Skip to main content

Maximum Likelihood Estimation of Riemannian Metrics from Euclidean Data

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10589))

Included in the following conference series:

Abstract

Euclidean data often exhibit a nonlinear behavior, which may be modeled by assuming the data is distributed near a nonlinear submanifold in the data space. One approach to find such a manifold is to estimate a Riemannian metric that locally models the given data. Data distributions with respect to this metric will then tend to follow the nonlinear structure of the data. In practice, the learned metric rely on parameters that are hand-tuned for a given task. We propose to estimate such parameters by maximizing the data likelihood under the assumed distribution. This is complicated by two issues: (1) a change of parameters imply a change of measure such that different likelihoods are incomparable; (2) some choice of parameters renders the numerical calculation of distances and geodesics unstable such that likelihoods cannot be evaluated. As a practical solution, we propose to (1) re-normalize likelihoods with respect to the usual Lebesgue measure of the data space, and (2) to bound the likelihood when its exact value is unattainable. We provide practical algorithms for these ideas and illustrate their use on synthetic data, images of digits and faces, as well as signals extracted from EEG scalp measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.cs.nyu.edu/~roweis/data.html.

References

  1. Arvanitidis, G., Hansen, L.K., Hauberg, S.: A locally adaptive normal distribution. In: Advances in Neural Information Processing Systems (NIPS) (2016)

    Google Scholar 

  2. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6), 1373–1396 (2003)

    Article  MATH  Google Scholar 

  3. Bewsher, J., Tosi, A., Osborne, M., Roberts, S.: Distribution of Gaussian process arc lengths. In: AISTATS (2017)

    Google Scholar 

  4. Bishop, C.M.: Pattern Recognition and Machine Learning. Information Science and Statistics. Springer, New York (2006)

    MATH  Google Scholar 

  5. Carmo, M.: Riemannian Geometry. Birkhäuser, Boston (1992)

    Book  MATH  Google Scholar 

  6. Chevallier, E., Barbaresco, F., Angulo, J.: Probability density estimation on the hyperbolic space applied to radar processing. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2015. LNCS, vol. 9389, pp. 753–761. Springer, Cham (2015). doi:10.1007/978-3-319-25040-3_80

    Chapter  Google Scholar 

  7. Fletcher, P.T.: Geodesic regression and the theory of least squares on Riemannian manifolds. IJCV 105(2), 171–185 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fletcher, P.T., Lu, C., Pizer, S.M., Joshi, S.: Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE TMI 23(8), 995–1005 (2004)

    Google Scholar 

  9. Freifeld, O., Hauberg, S., Black, M.J.: Model transport: towards scalable transfer learning on manifolds. In: CVPR (2014)

    Google Scholar 

  10. Hansen, L.K., Larsen, J.: Unsupervised learning and generalization. In: IEEE International Conference on Neural Networks, vol. 1, pp. 25–30. IEEE (1996)

    Google Scholar 

  11. Hauberg, S.: Principal curves on Riemannian manifolds. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 38, 1915–1921 (2016)

    Article  Google Scholar 

  12. Hauberg, S., Freifeld, O., Black, M.J.: A geometric take on metric learning. In: Advances in Neural Information Processing Systems (NIPS), pp. 2033–2041 (2012)

    Google Scholar 

  13. Hauberg, S., Lauze, F., Pedersen, K.S.: Unscented Kalman filtering on Riemannian manifolds. J. Math. Imaging Vis. 46(1), 103–120 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hauberg, S., Pedersen, K.S.: Stick It! articulated tracking using spatial rigid object priors. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010. LNCS, vol. 6494, pp. 758–769. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19318-7_59

    Chapter  Google Scholar 

  15. Hennig, P., Hauberg, S.: Probabilistic solutions to differential equations and their application to Riemannian statistics. In: AISTATS, vol. 33 (2014)

    Google Scholar 

  16. Lawrence, N.: Probabilistic non-linear principal component analysis with Gaussian process latent variable models. J. Mach. Learn. Res. 6, 1783–1816 (2005)

    MATH  MathSciNet  Google Scholar 

  17. Pennec, X.: Intrinsic statistics on Riemannian manifolds: basic tools for geometric measurements. J. Math. Imaging Vis. 25(1), 127–154 (2006)

    Article  MathSciNet  Google Scholar 

  18. Saul, L.K., Roweis, S.T.: Think globally, fit locally: unsupervised learning of low dimensional manifolds. J. Mach. Learn. Res. 4, 119–155 (2003)

    MATH  MathSciNet  Google Scholar 

  19. Straub, J., Chang, J., Freifeld, O., Fisher III, J.W.: A Dirichlet process mixture model for spherical data. In: AISTATS (2015)

    Google Scholar 

  20. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319 (2000)

    Article  Google Scholar 

  21. Tosi, A., Hauberg, S., Vellido, A., Lawrence, N.D.: Metrics for probabilistic geometries. In: The Conference on Uncertainty in Artificial Intelligence (UAI) (2014)

    Google Scholar 

  22. Zhang, M., Fletcher, P.T.: Probabilistic principal geodesic analysis. In: Advances in Neural Information Processing Systems (NIPS), vol. 26, pp. 1178–1186 (2013)

    Google Scholar 

Download references

Acknowledgements

SH was supported by a research grant (15334) from VILLUM FONDEN. LKH was supported by the Novo Nordisk Foundation Interdisciplinary Synergy Program 2014, ‘Biophysically adjusted state-informed cortex stimulation (BASICS)’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios Arvanitidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Arvanitidis, G., Hansen, L.K., Hauberg, S. (2017). Maximum Likelihood Estimation of Riemannian Metrics from Euclidean Data. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2017. Lecture Notes in Computer Science(), vol 10589. Springer, Cham. https://doi.org/10.1007/978-3-319-68445-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68445-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68444-4

  • Online ISBN: 978-3-319-68445-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics