Chapter 7 The Classical Lagrangians of Gauge Theories

  • Mark J. D. Hamilton
Part of the Universitext book series (UTX)


Lagrangians can be categorized depending on which types of fields and interactions they involve: there are Lagrangians for free fields, Lagrangians for a single interacting field and Lagrangians for several interacting fields.In this chapter we will discuss the Lagrangians that appear in the Standard Model: the Yang-Mills-Lagrangian, the Klein-Gordon and Higgs Lagrangian, and the Dirac Lagrangian, as well as Yukawa couplings.


  1. 1.
    Abe, K. et al. (The T2K Collaboration): First combined analysis of neutrino and antineutrino oscillations at T2K. arXiv:1701.00432Google Scholar
  2. 2.
    Adams, J.F.: On the non-existence of elements of Hopf invariant one. Ann. Math. 72, 20–104 (1960)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Adams, J.F.: Vector fields on spheres. Ann. Math. 75, 603–632 (1962)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Argyres, P.C.: An introduction to global supersymmetry. Lecture notes, Cornell University 2001. Available at Google Scholar
  5. 5.
    Atiyah, M.F.: K-Theory. Notes by D.W. Anderson. W.A. Benjamin, New York/Amsterdam (1967)zbMATHGoogle Scholar
  6. 6.
    Atiyah, M.F., Bott, R.: The Yang–Mills equations over Riemann surfaces. Phil. Trans. R. Soc. Lond. A 308, 523–615 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Atiyah, M.F., Bott, R., Shapiro, A.: Clifford modules. Topology 3, 3–38 (1964)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Baez, J.C.: The octonions. Bull. Am. Math. Soc. (N.S.) 39, 145–205 (2002); Erratum: Bull. Am. Math. Soc. (N.S.) 42, 213 (2005)Google Scholar
  9. 9.
    Baez, J., Huerta, J.: The algebra of grand unified theories. Bull. Am. Math. Soc. (N.S.) 47, 483–552 (2010)Google Scholar
  10. 10.
    Bailin, D., Love, A.: Introduction to Gauge Field Theory. Institute of Physics Publishing, Bristol/Philadelphia (1993)zbMATHGoogle Scholar
  11. 11.
    Ball. P.: Nuclear masses calculated from scratch. Nature, published online 20 November 2008. doi:10.1038/news.2008.1246Google Scholar
  12. 12.
    Barut, A.O., Raczka, R.: Theory of Group Representations and Applications. Polish Scientific Publishers, Warszawa (1980)zbMATHGoogle Scholar
  13. 13.
    Baum, H.: Spin-Strukturen und Dirac-Operatoren über pseudoriemannschen Mannigfaltigkeiten. Teubner Verlagsgesellschaft, Leipzig (1981)zbMATHGoogle Scholar
  14. 14.
    Baum, H.: Eichfeldtheorie. Springer, Berlin/Heidelberg (2014)zbMATHCrossRefGoogle Scholar
  15. 15.
    Berline, N., Getzler, E., Vergne, M.: Heat Kernels and Dirac Operators. Springer, Berlin/Heidelberg (2004)zbMATHGoogle Scholar
  16. 16.
    Bleecker, D.: Gauge Theory and Variational Principles. Addison-Wesley Publishing Company, Reading, MA (1981)zbMATHGoogle Scholar
  17. 17.
    Bogolubov, N.N., Logunov, A.A., Todorov, I.T.: Introduction to Axiomatic Quantum Field Theory. W. A. Benjamin, Reading, MA (1975)Google Scholar
  18. 18.
    Borsanyi, Sz. et al: Ab initio calculation of the neutron-proton mass difference. Science 347(6229), 1452–1455 (2015)Google Scholar
  19. 19.
    Bott, M.R.: An application of the Morse theory to the topology of Lie-groups, Bull. Soc. Math. France 84, 251–281 (1956)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Bourguignon, J.-P., Hijazi, O., Milhorat, J.-L., Moroianu, A., Moroianu, S.: A Spinorial Approach to Riemannian and Conformal Geometry. European Mathematical Society, Zürich (2015)zbMATHCrossRefGoogle Scholar
  21. 21.
