Skip to main content

Inflammation and Cancer

  • Chapter
  • First Online:
Inflammation and Angiogenesis
  • 567 Accesses

Abstract

The association between inflammation and cancer was discovered as early as 1863 by Rudolf Virchow (Fig. 5.1) (Virchow 1863), who first described the presence of a leukocyte infiltrate in tumor tissues (Balkwill and Mantovani 2001). Individuals affected by chronic inflammatory pathologies have increased risk of cancer development, since they lead to the release of proinflammatory cytokines, creating a favourable microenvironment for tumor progression and metastasis (Balkwill et al. 2005). Examples include viral infection with hepatitis B and C for liver cancer; papilloma virus for cervix carcinoma; bacterial infections, such as Helicobacter pylori for gastric cancer or lymphoma; parasites, such as Schistosoma for bladder cancer. It is thought that Helicobacter pylori infection leads to the formation of Helicobacter pylori reactive T cells, which in turn cause polyclonal B-cell proliferation. In some patients viral integrations causes secondary rearrangements of chromosomes, including multiple deletions that may harbor unknown suppressor genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357:539–545

    Article  CAS  PubMed  Google Scholar 

  • Balkwill F, Charles KA, Mantovani A (2005) Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7:211–217

    Article  CAS  PubMed  Google Scholar 

  • Blank C, Brown I, Peterson AC et al (2004) PD-L1/B7H-1 inhibits the effector phase of tumor rejection by T cell receptor (TCR) transgenic CD8+ T cells. Cancer Res 64:1140–1145

    Article  CAS  PubMed  Google Scholar 

  • Bolitho P, Street SEA, Westwood JA et al (2009) Perforin-mediated suppression of B-cell lymphoma. Proc Natl Acad Sci U S A 106:2723–2728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boon T, van der Bruggen P (1996) Human tumor antigens recognized by T lymphocytes. J Exp Med 183:725–729

    Article  CAS  PubMed  Google Scholar 

  • Burkholder B, Huang RY, Burgess R et al (2014) Tumor-induced perturbations of cytokines andimmune cell networks. Biochimica et Biophysica Acta 1845:182–201

    CAS  PubMed  Google Scholar 

  • Burnet FM (1957) Cancer; a biological approach. I. The processes of control. Br Med J 1:779–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burnet FM (1970) Immunological surveillance. Pergamon Press, Oxford

    Book  Google Scholar 

  • Chapman JR, Webster AC, Wong W (2013) Cancer in the transplant recipient. Cold Spring Harb Perspect Med 3:a015677

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheson BD, Leonard JP (2008) Monoclonal antibody therapy for B-cell non Hodgkin’s lymphoma. N Engl J Med 359:613–626

    Article  CAS  PubMed  Google Scholar 

  • Clemente CG, Mihm MC Jr, Bufalino R (1996) Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma. Cancer 77:1303–1310

    Article  CAS  PubMed  Google Scholar 

  • Clementi R, Locatelli F, Dupré L et al (2005) A proportion of patients with lymphoma may harbor mutations of the perforin gene. Blood 105:4424–4428

    Article  CAS  PubMed  Google Scholar 

  • Corthay A (2014) Does the immune system naturally protect against cancer? Front Immunol 12:197

    Google Scholar 

  • Deligdisch L, Jacobs AJ, Cohen CJ (1982) Histologic correlates of virulence in ovarian adenocarcinoma. II. Morphologic correlates of host response. Am J Obstet Gynecol 144:885–889

    Article  CAS  PubMed  Google Scholar 

  • Dhodapkar MV (2005) Immune response to premalignancy: insights from patients with monoclonal gammopathy. Ann N Y Acad Sci 1062:22–28

    Article  PubMed  Google Scholar 

  • Dhodapkar MV, Krasovsky J, Osman K et al (2003) Vigorous premalignancy-specific effector T cell response in the bone marrow of patients with monoclonal gammopathy. J Exp Med 198:1753–1757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dighe A, Richards E, Old L et al (1994) Enhanced in vivo growth and resistance to rejection of tumor cells expressing dominant negative IFNreceptors. Immunity 1:447–456

    Google Scholar 

  • Doroshow JH, Gaur S, Markel S et al (2013) Effects of iodonium-class flavin dehydrogenase inhibitors on growth, reactive oxygen production, cell cycle progression, NADPH oxidase 1 levels, and gene expression in human colon cancer cells and xenografts. Free Radic Biol Med 57:162–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunn GP, Bruce AT, Ikeda H et al (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3:991–998

    Article  CAS  PubMed  Google Scholar 

  • Dunn GP, Old LJ, Schreiber RD (2004) The three Es of cancer immunoediting. Annu Rev Immunol 22:329–360

    Article  CAS  PubMed  Google Scholar 

  • Ehrlich P (1909) Ueber den jetzigen Stand der Karzinomforschung. Ned Tijdschr Geneeskd 5:273–290

    Google Scholar 

  • Engels EA, Frisch M, Goedert JJ et al (2002) Merkel cell carcinoma and HIV infection. Lancet 359:497–498

    Article  PubMed  Google Scholar 

  • Epstein NA, Fatti LP (1976) Prostatic carcinoma: some morphological features affecting prognosis. Cancer 37:2455–2465

    Article  CAS  PubMed  Google Scholar 

  • Facciabene A, Motz GT, Coukos G (2012) T regulatory cells: key players in tumor immune escape and angiogenesis. Cancer Res 72:2162–2171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foley EJ (1953) Antigenic properties of methylcholantherene-induced tumors in mice of the strain of origin. Cancer Res 13:835

    CAS  PubMed  Google Scholar 

  • Fulop T, Kotb R, Fortin CF et al (2010) Potential role of immunosenescence in cancer development. Ann N Y Acad Sci 1197:158–165

    Google Scholar 

  • Gaidano G, Dalla-Favera R (1992) Biologic aspects of human immunodeficiency virus-related lymphoma. Curr Opin Oncol 4:900–906

    Article  CAS  PubMed  Google Scholar 

  • Gasser S, Raulet DH (2006) The DNA damage response arouses the immune system. Cancer Res 66:3959–3962

    Article  CAS  PubMed  Google Scholar 

  • Gleave ME, Elhilali M, Fradet Y et al (1998) Interferon γ-1b compared with placebo in metastatic renal-cell carcinoma. Canadian Urologic Oncology Group N Engl J Med 338:1265–1271

    CAS  PubMed  Google Scholar 

  • Gross L (1943) Intradermal immunization of C3H mice against a sarcoma that originated in an animal of the same line. Cancer Res 3:326

    Google Scholar 

  • Gulley JL, Mulders P, Albers P et al (2015) Perspectives on sipuleucel-T: its role in the prostate cancer treatment paradigm. Oncoimmunology 10:e1107698

    Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  • He YF, Zhang GM, Wang XH et al (2004) Blocking programmed death-1 ligand-PD-1 interactions by local gene therapy results in enhancement of antitumor effect of secondary lymphoid tissue chemokine. J Immunol 173:4919–4928

    Article  CAS  PubMed  Google Scholar 

  • Hussain SP, Harris CC (2007) Inflammation and cancer: an ancient link with novel potentials. Int J Cancer 121:2373–2380

    Article  CAS  PubMed  Google Scholar 

  • Iliopoulos D (2014) MicroRNA circuits regulate the cancer inflammation link. Sci Signal 7:318

    Article  Google Scholar 

  • Jass JR (1986) Lymphocytic infiltration and survival in rectal cancer. J Clin Pathol 39:585–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jett JR, Maksymiuk AW, Su JQ et al (1994) Phase III trail of recombinant interferon γ in complete responders with small-cell ling cancer. J Clin Oncol 12:2321–2326

