Sampling to Assess Control of the Environment

  • International Commission on Microbiological Specifications for Foods (ICMSF)


This chapter addresses the importance of microbiological testing to assess the effectiveness of control measures implemented to prevent product contamination from the environment. Preventing contamination of ready-to-eat foods is emphasized. While the discussion is limited to the verification of measures to control pathogens, the concepts can be applied to microbial spoilage. Routine environmental sampling is more frequently applied in food processing plants and less frequently at other steps along the food supply chain. Therefore, this chapter focuses on the verification of processing environment controls in facilities manufacturing foods since recontamination of food from equipment or other environmental sources is a significant contributing factor for foodborne disease (Reij et al. 2004). The role of environmental contamination in other parts of the food supply chain such as in primary production, during distribution, at retail and foodservice venues, and in consumer settings also exists. Microbiological sampling in these settings may be more problematic; however, potential applications are briefly discussed.


  1. ABC (Almond Board of California). (undated). Pathogen environmental monitoring program. Accessed 23 Mar 2017.
  2. Abee, T., Kovacs, A. T., Kuipers, O. P., & van der Veen, S. (2011). Biofilm formation and dispersal of Gram-positive bacteria. Current Opinion in Biotechnology, 22, 172–179.PubMedCrossRefGoogle Scholar
  3. AECL (Australian Egg Corporation Limited). (2010). Code of practice for shell egg, production, grading, packing and distribution. Accessed 17 Nov 2015.
  4. Anonymous. (1984). Botulism risk from post-processing contamination of commercially canned foods in metal containers. Journal of Food Protection, 46, 801–816.Google Scholar
  5. Anonymous. (1999). Update, multi state outbreak of listeriosis – United States, 1998-1999. Morbidity and Mortality Weekly Report, 47, 1117–1118.Google Scholar
  6. Anonymous. (2006). Commodity specific food safety guidelines for the lettuce and leafy greens supply chain. Accessed 17 Nov 2015.
  7. Anonymous. (2008). Lessons learned: Public health agency of Canada’s response to the 2008 listeriosis outbreak. Accessed 17 Nov 2015.
  8. Anonymous. (2010a). Mushroom good agricultural practices program – industry-wide food safety standards for fresh mushroom growing, harvesting, and shipping. Penn State University and the American Mushroom Institute Accessed 17 Nov 2015.
  9. Anonymous. (2010b). Industry guide to good hygiene practice – milk and dairy products. Accessed 17 Nov 2015.
  10. Ash, I., McKendrick, G. D. W., Robertson, M. H., & Hughes, H. L. (1964). Outbreak of typhoid fever connected with corned beef. British Medical Journal, 1(5396-June 6), 1474–1478.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Aureli, P., Fenicia, L., Gianfranceschi, M., & Biondi, F. (1987). Staphylococcal food poisoning caused by contaminated lasagna. Archiv für Lebensmittelhygiene, 38, 159–165.Google Scholar
  12. AVA (Automatic Vendor Association). (2008). Vending and dispensing: Food industry guide to good hygiene practice. Norwich: The Stationary Office.Google Scholar
  13. Baker, C. G. J. (2013). Hygienic design of food processing equipment. In C. G. J. Baker (Ed.), Handbook of food factory design. New York: Springer Science.CrossRefGoogle Scholar
  14. Baldacchino, F., Muenworn, V., Desquesnes, M., Desoli, F., Charoenviriyaphap, T., & Duvallet, G. (2013). Transmission of pathogens by Stomoxys flies (Diptera, Muscidae): A review. Parasite, 20, 26–39.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Ball, M. E. E., Magowan, E., Taylor, M., Madden, R. H., & Bagdonaite, G. (2011). A review of current knowledge on Salmonella control on-farm and within the processing plant relevant to the Northern Ireland pig industry. Belfast: Agri-Food and BioSciences Institute.Google Scholar
  16. Ballesteros, L., Moreno, Y., Cuesta, G., Rodrigo, A., Tomás, D., Hernández, M., Ferrús, M. A., & Henández, J. G. (2011). Persistence of Listeria monocytogenes strains in frozen vegetables processing plant determined by serotyping and REP-PCR. International Journal of Food Science and Technology, 46, 1109–1112.CrossRefGoogle Scholar
  17. Banatvala, N, .Magnano, A.R., Carter, M.L., Barrett, T.J., Bibb, W.F., Vasile, L.L., Mshar, P, Lambert-Fair, M.A., Green, J.H., Bean, N.H. & Tauxe, R.V. (1996) Meat grinders and molecular epidemiology: Two supermarket outbreaks of Escherichia coli O157:H7 infection. The Journal of Infectious Diseases 173, 480–483.PubMedCrossRefGoogle Scholar
  18. Barreiro, C., Albano, H., Silva, J., & Teixeira, P. (2013). Role of flies as vectors of foodborne pathogens in rural areas. ISRN Microbiology, Article ID 718780, 7 pages, doi:
  19. Basavanna, U., Gonzalez-Escalona, N., Timme, R., Datta, S., Schoen, B., & Brown, E. W. (2013). Draft genome sequence of a Clostridium botulinum isolate from water used for cooling at a plant producing low-acid canned foods. Genome, 1, e00200–e00212.Google Scholar
  20. Behravesh, B. C., Ferraro, A., Deasy III, M., Dato, V., Moll, M., Sandt, C., Rea, N. K., Rickert, R., Marriott, C., Warren, K., Urdaneta, V., Salehi, E., Villamil, E., Ayers, T., Hoekstra, R. M., Austin, J. L., Ostroff, S., Williams, I. T., & Salmonella Schwarzengrund Outbreak Investigation Team. (2010). Human Salmonella infections linked to contaminated dry dog and cat food, 2006 – 2008. Pediatrics, 145, 477–483.CrossRefGoogle Scholar
  21. Bellou, M., Kokkinos, P., & Vantarakis, A. (2012). Shellfish-borne viral outbreaks: A systematic review. Food and Environmental Virology, 5, 13–23.PubMedCrossRefGoogle Scholar
  22. Beneke, B., Klees, S., Stührenberg, B., Fetsch, A., Kraushaar, B., & Tenhagen, B.-A. (2011). Prevalence of methicillin resistant Staphylococcus aureus in a fresh meat pork production chain. Journal of Food Protection, 74, 126–129.PubMedCrossRefGoogle Scholar
  23. Bennett, S. D., Walsh, K. A., & Gould, H. (2013). Foodborne disease outbreaks caused by Bacillus cereus, Clostridium perfringens and Staphylococcus aureus – United States, 1998-2008. Clinical Infectious Diseases, 57, 425–433.PubMedCrossRefGoogle Scholar
  24. Beuchat, L.R., Komitoulou, E., Betts, R., Beckers, H., Bourdichon, F., Joosten, H. et al (2011) Persistence and survival of pathogens in dry foods and dry food processing environments. ILSI Europe Report Series, 52 pp. ILSI Europe, Brussels.Google Scholar
  25. Beuchat, L. R., Komitopoulou, E., Beckers, H., Betts, R. P., Bourdichon, F., Fanning, S., Joosten, H. M., & Ter Kuile, B. H. (2013). Low-water activity foods: Increased concern as vehicles of foodborne pathogens. Journal of Food Protection, 76, 150–172.PubMedCrossRefGoogle Scholar
  26. Black, R. E., Jackson, R. J., Tsai, T., Medvesky, M., Shayegani, M., Feeley, J. C., MacLeod, K. I. E., & Wakelee, A. M. (1978). Epidemic Yersinia enterocolitica infection due to contaminated chocolate milk. New England Journal of Medicine, 298, 76–79.PubMedCrossRefGoogle Scholar
  27. Blatter, S., Giezendanner, N., Stephan, R., & Zweifel, C. (2010). Phenotypic and molecular typing of Listeria monocytogenes isolated from processing environment and products of a sandwich producing plant. Food Control, 21, 1519–1523.CrossRefGoogle Scholar
  28. Blazar, J. M., Lienau, E. K., & Allard, M. W. (2011). Insects as vectors of foodborne pathogenic bacteria. Terrestrial Arthropod Reviews, 4, 5–16.CrossRefGoogle Scholar
  29. BRC (British Retail Consortium). (2009). Food industry guide to good hygiene practice: Retail. London: The Stationary Office.Google Scholar
  30. Bremer, P., Seale, B., Flint, S., & Palmer, J. (2009). Biofilms in dairy processing. In P. M. Fratamico, B. A. Annous, & N. W. Gunther (Eds.), Biofilms in the Food and Beverage Industries, Woodhead Publishing in Food Science, Technology and Nutrition. Cambridge: Woodhead Publishing.Google Scholar
  31. Breuer, T. (1999). CDC investigations: The May 1998 outbreak of Salmonella agona linked to cereal. Cereal Foods World, 44, 185–186.Google Scholar
  32. Bridier, A., Briandet, R., Thomas, V., & Dubois-Brissonnet, F. (2011). Resistance of bacterial biofilms to disinfectants: A review. Biofouling: The Journal of Bioadhesion and Biofilm, 27, 1017–1032.CrossRefGoogle Scholar
  33. Bridier, A., Sanchez-Viuete, P., Guilbaud, M., Piard, J. C., Naitali, M., & Briandet, R. (2014). Biofilm-associated persistence of food-borne pathogens. Food Microbiology, 45B, 167–178.Google Scholar
  34. Buchanan, R. L., & Oni, R. (2012). Use of microbiological indicators for assessing hygiene controls for the manufacture of powdered infant formula. Journal of Food Protection, 75, 989–997.PubMedCrossRefGoogle Scholar
  35. Burgess, S. A., Flint, S. H., & Lindsay, D. (2014). Characterization of thermophilic bacilli from a milk powder processing plant. Journal of Applied Microbiology, 116, 350–359.PubMedCrossRefGoogle Scholar
  36. Buvens, G., Possé, B., De Schrijver, K., De Zutter, L., Lauwers, S., & Pierard, D. (2011). Virulence profiling and quantification of verocytotoxin-producing Escherichia coli O145:H28 and O26:H11 isolated during an ice cream-related hemolytic uremic syndrome outbreak. Foodborne Pathogens and Disease, 8, 421–426.PubMedCrossRefGoogle Scholar
  37. CAC (Codex Alimentarius Commission). (2003). Recommended international code of practice general principles of food hygiene. CAC/RCP 1–1969, Rev 4.FAO and WHO, Rome.Google Scholar
  38. Cagri-Mehmetoglu, A., Yaldirak, G., Bodur, T., Simsek, M., Bozkir, H., & Eren, N. M. (2011). Incidence of Listeria monocytogenes and Escherichia coli O157:H7 in two Kasar cheese processing environments. Food Control, 22, 762–766.CrossRefGoogle Scholar
  39. Cappitelli, F., Polo, A., & Villa, F. (2014). Biofilm formation in food processing environments is still poorly understood and controlled. Food Engineering Reviews, 6, 29–42.CrossRefGoogle Scholar
  40. Carlin, F. (2011). Origin of bacterial spores contaminating food. Food Microbiology, 28, 177–182.PubMedCrossRefGoogle Scholar
  41. Carpentier, B., & Cerf, O. (2011). Review – Persistence of Listeria monocytogenes in food industry equipment and premises. International Journal of Food Microbiology, 145, 1–8.PubMedCrossRefGoogle Scholar
  42. Carrasco, E., Morales-Rueda, A., & Garcia-Gimeno, R. M. (2012). Cross-contamination and recontamination by Salmonella in foods: A review. Food Research International, 45, 545–556.CrossRefGoogle Scholar
  43. Carrascosa, C., Saavedra, P., Millán, R., Jaber, J. R., Perez, E., Grau, R., Raposo, A., Mauricio, C., & Sanjuan, E. (2012). Monitoring of cleanliness and disinfection in dairies: Comparison of traditional microbiological ATP-bioluminescence methods. Food Control, 28, 368–373.CrossRefGoogle Scholar
  44. Cavallaro, E., Date, K., Medus, C., Meyer, S., Miller, B., Kim, C., Nowicki, S., Cosgrove, S., Sweat, D., Phan, Q., Flint, J., DALY, E. R., Adams, J., Hyytia-Trees, E., Gerner-Smidt, P., Hoekstra, R. M., Schwensohn, C., Langer, A., Sodha, S. V., Rogers, M. C., Angulo, F. J., Tauxe, R. V., Williams, I. T., & Behravesh, C. B. (2011). Salmonella Typhimurium infections associated with peanut products. The New England Journal of Medicine, 365, 601–610.PubMedCrossRefGoogle Scholar
  45. CDC (Centers for Disease Control). (2013). Surveillance for foodborne disease outbreaks – United States, 1998–2008. Morbidity Mortality Weekly Report. SS62 (2): AppendixCDC (2014) Surveillance for foodborne disease outbreaks, United States, annual report. Accessed 17 Nov 2015.
  46. Čížek, A., Dolejská, M., Novotná, R., Haas, D., & Vyskocil, M. (2008). Survey of Shiga toxigenic Escherichia coli O157 and drug-resistant coliform bacteria from in-line milk filters on dairy farms in the Czech Republic. Journal of Applied Microbiology, 104, 852–860.PubMedCrossRefGoogle Scholar
  47. Cordier, J. L. (2008). Production of powdered infant formulae and microbiological control measures. In J. M. Farber & J. S. Forsythe (Eds.), Enterobacter sakazakii. Washington DC: ASM Press.Google Scholar
  48. Craven, P. C., Mackel, D. C., Baine, W. B., Barker, W. H., Gangarosa, E. J., Goldfield, M., Rosenfeld, H., Altman, R., Lachapelle, G., Davies, J., & Swanson, R. (1975). International outbreak of Salmonella eastbourne infection traced to contaminated chocolate. Lancet, 1, 788–793.PubMedCrossRefGoogle Scholar
  49. Craven, H. M., McAulley, C. M., Duffy, L. L., & Fegan, N. (2010). Distribution, prevalence and persistence of Cronobacter (Enterobacter sakazakii) in the non-processing and processing environments of five milk powder factories. Journal of Applied Microbiology, 109, 1044–1052.PubMedCrossRefGoogle Scholar
  50. Cruz, C. D., & Fletcher, G. C. (2011). Prevalence and biofilm-forming ability of Listeria monocytogenes in New Zealand mussel (Perna Canaliculus) processing plants. Food Microbiology, 28, 1387–1393.PubMedCrossRefGoogle Scholar
  51. Currie, A., Farber, J. M., Celine, N., Sharma, D., Whitfield, Y., Gaulin, C., Galanis, E., Bekal, S., Flint, J., Tschetter, L., Pagotto, F., Lee, G., Jamieson, F., Badiani, T., Diane MacDonald, D., & the National Outbreak Investigation Team. (2015). Multi-province listeriosis outbreak linked to contaminated deli meat consumed primarily in institutional settings, Canada, 2008. Foodborne Pathogens and Disease, 12, 645–652.PubMedCrossRefGoogle Scholar
  52. Dack, G. M. (1964). Characteristics of botulism outbreaks in the United States. In K. H. Lewis & K. Cassel (Eds.), Botulism, proceedings of a symposium. Robert A Taft Sanitary Engineering Center: Cincinnati.Google Scholar
  53. Davies, R. H., & Wales, A. D. (2013). Investigations into Salmonella contamination in poultry feedmills in the United Kingdom. Journal of Applied Microbiology, 109, 1430–1440.CrossRefGoogle Scholar
  54. den Aantrekker, E. D., Boom, R. M., Zwietering, M. H., & van Schothorst, M. (2003a). Quantifying recontamination through factory environments – a review. International Journal of Food Microbiology, 80, 117–130.CrossRefGoogle Scholar
  55. den Aantrekker, E. D., Beumer, R. R., van Gerwen, J. C., Zwietering, M. H., van Schothorst, M., & Boom, R. M. (2003b). Estimating the probability of recontamination via the air using Monte Carlo simulations. International Journal of Food Microbiology, 87, 1–15.CrossRefGoogle Scholar
  56. Denny, C. B. (1982). Industry’s response to problem solving in botulism prevention. Food Technology, 36, 116–118.Google Scholar
  57. EC (European Commission). (2004). Regulation (EC) no. 852/2004 of the European parliament and of the council of 29 April 2004 on the hygiene of foodstuffs. Official Journal of the European Union, 139, 1–54.Google Scholar
  58. ECFF (European Chilled Food Federation). (2006). Recommendations for the production of pre-packaged chilled food. Accessed 17 Nov 2015.
  59. EFBW (European Federation of Bottled Waters). (2012). Guide to good hygiene practices for packaged water in Europe. Accessed 17 Nov 2015.
  60. EFSA (European Food Safety Authority). (2014). The European Union summary report on trends and sources of zoonoses: zoonotic agents and food-borne outbreaks in 2012. EFSA Journal, 12, 3547. (312 pp).CrossRefGoogle Scholar
  61. EHEDG (European Hygienic Equipment Design Group). (2005). Guidelines on air handling in the food industry. Document 30. EHEDG Secretariat, Frankfurt (D).Google Scholar
  62. Ellis, A., Preston, M., Borczyk, A., Miller, B., Stone, P., Hatton, B., Chagla, A., & Hockin, J. (1998). A community outbreak of Salmonella berta associated with a soft cheese product. Epidemiology and Infection, 120, 29–35.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Evancho, G. M., Tortorelli, S., & Scott, V. N. (2010). Microbiological spoilage of canned foods. In W. H. Sperber & M. P. Doyle (Eds.), Compendium of the microbiological spoilage of foods and beverages. New York: Springer.Google Scholar
  64. Evans, H. R., Tromans, J. P., Dexter, E. L. S., Ribeiro, C. D., & Gardner, D. (1996). Consecutive Salmonella outbreaks traced to the same bakery. Epidemiology and Infection, 116, 161–167.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Faille, C., Bénézech, T., Midelet-Bourdin, G., Leaquette, Y., Clarisse, M., Ronse, G., Ronse, A., & Slomianny, C. (2014). Sporulation of Bacillus spp. within biofilms: A potential source of contamination in food processing environments. Food Microbiology, 40, 64–74.PubMedCrossRefGoogle Scholar
  66. FAO/Embrapa (Food and Agriculture Organization / Brazilian Agricultural Research Corporation). (2002). Guidelines for good agricultural practices. Accessed 17 Nov 2015.
  67. FAO/FIC (Food and Agriculture Organization / Fondation Internationale Carrefour). (2004) Good practices for the meat industry. Accessed 17 Nov 2015.
  68. FAO/IDF (Food and Agriculture Organization / International Dairy Federation). (2011). Guide to good dairy farming practice. Animal production and health guidelines. No. 8. Rome. Accessed 17 Nov 2015.
  69. Farber, J. M., & Forsythe, J. S. (2014). Enterobacter sakazakii. Washington DC: ASM Press.Google Scholar
  70. FDA (Food and Drug Administration). (2009). Draft guidance for industry: guide to minimize microbial food safety hazards of leafy greens. Accessed 31 Dec 2015.
  71. FDA (Food Drug Administration). (2013). FDA food code 2013. College Park: US Department of Health and Human Services.Google Scholar
  72. FDA (Food Drug Administration). (2015a). Current good manufacturing practice (21 CFR 117 Subpart B), Code of Federal Regulations. Washington DC: U.S. Government Printing Office.Google Scholar
  73. FDA (Food Drug Administration). (2015b). Inspectional observations – Blue Bell Creameries FEI Number 1000118167. Accessed 15 Nov 2015.
  74. FDA (Food Drug Administration). (2015c). Standards for the growing, harvesting, packing, and holding of produce for human consumption (21 CFR 112) Code of Federal Regulations. Washington DC: U.S. Government Printing Office.Google Scholar
  75. Ferreira, V., Wiedmann, M., Teixeira, P., & Stasiewicz, M. J. (2014). Listeria monocytogenes persistence in food associated environments: Epidemiology, strain characteristics, and implications for public health. Journal of Food Protection, 77, 150–170.PubMedCrossRefGoogle Scholar
  76. Forsythe, J. R., Bennett, N. M., Hogben, S., Hutchinson, E. M. S., Rouch, G., Tan, A., & Taplin, J. (2003). The year of the Salmonella seekers—1977. Austral New Zealand Journal of Public Health, 27, 385–389.CrossRefGoogle Scholar
  77. Fortin, N. D. (2011). Regulations on the hygienic design of food processing factories in the United States. In J. Holah & H. L. M. Lelieveld (Eds.), Hygienic design of food factories, Woodhead Publishing Series in Food Science, Technology and Nutrition (Vol. 216, pp. 55–74). Cambridge UK: Woodhead Publishing.Google Scholar
  78. Fox, E., Hunt, K., O’Brien, M., & Jordan, K. (2011). Listeria monocytogenes in Irish farmhouse cheese processing environments. International Journal of Food Microbiology, 145, S39–S45.PubMedCrossRefGoogle Scholar
  79. Friesema, I., de Jong, A., Hofhuis, A., Heck, M., van den Kerkhof, H., de Jonge, R., Hameryck, D., Nagel, K., van Vilsteren, G., van Beek, P., Notermans, D., & van Pelt, W. (2014). Large outbreak of Salmonella Thompson related to smoked salmon in the Netherlands, August to December 2012 EuroSurveillence 19(39, 02Oct), :pii=20918.Google Scholar
  80. FSA (Food Standard Agency). (2007). Food industry guide to good hygiene practices: Wholesale distributors. London: The Stationary Office.Google Scholar
  81. Gaul, L. K., Farag, N. H., Shim, T., Kingsley, M. A., Silk, B. J., & Hyytia-Trees, E. (2013). Hospital-acquired listeriosis outbreak caused by contaminated diced celery – Texas, 2010. Clinical Infectious Diseases, 56, 20–26.PubMedCrossRefGoogle Scholar
  82. Gaulin, C., Ramsay, D., & Bekal, S. (2012). Widespread listeriosis outbreak attributable to pasteurized cheese, which led to extensive cross-contamination affecting cheese retailers, Quebec, Canada, 2008. Journal of Food Protection, 75, 71–78.PubMedCrossRefGoogle Scholar
  83. Giaouris, E., Heir, E., Hébraud, M., Chorianopoulos, N., Langsrud, S., Moretro, T., Habimana, O., Desvaux, M., Renier, S., & Nychas, G.-J. (2014). Attachment and biofilm formation by foodborne bacteria in meat processing environments: Causes, implications, role of bacterial interactions and control by alternative novel methods. Meat Science, 97, 298–230.PubMedCrossRefGoogle Scholar
  84. Gill, O. N., Sockett, P. N., Bartlett, C. L. T., & Vaile, M. S. B. (1983). Outbreak of Salmonella asteu infection caused by contaminated chocolate bars. Lancet, 1, 574–577.PubMedCrossRefGoogle Scholar
  85. GMA (Grocery Manufacturers Association). (2009). Control of Salmonella in low-moisture foods. Accessed 17 Nov 2015.
  86. Greig, J., Rajić, A., Young, I., Mascarenhas, M., Waddell, L., & LeJeune, J. (2015). A scoping review of the role of wildlife in the transmission of bacterial pathogens and antimicrobial resistance to the food chain. Zoonoses and Public Health, 62, 269–284.PubMedCrossRefGoogle Scholar
  87. Habimana, O., Heir, E., Langsrud, S., Asli, A. W., & Moretro, T. (2010). Enhanced surface colonization by Escherichia coli O157:H7 in biofilms formed by an Acinetobacter calcoaceticus isolate from meat processing environments. Applied and Environmental Microbiology, 76, 4557–4559.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Habimana, O., Nesse, L. L., Møretrø, T., Berg, K., Heir, E., Vestby, L. K., & Langsrud, S. (2014). The persistence of Salmonella following desiccation under feed processing environmental conditions: A subject of relevance. Letters in Applied Microbiology, 59, 464–470.PubMedCrossRefGoogle Scholar
  89. Hait, J., Tallent, S., Melka, D., Keys, C., & Bennett, R. (2012). Staphylococcus aureus outbreak investigation of an Illinois bakery. Journal of Food Safety, 32, 435–444.CrossRefGoogle Scholar
  90. Hait, J., Tallent, S., Melka, D., Keys, C., & Bennett, R. (2014). Prevalence of enterotoxins and toxin gene profiles of Staphylococcus aureus isolates recovered from a bakery involved in a second staphylococcal food poisoning occurrence. Journal of Applied Microbiology, 117, 866–875.PubMedCrossRefGoogle Scholar
  91. Hennekinne, J. A., De Buyser, M. L., & Dragacci, S. (2012). Staphylococcus aureus and its food poisoning toxins: Characterization and outbreaks investigation. FEMS Microbiology Reviews, 36, 815–836.PubMedCrossRefGoogle Scholar
  92. Hennessy, T. W., Hedberg, C. W., Slutsker, L., White, K. E., Besser-Wiek, J. M., Moen, M. E., Fledman, J., Coleman, W. W., Edmonson, L. M., MacDonald, K. L., & Osterholm, M. T. (1996). A national outbreak of Salmonella enteritidis infections from ice cream. The New England Journal of Medicine, 334, 1281–1286.PubMedCrossRefGoogle Scholar
  93. Holah, J. T., & Lelieveld, M. L. M. (2011). Hygienic design of food factories. Cambridge: Woodhead Publishing Ltd.CrossRefGoogle Scholar
  94. Holch, A., Webb, K., Lukjancenko, O., Ussery, D., Rosenthal, B. M., & Gram, L. (2013). Genome sequencing identifies two nearly unchanged strains of persistent Listeria monocytogenes isolated at two different fish processing plants sampled 6 years apart. Applied and Environmental Microbiology, 79, 2944–2951.PubMedPubMedCentralCrossRefGoogle Scholar
  95. Huck, J. R., Woodcock, N. H., Ralyea, R. D., & Boor, K. J. (2007). Molecular subtyping and characterization of psychrotolerant endospore –forming bacteria in two New York State fluid milk processing systems. Journal of Food Protection, 70, 2354–2364.PubMedCrossRefGoogle Scholar
  96. ICMSF (International Commission on Microbiological Specifications for Foods). (1988). Microorganisms in foods 4: Application of the hazard analysis critical control point (HACCP) system to ensure microbiological safety and quality. Oxford: Blackwell Scientific Publications Ltd.Google Scholar
  97. ICMSF (International Commission on Microbiological Specifications for Foods). (2005). Microorganisms in foods 6: Microbial ecology of food commodities. New York: Kluwer Academic/Plenum Publishers.Google Scholar
  98. ICMSF (International Commission on Microbiological Specifications for Foods). (2011). Microorganisms in foods 8: Use of data for assessing process control and product acceptance. New York: Springer.CrossRefGoogle Scholar
  99. IICA. (2006). Good agricultural practices pumpkin production. Accessed 17 Nov 2015.
  100. Ismaïl, R., Aviat, F., Michel, V., Le Bayon, I., Gay-Perret, P., Kutnik, M., & Federighi, M. (2013). Methods for recovering microorganisms from solid surfaces used in the food industry: A review of the literature. International Journal of Environmental Research and Public Health, 10, 6169–6183.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Jacobs, C., Braun, P., & Hammer, P. (2011). Reservoir and routes of transmission of Enterobacter sakazakii (Cronobacter spp.) in a milk powder producing plant. Journal of Dairy Science, 94, 3801–3810.PubMedCrossRefGoogle Scholar
  102. Jahid, I. K., & Ha, S. D. (2012). A review of microbial biofilms of produce: Future challenge to food safety. Food Science and Biotechnology, 21, 299–316.CrossRefGoogle Scholar
  103. Jakočiūnė, D., Bisgaard, M., Pedersen, K., & Olsen, J. E. (2014). Demonstration of a persistent contamination of cooked egg product production facility with Salmonella enterica serovar Tennessee and characterization of the persistent strain. Journal of Applied Microbiology, 117, 547–553.PubMedCrossRefGoogle Scholar
  104. Jami, M., Ghanbari, M., Zunabovic, M., Domig, K. J., & Kneifel, W. (2014). Listeria monocytogenes in aquatic food products – A review. Comprehensive Reviews in Food Science and Food Safety, 13, 798–813.CrossRefGoogle Scholar
  105. Jay-Russell, M. T. (2013). What is the risk from wild animals in food-borne pathogen contamination of plants? CAB Reviews, 8, 1–16.CrossRefGoogle Scholar
  106. Johnston, R. W., Feldman, J., & Sullivan, R. (1963). Botulism from canned tuna fish. Public Health Reports, 78, 561–564.PubMedPubMedCentralCrossRefGoogle Scholar
  107. Jones, J. T. (2011). A review of practical Salmonella control measures in animal feed. Journal of Applied Poultry Research, 20, 102–113.CrossRefGoogle Scholar
  108. Joseph, C. A., Mitchell, E. M., Cowden, J. M., Bruce, J. C., Threlfall, E. J., Hine, C. E., et al. (1991). A national outbreak of salmonellosis from yeast flavoured products. Communicable Disease Representative, 1, R16–R19.Google Scholar
  109. Koch, J., Dworak, R., Prager, R., Becker, B., Brockmann, S., Wicke, A., Wichmann-Schauer, H., Hof, H., Werber, D., & Stark, K. (2010). Large listeriosis outbreak linked to cheese made from pasteurized milk, Germany, 2006-2007. Foodborne Pathogens and Disease, 7, 1581–1584.PubMedCrossRefGoogle Scholar
  110. Kornacki, J. L. (Ed.). (2010). Principles of microbiological troubleshooting in the industrial food processing environment. New York: Springer Science.Google Scholar
  111. Kozak, G. K., Crichton, J., & Farber, J. (2014). Control of pathogens at retail. In J. Farber, J. Crichton, & O. P. Snyder (Eds.), Retail food safety. New York: Springer.Google Scholar
  112. Kretli-Winkelströter, L., Barbosa dos Reis Teixeira, F., Pereira Silva, E., Alves, V. F., & De Martinis, E. C. P. (2014). Unraveling microbial biofilms of importance for food microbiology. Microbial Ecology, 68, 35–46.CrossRefGoogle Scholar
  113. Larsen, M. H., Dalmasso, M., Ingmer, H., Langsrud, S., Malakauskas, M., Mader, A., Moretro, T., Mozina, S. S., Rychli, K., Wagner, M., Wallace, R. J., Zentek, J., & Jordan, K. (2014). Persistence of foodborne pathogens and their control in primary and secondary food production chains. Food Control, 44, 92–109.CrossRefGoogle Scholar
  114. Lecos, C. (1986). Of microbes and milk: Probing America’s worst Salmonella outbreak. Dairy, Food, And Environmental Sanitation, 6, 136–140.Google Scholar
  115. Lehto, M., Kuisma, R., Mäki, M., & Kymäläinen, H. R. (2013). Hygiene in fresh-cut vegetable production plants. Stewart Postharvest Review, 9, 1–5.Google Scholar
  116. Lelieveld, H., Holah, J., & Napper, D. (2014). Hygiene in food processing: Principles and practice. London: Elsevier.Google Scholar
  117. Lienau, E. K., Strain, E., Wang, C., Zheng, J., Ottesen, A. R., Keys, C. E., Hammack, T. S., Musser, S. M., Brown, E. W., Allard, M. W., Cao, G., Meng, J., & Stones, R. (2011). Identification of a salmonellosis outbreak by means of molecular sequencing. The New England Journal of Medicine, 364, 981–982.PubMedCrossRefGoogle Scholar
  118. Linnan, M. J., Mascola, L., Lou, X. D., Goulet, V., May, S., Salminen, C., Hird, D. W., Yonekura, M. L., Hayes, P., Weaver, R., Audurier, A., Plikaytis, B. D., FANNIN, S. L., Kleks, A., & Broome, C. V. (1988). Epidemic listeriosis associated with Mexican style cheese. The New England Journal of Medicine, 319, 823–828.PubMedCrossRefGoogle Scholar
  119. Liu, N. T., Lefcourt, A. M., Xiangwu, N., Shelton, D. R., Zhang, G., & Lo, Y. M. (2013). Native microflora in fresh-cut produce processing plants and their potentials for biofilm formation. Journal of Food Protection, 76, 827–832.PubMedCrossRefGoogle Scholar
  120. Llewellyn, L. J., Evans, M. R., & Palmer, S. R. (1998). Use of sequential case-control studies to investigate a community Salmonella outbreak in Wales. Journal of Epidemiology and Community Health, 52, 272–276.PubMedPubMedCentralCrossRefGoogle Scholar
  121. Lopman, B., Gastañaduy, P., Park, G. W., Hall, A. J., Parashar, U. D., & Vinje, J. (2012). Environmental transmission of norovirus gastroenteritis. Current Opinion in Virology, 2(1), 96–102.PubMedCrossRefGoogle Scholar
  122. Luna-Gierke, R. E., Griffin, P. M., Gould, L. H., Herman, K., Boop, C. A., Strockbine, N., & Mody, R. K. (2014). Outbreaks of non-O157 Shiga toxin-producing Escherichia coli infection: USA. Epidemiology and Infection, 142, 2270–2280.PubMedCrossRefGoogle Scholar
  123. Lundén, J. M., Autio, T. J., Sjöberg, A. M., & Korkeala, H. J. (2003). Persistent and nonpersistent Listeria monocytogenes contamination in meat and poultry processing plants. Journal of Food Protection, 66, 2062–2069.PubMedCrossRefGoogle Scholar
  124. Lutz, J. K., Crawford, J., Hoet, A. E., Wilkins, J. R. I. I. I., & Lee, J. (2013). Comparative performance of contact plates, electrostatic wipes and a novel sampling device for the detection of Staphylococcus aureus on environmental samples. Journal of Applied Microbiology, 115, 171–178.PubMedCrossRefGoogle Scholar
  125. Lyytikainen, O., Autio, T., Maijala, R., Ruutu, P., Honkanen-Buzalski, T., Miettinen, M., Hatakka, M., Mikkola, J., Anttila, V.-J., Johansson, T., Rantala, L., Aalto, T., Korkeala, H., & Siitonen, A. (2000). An outbreak of Listeria monocytogenes serotype 3a infection from butter in Finland. The Journal of Infectious Diseases, 181, 1838–1841.PubMedCrossRefGoogle Scholar
  126. Marchand, S., De Block, J., De Jonghe, V., Coorevits, A., Heyndrickx, M., & Herman, L. (2012). Biofilm formation in milk production and processing environments; influence on milk quality and safety. Comprehensive Reviews in Food Science and Food Safety, 11, 133–147.CrossRefGoogle Scholar
  127. Marouani-Gadri, N., Augier, G., & Carpentier, B. (2009). Characterization of bacterial strains isolated from a beef-processing plant following cleaning and disinfection – influence of isolated strains on biofilms formation by Sakaï and EDL 933 E. coli O157:H7. International Journal of Food Microbiology, 133, 62–67.PubMedCrossRefGoogle Scholar
  128. Marouani-Gadri, N., Firmesse, O., Chassaing, D., Sandris-Nielsen, D., Arneborg, N., & Cappentier, B. (2010). Potential of Escherichia coli O157:H7 to persist and form viable but non-culturable cells on a food-contact surface subjected to cycles of soiling and chemical treatment. International Journal of Food Microbiology, 144, 96–103.PubMedCrossRefGoogle Scholar
  129. Martín, B., Perich, A., Gómez, D., Yanguela, J., Rodriguez, A., Garriga, M., & Aymerich, T. (2014). Diversity and distribution of Listeria monocytogenes in meat processing plants. Food Microbiology, 44, 119–127.PubMedCrossRefGoogle Scholar
  130. McCollum, J.T., Cronquist, A.B., Silk, B.J., Jackson, K.A., O’Connor, K.A., Cosgrove, S., Gossack, J.P., Parachini, S.S., Jain, N.S., Ettestad, P., Ibraheem, M., Cantu, V., Joshi, M.,DuVernoy, T., Fogg, N.W.Jr., Gorny, J.R., Mogen, K.M., Spires, C., Teitell, P., Joseph, L.A., Tarr, C.L., Imanishi, M., Neil, K.P., Tauxe, R.V. & Mahon, B.E. (2013) Multistate outbreak of listeriosis associated with cantaloupe. The New England Journal of Medicine 369, 944–953.Google Scholar
  131. McIntyre, L., Wilcott, L., & Naus, M. (2015). Listeriosis outbreaks in British Columbia, Canada, caused by soft ripened cheese contaminated from environmental sources. BioMed Research International, 2015, Article ID 131623. doi:
  132. Moradi-Khatoonabadi, Z., Ezzatpanah, H., Maghsoudlou, Y., Khomeiri, M., & Aminafsar, M. (2014). Tracking Bacillus cereus in UF-feta cheese processing line. International Dairy Journal, 39, 47–52.CrossRefGoogle Scholar
  133. Morgan, D., Newman, C. P., Hutchinson, D. N., Walker, A. M., Rowe, B., & Majid, F. (1993). Verotoxin producing Escherichia coli O157 infections associated with the consumption of yoghurt. Epidemiology and Infection, 111, 181–187.PubMedPubMedCentralCrossRefGoogle Scholar
  134. Mullane, N., Healy, B., Meade, J., Whyte, P., Wall, P. G., & Fanning, S. (2008). Dissemination of Cronobacter spp (Enterobacter sakazakii) in a powdered milk protein manufacturing facility. Applied and Environmental Microbiology, 74, 5913–5917.PubMedPubMedCentralCrossRefGoogle Scholar
  135. Murphy, M., Buckley, J. F., Whyte, P., O’Mahony, M., Anderson, W., Wall, P. G., & Fanning, S. (2007). Surveillance of dairy production holdings supplying raw milk to the farmhouse cheese sector for Escherichia coli O157, O26 and O111. Zoonoses and Public Health, 54, 358–365.PubMedCrossRefGoogle Scholar
  136. Nabae, K., Takahashi, M., Wakui, T., Kamiya, H., Nakashima, K., Taniguchi, K., & Okabe, N. (2013). A Shiga toxin-producing Escherichia coli O157 outbreak associated with consumption of rice cakes in 2011 in Japan. Epidemiology and Infection, 141, 1897–1904.PubMedCrossRefGoogle Scholar
  137. Neil, K. P., Biggerstaff, G., MacDonald, K., Trees, E., Medus, C., Musser, K. A., Stroika, S. G., Zink, D., & Sotir, M. J. (2012). A novel vehicle for transmission of Escherichia coli O157:H7 to humans: multistate outbreak of E. coli O157:H7 infections associated with consumption of ready-to-bake commercial prepackaged cookie dough – United States, 2009. Clinical Infectious Diseases, 54, 511–518.PubMedCrossRefGoogle Scholar
  138. Nicolay, N., Thornton, L., Cotter, S., Garvey, P., Bannon, O., McKeown, P., Cormican, M., Fisher, I., Little, C., Boxall, N., De Pinna, E., Peters, T. M., Cowden, J., Salmon, R., Mason, B., Irvine, N., Rooney, P., & O’Flanagan, D. (2011). Salmonella enterica serovar Agona European outbreak associated with a food company. Epidemiology and Infection, 139, 1272–1280.PubMedCrossRefGoogle Scholar
  139. NSW Authority (North South Wales Authority). (2007). Guidelines for seafood retailers. Accessed 15 Nov 2015.
  140. Oyarzabal, O. A., & Kathariou, S. (2014). DNA methods in food safety: Molecular typing of foodborne and waterborne bacterial pathogens. New York: Wiley.CrossRefGoogle Scholar
  141. OzFoodNet Working Group. (2012). Monitoring the incidence and causes of diseases potentially transmitted by food in Australia: Annual report of the OzFoodNet Network 2010. Communicable Diseases Intelligence, 36, E213–E241.Google Scholar
  142. Pachepsky, Y., Shelton, D. R., McLain, J. E., Patel, J. E., & Mandrell, J. R. (2011). Irrigation water as a source of pathogenic microorganisms in produce: A review. Advances in Agronomy, 113, 74–115.Google Scholar
  143. Pellegrini, D. C. P., Paim, D. S., de Lima, G. J. M. M., Pissetti, C., Kich, J. D., & de Itapema Cardoso, M. R. (2015). Distribution of Salmonella clonal groups in four Brazilian feed mills. Food Control, 47, 672–678.CrossRefGoogle Scholar
  144. Pennington, T. H. (2014). E. coli O157 outbreaks in the United Kingdom: Past, present, and future. Infection and Drug Resistance, 7, 211–222.PubMedPubMedCentralCrossRefGoogle Scholar
  145. Podolak, R., Enache, E., Stone, W., Black, D. G., & Elliott, P. H. (2010). Sources and risk factors for contamination, survival, persistence, and heat resistance of Salmonella in low-moisture foods. Journal of Food Protection, 73, 1919–1936.PubMedCrossRefGoogle Scholar
  146. Reich, F., König, R., von Wiese, W., & Klein, G. (2010). Prevalence of Cronobacter spp. in a powdered infant formula processing environment. International Journal of Food Microbiology, 140, 214–217.PubMedCrossRefGoogle Scholar
  147. Reij, M. W., den Aantrekker, E. D., & ILSI Europe Risk Analysis in Microbiology Task Force. (2004). Recontamination as a source of pathogens in processed foods. International Journal of Food Microbiology, 91, 1–11.PubMedCrossRefGoogle Scholar
  148. Rimhanen-Finne, R., Niskanen, T., Hallanvuo, S., Makary, P., Haukka, K., Pajunen, S., Siitonen, A., Ristolainen, R., Poyry, H., Ollgren, J., & Kuusi, M. (2009). Yersinia pseudotuberculosis causing a large outbreak associated with carrots in Finland, 2006. Epidemiology and Infection, 137, 342–347.PubMedCrossRefGoogle Scholar
  149. Rivoal, K., Fablet, A., Courtillon, C., Bougeard, S., Chemaly, M., & Protais, J. (2013). Detection of Listeria spp. in liquid egg products and in the egg breaking plants environment and tracking of Listeria monocytogenes by PFGE. International Journal of Food Microbiology, 166, 109–116.PubMedCrossRefGoogle Scholar
  150. Rönnquist, M., Rättö, M., Tuominen, P., Salo, S., & Maunula, L. (2013). Swabs as a tool for monitoring the presence of norovirus on environmental surfaces in the food industry. Journal of Food Protection, 76, 1421–1428.CrossRefGoogle Scholar
  151. Rotariu, O., Thomas, D. J. I., Goodburn, K. E., Hutchison, M. L., & Strachan, J. C. (2014). Smoked salmon industry practices and their association with Listeria monocytogenes. Food Control, 35, 284–292.CrossRefGoogle Scholar
  152. Rowe, B., Hutchinson, D. N., Gilbert, R. J., Hales, B. H., Begg, N. T., Dawkins, H. C., Jacob, M., Rae, F. A., & Jepson, M. (1987). Salmonella ealing infections associated with consumption of infant dried milk. Lancet, 330(8564), 900–903.CrossRefGoogle Scholar
  153. Rückerl, I., Muhterem-Uyar, M., Muri-Klinger, S., Wagner, K.-H., Wagner, M., & Stessl, B. (2014). L. monocytogenes in a cheese processing facility: Learning from contamination scenarios over three years of sampling. International Journal of Food Microbiology, 189, 98–105.PubMedCrossRefGoogle Scholar
  154. Russo, E. T., Biggerstaff, G., Hoekstra, R. M., Meyer, S., Nehal, P., Miller, B., & Quick, R. (2013). A recurrent, multistate outbreak of Salmonella serotype Agona infections associated with dry, unsweetened cereal consumption, United States, 2008. Journal of Food Protection, 76, 227–230.PubMedCrossRefGoogle Scholar
  155. Sabat, A. J., Budimir, A., Nashev, D., Sa-Leao, R., van Dijl, J. M., Laurent, F., Grundmann, H., Friedrich, A. W., & Study Group of Epidemiological Markers. (2013). Overview of molecular typing methods for outbreak detection and epidemiological surveillance. EuroSurveillence, 18(4, 24 January), pii=20380.Google Scholar
  156. Sabina, Y., Rahman, A., Rey, R. C., & Montet, D. (2011). Yersinia enterocolitica: Mode of transmission, molecular insights of virulence, and pathogenesis of infection. Journal of Pathogens. Accessed 22 Apr 2015.
  157. Sachdeva, A., Defibaugh-Chavaz, S. L. H., Day, J. B., Zink, D., & Sharma, S. K. (2010). Detection and confirmation of Clostridium botulinum in water used for cooling at a plant producing low-acid canned foods. Applied and Environmental Microbiology, 76, 7653–7657.PubMedPubMedCentralCrossRefGoogle Scholar
  158. Salustiano, V. C., Andrade, N. J., Soares, N. F. F., Lima, J. C., Bernardes, P. C., Luiz, L. M. P., & Fernandes, P. E. (2009). Contamination of milk with Bacillus cereus by post-pasteurization surface exposure as evaluated by automated ribotyping. Food Control, 20, 439–442.CrossRefGoogle Scholar
  159. Salvat, G., Toquin, M. T., Michel, Y., & Colin, P. (1995). Control of Listeria monocytogenes in the delicatessen industries: the lessons of a listeriosis outbreak in France. International Journal of Food Microbiology, 25, 75–81.PubMedCrossRefGoogle Scholar
  160. Scott, S. A., Brooks, J. D., Rakonjac, J., Walker, K. M. R., & Flint, S. H. (2007). The formation of thermophilic spores during the manufacture of whole milk powder. International Journal of Dairy Technology, 60, 109–117.CrossRefGoogle Scholar
  161. Shaheen, R., Svensson, B., Andersson, M. A., Christiansson, A., & Salkinoja-Salonen, M. (2010). Persistence strategies of Bacillus cereus spores isolated from dairy silo tanks. Food Microbiology, 27, 347–355.PubMedCrossRefGoogle Scholar
  162. Sharma, G., & Malik, D. J. (2013). The uses and abuses of rapid bioluminescence-based ATP assays. International Journal of Hygiene and Environmental Health, 216, 115–125.CrossRefGoogle Scholar
  163. Sheth, A. N., Hoekstra, M., Patel, N., Ewald, G., Lord, C., Clarke, C., Villamil, E., Niksich, K., Boop, C., Nguyen, T.-A., Zink, D., & Lynch, M. (2011). A national outbreak of Salmonella serotype Tennessee infections from contaminated peanut butter: a new food vehicle for salmonellosis in the United States. Clinical Infectious Diseases, 53, 356–362.PubMedCrossRefGoogle Scholar
  164. Silva, J., Leite, D., Fernandes, M., Mena, C., Gibbs, P. A., & Teixeira, P. (2011). Campylobacter spp. as a foodborne pathogen: A review. Frontiers in Microbiology, 2, 200. Scholar
  165. Sofos, J. N., & Geomaras, I. (2010). Overview of current meat hygiene and safety risks and summary of recent studies on biofilms, and control of Escherichia coli O157:H7 in nonintact, and Listeria monocytogenes in ready-to-eat, meat products. Meat Science, 86, 2–14.PubMedCrossRefGoogle Scholar
  166. Spector, M. P., & Kenyon, W. J. (2012). Resistance and survival strategies of Salmonella enterica to environmental stresses. Food Research International, 45, 455–481.CrossRefGoogle Scholar
  167. Steenackers, H., Hermans, K., Vanderleyden, J., & De Keersmaecker, S. C. J. (2012). Salmonella biofilms: An overview on occurrence, structure, regulation and eradication. Food Research, 45, 502–531.CrossRefGoogle Scholar
  168. Stersky, A., Todd, E., & Pivnick, H. (1980). Food poisoning associates with post-process leakage (PPL) in canned foods. Journal of Food Protection, 43, 465–476.CrossRefGoogle Scholar
  169. Steyn, C. E., Cameron, M., & Witthuhn, R. C. (2011a). Occurrence of Alicyclobacillus in the fruit processing environment – A review. International Journal of Food Microbiology, 147, 1–11.PubMedCrossRefGoogle Scholar
  170. Steyn, C. E., Cameron, M., Brittin, G., & Witthuhn, R. C. (2011b). Prevention of the accumulation of Alicyclobacillus in apple concentrate by restricting the continuous process running time. Journal of Applied Microbiology, 110, 658–665.PubMedCrossRefGoogle Scholar
  171. Strawn, L. K., Schneider, K. R., & Danyluk, M. D. (2011). Microbial safety of tropical fruits. Critical Reviews in Food Science and Nutrition, 51, 132–145.PubMedCrossRefGoogle Scholar
  172. Strawn, L. K., Gröhn, Y. T., Warchocki, S., Worobo, R. W., Bihn, E. A., & Wiedmann, M. (2013). Risk factors associated with Salmonella and Listeria monocytogenes contamination of produce fields. Applied and Environmental Microbiology, 79, 7618–7627.PubMedPubMedCentralCrossRefGoogle Scholar
  173. Todd, E. C. D., Greig, J. D., Bartleson, C. A., & Michaels, B. S. (2007a). Outbreaks where food workers have been implicated in the spread of foodborne disease. Part 2. Description of outbreaks by size, severity and settings. Journal of Food Protection, 70, 1975–1993.PubMedCrossRefGoogle Scholar
  174. Todd, E. C. D., Greig, J., Bartleson, C. A., & Michaels, B. S. (2007b). Outbreaks where food workers have been implicated in the spread of foodborne disease. Part 3. Factors contributing to outbreaks and description of outbreak categories. Journal of Food Protection, 70, 2199–2217.PubMedCrossRefGoogle Scholar
  175. Todd, E. C. D., Greig, J., Bartleson, C. A., & Michaels, B. S. (2008). Outbreaks where food workers have been implicated in the spread of foodborne disease. Part 5. Sources of contamination and pathogen excretion from infected persons. Journal of Food Protection, 71, 2582–2595.PubMedCrossRefGoogle Scholar
  176. Todd, E. C., Greig, J. D., Bartleson, C. A., & Michaels, B. S. (2009). Outbreaks where food workers have been implicated in the spread of foodborne disease. Part 6. Transmission and survival of pathogens in the food processing and preparation environment. Journal of Food Protection, 72, 202–219.PubMedCrossRefGoogle Scholar
  177. Tompkin, R. B. (2002). Control of Listeria monocytogenes in the food- processing environment. Journal of Food Protection, 65, 709–725.PubMedCrossRefGoogle Scholar
  178. Tompkin, R.B., Bernard, D.T., Scott, V.N., Sveum, W.H. & Gombas, K.S. (2010) Industry guidelines to prevent contamination from Listeria monocytogenes. National Pork Producers Council and the American Meat Association Fact-sheet Accessed 17 Nov 2015.
  179. Upton, P., & Coia, J. E. (1994). Outbreak of Escherichia coli O157 infection associated with pasteurised milk supply. Lancet, 334, 1015.CrossRefGoogle Scholar
  180. Valderrama, W. B., & Cutter, C. N. (2013). An ecological perspective of Listeria monocytogenes biofilms in food processing facilities. Critical Reviews in Food Science and Nutrition, 53, 801–817.PubMedCrossRefGoogle Scholar
  181. Van Houdt, R., & Michiels, C. W. (2010). Biofilm formation and the food industry, a focus on the bacterial outer surface. Journal of Applied Microbiology, 109, 1117–1131.PubMedCrossRefGoogle Scholar
  182. Van Alphen, L.B., Dorléans, F., Schultz, C., Fonager, J., Ethelberg, S., Dalgaard, C., Adelhardt, M. Engberg, J.H., Fischer, T.K. & Lassen, G. (2012). The application of new molecular methods in the investigation of a waterborne outbreak of norovirus in Denmark, 2012. PLOS One, (15 September).
  183. Vázquez-Sánchez, D., Habimana, O., & Holck, A. (2013). Impact of food-related environmental factors on the adherence and biofilm formation of natural Staphylococcus aureus isolates. Current Microbiology, 66, 110–121.PubMedCrossRefGoogle Scholar
  184. Vestby, L. K., Møretrø, T., Langsrud, S., Heir, E., & Nesse, L. L. (2009). Biofilm forming abilities of Salmonella are correlated with persistence in fish meal and feed factories. BMC Veterinary Research, 5, 20–24.PubMedPubMedCentralCrossRefGoogle Scholar
  185. Vogeleer, P., Tremblay, Y. D. N., Mafu, A. A., Jacques, M., & Harel, J. (2014). Life on the outside: Role of biofilms in environmental persistence of Shiga-toxin producing Escherichia coli. Frontiers Microbiology (01 July).
  186. Waitt, J. A., Kuhn, D. D., Welbaum, G. E., & Ponder, M. A. (2013). Postharvest transfer and survival of Salmonella enterica serotype Enteritidis on living lettuce. Letters in Applied Microbiology, 58, 95–101.PubMedCrossRefGoogle Scholar
  187. Wales, A. D., Carrique-Mas, J. J., Rankin, M., Bell, B., Thind, B. B., & Davies, R. H. (2010). Review of the carriage of zoonotic bacteria by arthropods, with special reference to Salmonella in mites, flies and litter beetles. Zoonoses and Public Health, 57, 299–314.PubMedGoogle Scholar
  188. Williams, A. P., Avery, L. M., Killham, K., & Jones, D. L. (2008). Moisture, sawdust, and bleach regulate the persistence of Escherichia coli O157:H7 on floor surfaces in butcher shops. Food Control, 19, 1119–1125.CrossRefGoogle Scholar
  189. Woolaway, M. C., Bartlett, C. L. R., Wieneke, A. A., Gilbert, R. J., Murrell, H. C., & Aureli, P. (1986). International outbreak of staphylococcal food poisoning caused by contaminated lasagna. Epidemiology and Infection, 96, 67–73.Google Scholar
  190. Zurek, L., & Gorham, J. R. (2010). Insects as vectors of foodborne pathogens. In J. G. Voeller (Ed.), Wiley handbook of science and technology for homeland security (pp. 1683–1695). Hoboken: Wiley.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • International Commission on Microbiological Specifications for Foods (ICMSF)
    • 1
  1. 1.Robert L. Buchanan, editorial committee chairRiverside Corporate Park CSIRONorth RydeAustralia

Personalised recommendations