    Brambilla, N. et al.: QCD and strongly coupled gauge theories: challenges and perspectives. Eur. Phys. J. C 74, 2981 (2014)CrossRefGoogle Scholar
  22. 22.
    Branco, G.C., Lavoura, L., Silva, J.P.: CP Violation. Oxford University Press, Oxford (1999)Google Scholar
  23. 23.
    Bredon, G.E.: Introduction to Compact Transformation Groups. Academic Press, New York/London (1972)zbMATHGoogle Scholar
  24. 24.
    Bröcker, T., tom Dieck, T.: Representations of Compact Lie Groups. Springer, Berlin/Heidelberg/New York (2010)Google Scholar
  25. 25.
    Bröcker, T., Jänich, K.: Einführung in die Differentialtopologie. Springer, Berlin/Heidelberg/New York (1990)zbMATHGoogle Scholar
  26. 26.
    Bryant, R.L.: Metrics with exceptional holonomy. Ann. Math. 126, 525–576 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Bryant, R.L.: Submanifolds and special structures on the octonians. J. Differ. Geom. 17, 185–232 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Budinich, R., Trautman, A.: The Spinorial Chessboard. Springer, Berlin/Heidelberg (1988)zbMATHCrossRefGoogle Scholar
  29. 29.
    Bueno, A. et al.: Nucleon decay searches with large liquid Argon TPC detectors at shallow depths: atmospheric neutrinos and cosmogenic backgrounds. JHEP 0704, 041 (2007)CrossRefGoogle Scholar
  30. 30.
    Čap, A., Slovák, J.: Parabolic Geometries I: Background and General Theory. American Mathematical Society, Providence, RI (2009)zbMATHCrossRefGoogle Scholar
  31. 31.
    CERN Press Release: CERN experiments observe particle consistent with long-sought Higgs boson. Available at
  32. 32.
    Chaichian, M., Nelipa, N.F.: Introduction to Gauge Field Theories. Springer, Berlin/Heidelberg/New York/Tokyo (1984)CrossRefGoogle Scholar
  33. 33.
    Cheng, T.-P., Li, L.-F.: Gauge Theory of Elementary Particle Physics. Oxford University Press, Oxford (1988)Google Scholar
  34. 34.
    Chevalley, C.: Theory of Lie Groups I. Princeton University Press, Princeton (1946)zbMATHGoogle Scholar
  35. 35.
    Chevalley, C.: The Algebraic Theory of Spinors and Clifford Algebras. Collected Works, Vol. 2. Springer, Berlin/Heidelberg (1997)Google Scholar
  36. 36.
    Chivukula, R.S.: The origin of mass in QCD. arXiv:hep-ph/0411198Google Scholar
  37. 37.
    Clay Mathematics Institute: Millenium problems. Yang–Mills and mass gap. Available at
  38. 38.
    Costello, K.: Renormalization and Effective Field Theory. Mathematical Surveys and Monographs, Vol. 170. American Mathematical Society, Providence, RI (2011)Google Scholar
  39. 39.
    Darling, R.W.R.: Differential Forms and Connections. Cambridge University Press, Cambridge (1994)zbMATHCrossRefGoogle Scholar
  40. 40.
    D’Auria, R., Ferrara, S., Lledó, M.A., Varadarajan, V.S.: Spinor algebras. J. Geom. Phys. 40, 101–129 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Derdzinski, A.: Geometry of the Standard Model of Elementary Particles. Springer, Berlin/Heidelberg (1992)zbMATHCrossRefGoogle Scholar
  42. 42.
    Dissertori, G., Knowles, I., Schmelling, M.: Quantum Chromodynamics. High Energy Experiments and Theory. Oxford University Press, Oxford (2003)zbMATHGoogle Scholar
  43. 43.
    Drexlin, G., Hannen, V., Mertens, S., Weinheimer, C.: Current direct neutrino mass experiments. Adv. High Energy Phys. 2013, Article ID 293986 (2013)CrossRefGoogle Scholar
  44. 44.
    Dürr, S. et al.: Ab initio determination of light hadron masses. Science 322, 1224–1227 (2008)CrossRefGoogle Scholar
  45. 45.
    Duncan, A.: The Conceptual Framework of Quantum Field Theory. Oxford University Press, Oxford (2013)zbMATHGoogle Scholar
  46. 46.
    Dynkin, E.B.: Semisimple subalgebras of the semisimple Lie algebras. (Russian) Mat. Sbornik 30, 349–462 (1952); English translation: Am. Math. Soc. Transl. Ser. 2 6, 111–244 (1957)Google Scholar
  47. 47.
    Elliott, C.: Gauge Theoretic Aspects of the Geometric Langlands Correspondence. Ph.D. Thesis, Northwestern University (2016)Google Scholar
  48. 48.
    Englert, F., Brout R.: Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett. 13, 321–323 (1964)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Figueroa-O’Farrill, J.: Majorana Spinors. Lecture Notes. University of Edinburgh (2015)Google Scholar
  50. 50.
    Flory, M., Helling, R.C., Sluka, C.: How I learned to stop worrying and love QFT. arXiv:1201.2714 [math-ph]Google Scholar
  51. 51.
    Folland, G.B.: Quantum Field Theory. A Tourist Guide for Mathematicians. American Mathematical Society, Providence, Rhodes Island (2008)zbMATHCrossRefGoogle Scholar
  52. 52.
    Freed, D.S.: Classical Chern–Simons theory, 1. Adv. Math. 113, 237–303 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Freed, D.S.: Five Lectures on Supersymmetry. American Mathematical Society, Providence, RI (1999)zbMATHGoogle Scholar
  54. 54.
    Freedman, D.Z., Van Proeyen, A.: Supergravity. Cambridge University Press, Cambridge (2012)zbMATHCrossRefGoogle Scholar
  55. 55.
    Friedrich, T.: Dirac Operators in Riemannian Geometry. American Mathematical Society, Providence, RI (2000)zbMATHCrossRefGoogle Scholar
  56. 56.
    Fritzsch, H., Minkowski, P.: Unified interactions of leptons and hadrons. Ann. Phys. 93, 193–266 (1975)MathSciNetCrossRefGoogle Scholar
  57. 57.
    Geiges, H.: An Introduction to Contact Topology. Cambridge University Press, Cambridge (2008)zbMATHCrossRefGoogle Scholar
  58. 58.
    Georgi, H.: The state of the art – gauge theories. In: Carlson, C.E. (ed.) Particles and Fields – 1974: Proceedings of the Williamsburg Meeting of APS/DPF, pp. 575–582. AIP, New York (1975)Google Scholar
  59. 59.
    Georgi, H., Glashow, S.L.: Unity of all elementary-particle forces. Phys. Rev. Lett. 32, 438–441 (1974)CrossRefGoogle Scholar
  60. 60.
    Georgi, H.M., Glashow, S.L., Machacek, M.E., Nanopoulos, D.V.: Higgs Bosons from two-gluon annihilation in proton-proton collisions. Phys. Rev. Lett. 40 692 (1978)CrossRefGoogle Scholar
  61. 61.
    Georgi, H., Quinn, H.R., Weinberg, S.: Hierarchy of interactions in unified gauge theories. Phys. Rev. Lett. 33, 451–454 (1974)CrossRefGoogle Scholar
  62. 62.
    Giunti, C., Kim, C.W.: Fundamentals of Neutrino Physics and Astrophysics. Oxford University Press, Oxford (2007)CrossRefGoogle Scholar
  63. 63.
    Glashow, S.L.: Trinification of all elementary particle forces. In: 5th Workshop on Grand Unification, Providence, RI, April 12–14, 1984Google Scholar
  64. 64.
    Glashow, S.L., Iliopoulos, J., Maiani, L.: Weak interactions with lepton-hadron symmetry. Phys. Rev. D 2, 1285–1292 (1970)CrossRefGoogle Scholar
  65. 65.
    Gleason, A.M.: Groups without small subgroups. Ann. Math. 56, 193–212 (1952)MathSciNetzbMATHCrossRefGoogle Scholar
  66. 66.
    Grimus, W., Rebelo, M.N.: Automorphisms in gauge theories and the definition of CP and P. Phys. Rep. 281, 239–308 (1997)MathSciNetCrossRefGoogle Scholar
  67. 67.
    Guralnik, G.S., Hagen, C.R., Kibble, T.W.B.: Global conservation laws and massless particles. Phys. Rev. Lett. 13, 585–587 (1964)CrossRefGoogle Scholar
  68. 68.
    Gürsey, F., Ramond, P., Sikivie, P.: A universal gauge theory model based on E6. Phys. Lett. B 60, 177–180 (1976)CrossRefGoogle Scholar
  69. 69.
    Haag, R.: Local Quantum Physics. Fields, Particles, Algebras. Springer, Berlin/ Heidelberg/New York (1996)zbMATHCrossRefGoogle Scholar
  70. 70.
    Hall, B.C.: Lie Groups, Lie Algebras and Representations. An Elementary Introduction. Springer, Cham Heidelberg/New York/Dordrecht/London (2016)Google Scholar
  71. 71.
    Halzen, F., Martin, A.D.: Quarks and Leptons. An Introductory Course in Modern Particle Physics. Wiley, New York/Chichester/Brisbane/Toronto/Singapore (1984)Google Scholar
  72. 72.
    Hartanto, A., Handoko L.T.: Grand unified theory based on the SU(6) symmetry. Phys. Rev. D 71, 095013 (2005)CrossRefGoogle Scholar
  73. 73.
    Harvey, R., Lawson, H.B.: Calibrated geometries. Acta Math. 148, 47–157 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  74. 74.
    Hatcher, A.: Vector bundles and K-theory. Version 2.1, May 2009Google Scholar
  75. 75.
    Heeck, J.: Interpretation of lepton flavor violation. Phys. Rev. D 95, 015022 (2017)CrossRefGoogle Scholar
  76. 76.
    Higgs, P.W.: Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13, 508–509 (1964)MathSciNetCrossRefGoogle Scholar
  77. 77.
    Hilgert, J., Neeb, K.-H.: Structure and Geometry of Lie Groups. Springer, New York/ Dordrecht/Heidelberg/London (2012)zbMATHCrossRefGoogle Scholar
  78. 78.
    Hirsch, M.W.: Differential Topology. Springer, New York/Berlin/Heidelberg (1997)Google Scholar
  79. 79.
    Hoddeson, L., Brown, L., Riordan, M., Dresden, M. (ed.): The Rise of the Standard Model: Particle Physics in the 1960s and 1970s. Cambridge University Press, Cambridge (1997)Google Scholar
  80. 80.
    Hollowood, T.J.: Renormalization Group and Fixed Points in Quantum Field Theory. Springer, Heidelberg/New York/Dordrecht/London (2013)zbMATHCrossRefGoogle Scholar
  81. 81.
    Husemoller, D.: Fibre Bundles. Springer, New York (1994)zbMATHCrossRefGoogle Scholar
  82. 82.
    Klaczynski, L.: Haag’s Theorem in renormalisable quantum field theory. Ph.D. Thesis, Humboldt Universität zu Berlin (2015)Google Scholar
  83. 83.
    Knapp, A.W.: Lie Groups Beyond an Introduction. Birkhäuser, Boston/Basel/Berlin (2002)zbMATHGoogle Scholar
  84. 84.
    Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, Vol. I. Interscience Publishers, New York/London (1963)zbMATHGoogle Scholar
  85. 85.
    Kounnas, C., Masiero, A., Nanopoulos, D.V., Olive, K.A.: Grand Unification with and Without Supersymmetry and Cosmological Implications. World Scientific, Singapore (1984)Google Scholar
  86. 86.
    Lancaster, T., Blundell, S. J.: Quantum Field Theory for the Gifted Amateur. Oxford University Press, Oxford (2014)zbMATHCrossRefGoogle Scholar
  87. 87.
    Langacker, P.: Grand unified theories and proton decay. Phys. Rep. 72, 185–385 (1981)CrossRefGoogle Scholar
  88. 88.
    Lawson, H.B. Jr., Michelsohn, M.-L.: Spin Geometry. Princeton University Press, Princeton, NJ (1989)zbMATHGoogle Scholar
  89. 89.
    Lee, J.M.: Introduction to Smooth Manifolds. Springer, New York/Heidelberg/Dordrecht/ London (2013)zbMATHGoogle Scholar
  90. 90.
    Leigh, R.G., Strassler, M.J.: Duality of Sp(2N c) and SO(N c) supersymmetric gauge theories with adjoint matter. Phys. Lett. B 356, 492–499 (1995)MathSciNetCrossRefGoogle Scholar
  91. 91.
    Martin, S.P.: A supersymmetry primer. arXiv:hep-ph/9709356Google Scholar
  92. 92.
    Mayer, M.E.: Review: David D. Bleecker, Gauge theory and variational principles. Bull. Am. Math. Soc. (N.S.) 9, 83–92 (1983)Google Scholar
  93. 93.
    Meinrenken, E.: Clifford Algebras and Lie Theory. Springer, Berlin/Heidelberg (2013)zbMATHCrossRefGoogle Scholar
  94. 94.
    Milnor, J.: On manifolds homeomorphic to the 7-sphere. Ann. Math. 64, 399–405 (1956)MathSciNetzbMATHCrossRefGoogle Scholar
  95. 95.
    Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. W. H. Freeman and Company, New York (1973)Google Scholar
  96. 96.
    Mohapatra, R.N.: Unification and Supersymmetry. The Frontiers of Quark-Lepton Physics. Springer, New York/Berlin/Heidelberg (2003)zbMATHGoogle Scholar
  97. 97.
    Montgomery, D., Zippin, L.: Small subgroups of finite-dimensional groups. Ann. Math. 56, 213–241 (1952)MathSciNetzbMATHCrossRefGoogle Scholar
  98. 98.
    Moore, J.D.: Lectures on Seiberg–Witten Invariants. Springer, Berlin/Heidelberg/New York (2001)zbMATHGoogle Scholar
  99. 99.
    Morgan, J.W.: The Seiberg–Witten Equations and Applications to the Topology of Smooth Four-Manifolds. Princeton University Press, Princeton, NJ (1996)zbMATHGoogle Scholar
  100. 100.
    Mosel, U.: Fields, Symmetries, and Quarks. Springer, Berlin/Heidelberg (1999)zbMATHCrossRefGoogle Scholar
  101. 101.
    Naber, G.L.: Topology, Geometry and Gauge Fields. Foundations. Springer, New York (2011)zbMATHGoogle Scholar
  102. 102.
    Naber, G.L.: Topology, Geometry and Gauge Fields. Interactions. Springer, New York (2011)zbMATHGoogle Scholar
  103. 103.
    Nakahara, M.: Geometry, Topology and Physics, 2nd edn. IOP Publishing Ltd, Bristol/ Philadelphia (2003)zbMATHGoogle Scholar
  104. 104.
    O’Raifeartaigh, L.: Group Structure of Gauge Theories. Cambridge University Press, Cambridge (1986)zbMATHCrossRefGoogle Scholar
  105. 105.
    Patrignani, C. et al. (Particle Data Group): 2016 Review of particle physics. Chin. Phys. C 40, 100001 (2016).
  106. 106.
    Patrignani, C. et al. (Particle Data Group): 2016 Review of particle physics. Particle listings. Chin. Phys. C 40, 100001 (2016).
  107. 107.
    Patrignani, C. et al. (Particle Data Group): 2016 Review of particle physics. Particle listings. Neutrino mixing. Chin. Phys. C 40, 100001 (2016).
  108. 108.
    Patrignani, C. et al. (Particle Data Group): 2016 Review of particle physics. Reviews, tables, and plots. 1. Physical constants. Chin. Phys. C 40, 100001 (2016).
  109. 109.
    Patrignani, C. et al. (Particle Data Group): 2016 Review of particle physics. Reviews, tables, and plots. 10. Electroweak model and constraints on new physics. Chin. Phys. C 40, 100001 (2016).
  110. 110.
    Patrignani, C. et al. (Particle Data Group): 2016 Review of particle physics. Reviews, tables, and plots. 12. The CKM quark-mixing matrix. Chin. Phys. C 40, 100001 (2016).
  111. 111.
    Patrignani, C. et al. (Particle Data Group): 2016 Review of particle physics. Reviews, tables, and plots. 16. Grand unified theories. Chin. Phys. C 40, 100001 (2016).
  112. 112.
    Pich, A.: The Standard Model of electroweak interactions. arXiv:1201.0537 [hep-ph]Google Scholar
  113. 113.
    Quigg, C.: Gauge Theories of the Strong, Weak, and Electromagnetic Interactions. Westview Press, Boulder, Colorado (1997)zbMATHGoogle Scholar
  114. 114.
    Robinson, M.: Symmetry and the Standard Model. Mathematics and Particle Physics. Springer, New York/Dordrecht/Heidelberg/London (2011)zbMATHCrossRefGoogle Scholar
  115. 115.
    Roe, J.: Elliptic Operators, Topology and Asymptotic Methods. Longman Scientific & Technical, Harlow (1988)zbMATHGoogle Scholar
  116. 116.
    Roman, P.: Introduction to Quantum Field Theory. Wiley, New York/London/Sydney/Toronto (1969)zbMATHGoogle Scholar
  117. 117.
    Royal Swedish Academy of Sciences: The official web site of the nobel prize.
  118. 118.
    Royal Swedish Academy of Sciences: Asymptotic freedom and quantum chromodynamics: the key to the understanding of the strong nuclear forces. Advanced information on the Nobel Prize in Physics, 5 October 2004.
  119. 119.
    Royal Swedish Academy of Sciences: Class of Physics. Broken symmetries. Scientific Background on the Nobel Prize in Physics 2008.
  120. 120.
    Royal Swedish Academy of Sciences: Class of Physics. The BEH-mechanism, interactions with short range forces and scalar particles. Scientific Background on the Nobel Prize in Physics 2013.
  121. 121.
    Royal Swedish Academy of Sciences: Class of Physics. Neutrino oscillations. Scientific Background on the Nobel Prize in Physics 2015.
  122. 122.
    Rudolph, G., Schmidt, M.: Differential Geometry and Mathematical Physics. Part I. Manifolds, Lie Groups and Hamiltonian Systems. Springer Netherlands, Dordrecht (2013)Google Scholar
  123. 123.
    Rudolph, G., Schmidt, M.: Differential Geometry and Mathematical Physics. Part II. Fibre Bundles, Topology and Gauge Fields. Springer Netherlands, Dordrecht (2017)Google Scholar
  124. 124.
    Ryder, L.H.: Quantum Field Theory. Cambridge University Press, Cambridge (1996)zbMATHCrossRefGoogle Scholar
  125. 125.
    Schwartz, M.D.: Quantum Field Theory and the Standard Model. Cambridge University Press, Cambridge (2014)Google Scholar
  126. 126.
    Seiberg, N.: Five dimensional SUSY field theories, non-trivial fixed points and string dynamics. Phys. Lett. B 388, 753–760 (1996)MathSciNetCrossRefGoogle Scholar
  127. 127.
    Seiberg, N., Witten, E.: Electric-magnetic duality, monopole condensation, and confinement in N = 2 supersymmetric Yang–Mills theory. Nucl. Phys. B 426, 19–52 (1994). Erratum: Nucl. Phys. B 430, 485–486 (1994)zbMATHGoogle Scholar
  128. 128.
