Towards a Relation-Based Argument Extraction Model for Argumentation Mining

  • Gil RochaEmail author
  • Henrique Lopes Cardoso
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10583)


Argumentation mining aims to detect and identify the argumentative content expressed in text. In this paper we present a relation-based approach that aims to capture the relation of inference between the premise and conclusion. We follow a supervised machine learning approach and explore features at different levels of abstraction. Then, we apply this system for the task of argumentative sentence detection and compare the performance of the system with a competitive baseline approach. The corpus used in our experiments was annotated with arguments from textual resources written in Portuguese, namely opinion articles. The proposed system outperforms the baseline system, achieving 0.75 of f1-score on the test set.


Information extraction Argumentation mining Machine learning Natural language processing 



The first author is partially supported by a doctoral grant from Doctoral Program in Informatics Engineering (ProDEI) from the Faculty of Engineering of the University of Porto (FEUP).


  1. 1.
    Al-Rfou, R., Perozzi, B., Skiena, S.: Polyglot: distributed word representations for multilingual NLP. In: Proceedings of the 17th Conference on Computational Natural Language Learning, pp. 183–192. ACL, Sofia, August 2013Google Scholar
  2. 2.
    Androutsopoulos, I., Malakasiotis, P.: A survey of paraphrasing and textual entailment methods. J. Artif. Int. Res. 38(1), 135–187 (2010)zbMATHGoogle Scholar
  3. 3.
    Cabrio, E., Villata, S.: Natural language arguments: a combined approach. In: ECAI, vol. 242, pp. 205–210 (2012)Google Scholar
  4. 4.
    Dagan, I., Roth, D., Sammons, M., Zanzotto, F.M.: Recognizing Textual Entailment: Models and Applications. Synthesis Lectures on Human Language Technologies. Morgan & Claypool Publishers, San Rafael (2013)Google Scholar
  5. 5.
    Eckle-Kohler, J., Kluge, R., Gurevych, I.: On the role of discourse markers for discriminating claims and premises in argumentative discourse. In: Proceedings of the Conference on Empirical Methods in NLP, Lisbon, Portugal, 17–21 September 2015, pp. 2236–2242 (2015)Google Scholar
  6. 6.
    Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database Language, Speech, and Communication. MIT Press, Cambridge (1998)zbMATHGoogle Scholar
  7. 7.
    Fonseca, E., Santos, L., Criscuolo, M., Aluisio, S.: ASSIN: Avaliacao de similaridade semantica e inferencia textual. In: Computational Processing of the Portuguese Language - 12th International Conference, Tomar, Portugal, 13–15 July 2016 (2016)Google Scholar
  8. 8.
    Garcia, M., Gamallo, P.: Yet another suite of multilingual NLP tools. In: Sierra-Rodríguez, J.-L., Leal, J.P., Simões, A. (eds.) SLATE 2015. CCIS, vol. 563, pp. 65–75. Springer, Cham (2015). doi: 10.1007/978-3-319-27653-3_7 CrossRefGoogle Scholar
  9. 9.
    Oliveira, H.G.: CONTO.PT: groundwork for the automatic creation of a fuzzy Portuguese wordnet. In: Silva, J., Ribeiro, R., Quaresma, P., Adami, A., Branco, A. (eds.) PROPOR 2016. LNCS, vol. 9727, pp. 283–295. Springer, Cham (2016). doi: 10.1007/978-3-319-41552-9_29 Google Scholar
  10. 10.
    Goudas, T., Louizos, C., Petasis, G., Karkaletsis, V.: Argument extraction from news, blogs, and social media. In: Likas, A., Blekas, K., Kalles, D. (eds.) SETN 2014. LNCS, vol. 8445, pp. 287–299. Springer, Cham (2014). doi: 10.1007/978-3-319-07064-3_23 CrossRefGoogle Scholar
  11. 11.
    Habernal, I., Gurevych, I.: Exploiting debate portals for semi-supervised argumentation mining in user-generated web discourse. In: Proceedings of the Conference on Empirical Methods in NLP, pp. 2127–2137. Association for Computational Linguistics, Lisbon (2015)Google Scholar
  12. 12.
    Lawrence, J., Reed, C.: Combining argument mining techniques. In: Proceedings of the 2nd Workshop on Argumentation Mining, pp. 127–136. ACL (2015)Google Scholar
  13. 13.
    More, A.: Survey of resampling techniques for improving classification performance in unbalanced datasets. Computing Research Repository (CoRR) (2016)Google Scholar
  14. 14.
    Palau, R.M., Moens, M.F.: Argumentation mining: the detection, classification and structure of arguments in text. In: Proceedings of the 12th International Conference on Artificial Intelligence and Law, pp. 98–107. ACM, New York (2009)Google Scholar
  15. 15.
    Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Peldszus, A., Stede, M.: From argument diagrams to argumentation mining in texts: a survey. Int. J. Cogn. Inf. Nat. Intell. (IJCINI) 7(1), 1–31 (2013)CrossRefGoogle Scholar
  17. 17.
    Peldszus, A., Stede, M.: Joint prediction in MST-style discourse parsing for argumentation mining. In: Proceedings of the Conference on Empirical Methods in NLP, pp. 938–948. ACL, Lisbon, September 2015Google Scholar
  18. 18.
    Rinott, R., Dankin, L., Perez, C.A., Khapra, M.M., Aharoni, E., Slonim, N.: Show me your evidence - an automatic method for context dependent evidence detection. In: Proceedings of the Conference on Empirical Methods in NLP, Lisbon, Portugal, 17–21 September 2015, pp. 440–450 (2015)Google Scholar
  19. 19.
    Rocha, G., Lopes Cardoso, H.: Recognizing textual entailment and paraphrases in Portuguese. In: Oliveira, E., Gama, J., Vale, Z., Lopes Cardoso, H. (eds.) EPIA 2017. LNCS, vol. 10423, pp. 868–879. Springer, Cham (2017). doi: 10.1007/978-3-319-65340-2_70 CrossRefGoogle Scholar
  20. 20.
    Rocha, G., Lopes Cardoso, H., Teixeira, J.: ArgMine: a framework for argumentation mining. In: Computational Processing of the Portuguese Language - 12th International Conference, PROPOR 2016, Student Research Workshop, Tomar, Portugal, 13–15 July 2016 (2016)Google Scholar
  21. 21.
    Sammons, M., Vydiswaran, V., Roth, D.: Recognizing textual entailment. In: Bikel, D.M., Zitouni, I. (eds.) Multilingual Natural Language Applications: From Theory to Practice, pp. 209–258. Prentice Hall, Upper Saddle River (2012)Google Scholar
  22. 22.
    Stab, C.: Argumentative writing support by means of natural language processing. Ph.D. thesis, Technische Universität Darmstadt, Darmstadt (2017)Google Scholar
  23. 23.
    Stab, C., Gurevych, I.: Identifying argumentative discourse structures in persuasive essays. In: Proceedings of the Conference on Empirical Methods in NLP, Doha, Qatar, 25–29 October 2014, pp. 46–56 (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.LIACC/DEI, Faculdade de EngenhariaUniversidade do PortoPortoPortugal

Personalised recommendations