    Article  CAS  PubMed  Google Scholar 

  • Kaplan DH, Shankaran V, Dighe AS et al (1998) Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proc Natl Acad Sci U S A 95:7556–7561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ledford H (2014) Cancer treatment: the killer within. Nature 505:24–26

    Article  Google Scholar 

  • Martinez C (1964) Effect of early thymectomy on development of mammary tumours in mice. Nature 203:1188

    Article  CAS  PubMed  Google Scholar 

  • Mc Farlane GA, Munro A (1997) Helicobacter pylori and gastric cancer. Br J Surg 84:1190–1199

    Article  CAS  Google Scholar 

  • Melief CJM, Schwartz RS (1975) Immunocompetence and malignancy. In: Becker FF (ed) Cancer: a comprehensive treatise, vol 1. Plenum Press, New York, pp 121–160

    Chapter  Google Scholar 

  • Mesri EA, Cesarman E, Arvanitakis L et al (1996) Human herpes virus-8/Kaposi’s sarcoma associated herpes virus is a new transmissible virus that infects B cells. J Exp Med 183:2385–2390

    Article  CAS  PubMed  Google Scholar 

  • Morrissey D, O’Sullivan GC, Tangney M (2010) Tumour targeting with systemically administered bacteria. Curr Gene Ther 10:3–14

    Article  CAS  PubMed  Google Scholar 

  • Muenst S, Läubli H, Soysal SD (2016) The immune system and cancer evasion strategies: therapeutic concepts. J Intern Med 279:541–562

    Article  CAS  PubMed  Google Scholar 

  • Nacopoulou L, Azaris P, Papacharalampous N et al (1981) Prognostic significance of histologic host response in cancer of the large bowel. Cancer 47:930–936

    Article  CAS  PubMed  Google Scholar 

  • Nishikawa H, Sakaguchi S (2010) Regulatory T cells in tumor immunity. Int J Cancer 127:759–767

    CAS  PubMed  Google Scholar 

  • O’Connell RM, Rao DS, Baltimore D (2012) MicroRNA regulation of inflammatory responses. Annu Rev Immunol 30:295–312

    Article  PubMed  Google Scholar 

  • Outzen HC, Custer RP, Eaton GJ et al (1975) Spontaneous and induced tumor incidence in germfree “nude” mice. J Reticuloendothel Soc 17:1–9

    CAS  PubMed  Google Scholar 

  • Palma L, Di Lorenzo N, Guidetti B (1978) Lymphocytic infiltrates in primary glioblastomas and recidivous gliomas. Incidence, fate, and relevance to prognosis in 228 operated cases. J Neurosurg 49:854–861

    Article  CAS  PubMed  Google Scholar 

  • Pawelec G, Derhov E, Larbi A (2010) Immunosenescence and cancer. Crit Rev Oncol Hematol 75:165–172

    Article  PubMed  Google Scholar 

  • Penn I (1988) Tumors of the immunocompromised patient. Annu Rev Med 39:63–73

    Article  CAS  PubMed  Google Scholar 

  • Philips GK, Atkins M (2015) Therapeutic uses of anti-PD-1 and anti-PD-L1 antibodies. Int Immunol 27:39–46

    Article  CAS  PubMed  Google Scholar 

  • Ribatti D (2017) The concept of immune surveillance against tumors. the first theories. Oncotarget 8:7175–7180

    PubMed  Google Scholar 

  • Rilke F, Colnaghi MI, Cascinelli N et al (1991) Prognostic significance of HER-2/neu expression in breast cancer and its relationship to other prognostic factors. Int J Cancer 49:44–49

    Article  CAS  PubMed  Google Scholar 

  • Ru-Chen M (2011) Epstein-Barr virus, the immune system, and associated diseases. Front Microbiol 2:5

    Google Scholar 

  • Sablina AA, Budanov AV, Ilyinskaya GV et al (2005) The antioxidants function of the p53 tumor suppressor. Nat Med 11:1306–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulz TF (2009) Cancer and viral infection in immunocompromised individuals. Int J Cancer 125:1755–1763

    Article  CAS  PubMed  Google Scholar 

  • Schwann JB, Smyth MJ (2007) Immune surveillance of tumors. J Clin Invest 117:1137–1146

    Article  Google Scholar 

  • Shankaran V, Ikeda H, Bruce AT et al (2001) IFN gamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410:1107–1111

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Allison JP (2015) The future of immune check point therapy. Science 348:56–61

    Article  CAS  PubMed  Google Scholar 

  • Silva J, Cerqueira F, Medeiros R (2014) Chlamydia trachomatis infection: implications for HPV status and cervical cancer. Arch Gynecol Obstet 289:715–723

    Article  PubMed  Google Scholar 

  • Sirvastava PK (2006) Immunity to cancers. In: Male D, Brostoff J, Roth DB, Roitt I (eds) Immunology. Mosby Elsevier, 7th edition, p 422

    Google Scholar 

  • Stewart T, Tsai SC, Grayson H et al (1995) Incidence of de-novo breast cancer in women chronically immunosuppressed after organ transplantation. Lancet 346:796–798

    Article  CAS  PubMed  Google Scholar 

  • Street SE, Hayakawa Y, Zhan Y et al (2004) Innate immune surveillance of spontaneous B cell lymphomas by natural killer cells and gamma delta T cells. J Exp Med 199:879–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stutman O (1974) Tumor development after 3-methylcholanthrene in immunologically deficient athymic-nude mice. Science 183:534–536

    Article  CAS  PubMed  Google Scholar 

  • Stutman O (1975) Immunodepression and malignancy. Adv Cancer Res 22:261–422

    Article  CAS  PubMed  Google Scholar 

  • Teng MW, Galon J, Fridman WH et al (2015) From mice to humans: developments in cancer immunoediting. J Clin Invest 125:3338–3346

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomas L (1957) In: Lawrence HS (ed) Discussion of cellular and humoral aspects of hypersensitive states. Hoeber-Harper, New York, p 1959

    Google Scholar 

  • Toso JF, Gill VJ, Hwu P (2002) Phase I study of the intravenous administration of attenuated Salmonella typhi murium to patients with metastatic melanoma. J Clin Oncol 20:142–152

    Article  PubMed  PubMed Central  Google Scholar 

  • van den Broek MW, Kägi D, Ossendorp F et al (1996) Decreased tumor surveillance in perforin-deficient mice. J Exp Med 184:1781–1790

    Article  PubMed  Google Scholar 

  • Vendramini-Costa JE, Carvalho JE (2012) Molecular link mechanisms between inflammation and cancer. Curr Pharm Des 18:3831–3852

    Article  CAS  PubMed  Google Scholar 

  • Virchow R (1863) Die Krankenaften Geschwulste. August Hirschwald, Berlin. pp 1–255

    Google Scholar 

  • Waldhauer I, Steinle A (2008) NK cells and cancer immunosurveillance. Oncogene 27:5932–5943

    Article  CAS  PubMed  Google Scholar 

  • Wiesenfeld M, O’Connell MJ, Wieand HS et al (1995) Controlled clinical trial of interferon-γ as postoperative surgical adjuvant therapy for colon cancer. J Clin Oncol 13:2324–2329

    Article  CAS  PubMed  Google Scholar 

  • Yunis EJ, Martinez C, Smith J et al (1969) Spontaneous mammary adenocarcinoma in mice: influence of thymectomy and reconstitution with thymus grafts or spleen cells. Cancer Res 29:174–178

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ribatti, D. (2017). Inflammation and Cancer. In: Inflammation and Angiogenesis. Springer, Cham. https://doi.org/10.1007/978-3-319-68448-2_5

Download citation

Publish with us

Policies and ethics