, Can transient phenomena help improving time resolution in scintillators. IEEE Trans. Nucl. Sci. 61, 229 (2014)

    Article  ADS  Google Scholar 

  74. M. Moszyński, A. Nassalski, A. Syntfeld-Każuch, Ł. Świderski, T. Szczęśniak, Energy resolution of scintillation detectors—new observations. IEEE Trans. Nucl. Sci. 55, 1062 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges financial support of the RF Ministry of Education and Science under the Agreement RFMEFI61614X0006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey N. Vasil’ev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vasil’ev, A.N. (2017). Microtheory of Scintillation in Crystalline Materials. In: Korzhik, M., Gektin, A. (eds) Engineering of Scintillation Materials and Radiation Technologies. ISMART 2016. Springer Proceedings in Physics, vol 200. Springer, Cham. https://doi.org/10.1007/978-3-319-68465-9_1

Download citation

Publish with us

Policies and ethics