    Seiberg, N., Witten, E.: Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD. Nucl. Phys. B 431, 484–550 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  129. 129.
    Sepanski, M.R.: Compact Lie Groups. Springer Science+Business Media LLC, New York (2007)zbMATHCrossRefGoogle Scholar
  130. 130.
    Serre, J.-P.: Lie Algebras and Lie Groups. 1964 Lectures given at Harvard University. Springer, Berlin/Heidelberg (1992)Google Scholar
  131. 131.
    Slansky, R.: Group theory for unified model building. Phys. Rep. 79, 1–128 (1981)MathSciNetCrossRefGoogle Scholar
  132. 132.
    Srednicki, M.: Quantum Field Theory. Cambridge University Press, Cambridge (2007)zbMATHCrossRefGoogle Scholar
  133. 133.
    Steenrod, N.: The Topology of Fibre Bundles. Princeton University Press, Princeton (1951)zbMATHCrossRefGoogle Scholar
  134. 134.
    Streater, R.F., Wightman, A.S.: PCT, Spin and Statistics, and All That. Princeton University Press, Princeton, NJ (2000)zbMATHGoogle Scholar
  135. 135.
    Tao, T.: Hilbert’s Fifth Problem and Related Topics. Graduate Studies in Mathematics, Vol. 153. American Mathematical Society, Providence, RI (2014)Google Scholar
  136. 136.
    Taubes, C.H.: Differential Geometry. Bundles, Connections, Metrics and Curvature. Oxford University Press, Oxford (2011)zbMATHCrossRefGoogle Scholar
  137. 137.
    Thomson, M.: Modern Particle Physics. Cambridge University Press, Cambridge (2013)Google Scholar
  138. 138.
    Vafa, C., Zwiebach, B.: N = 1 dualities of SO and USp gauge theories and T-duality of string theory. Nucl. Phys. B 506, 143–156 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  139. 139.
    van den Ban, E.P.: Notes on quotients and group actions. Fall 2006. Universiteit UtrechtGoogle Scholar
  140. 140.
    Van Proeyen, A.: Tools for supersymmetry. arXiv:hep-th/9910030Google Scholar
  141. 141.
    van Vulpen, I.: The Standard Model Higgs boson. Part of the Lecture Particle Physics II, University of Amsterdam Particle Physics Master 2013–2014Google Scholar
  142. 142.
    Warner, F.W.: Foundations of Differentiable Manifolds and Lie Groups. Springer, New York (2010)Google Scholar
  143. 143.
    Weinberg, S.: The Quantum Theory of Fields, Vol. I. Foundations. Cambridge University Press, Cambridge (1995)CrossRefGoogle Scholar
  144. 144.
    Weinberg, S.: The Quantum Theory of Fields, Vol. II. Modern Applications. Cambridge University Press, Cambridge (1996)zbMATHCrossRefGoogle Scholar
  145. 145.
    Weinberg, S.: The Quantum Theory of Fields, Vol. III. Supersymmetry. Cambridge University Press, Cambridge (2005)zbMATHGoogle Scholar
  146. 146.
    Wess, J., Bagger, J.: Supersymmetry and Supergravity, 2nd edn. Princeton University Press, Princeton, NJ (1992)zbMATHGoogle Scholar
  147. 147.
    Wilczek, F.: Decays of heavy vector mesons into Higgs particles. Phys. Rev. Lett. 39, 1304 (1977)CrossRefGoogle Scholar
  148. 148.
    Witten, E.: Quest for unification. arXiv:hep-ph/0207124Google Scholar
  149. 149.
    Witten, E.: Chiral ring of Sp(N) and SO(N) supersymmetric gauge theory in four dimensions. Chin. Ann. Math. 24, 403 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  150. 150.
    Witten, E.: Newton lecture 2010: String theory and the universe. Available at Cited 20 Nov 2016
  151. 151.
    Yamamoto, K.: SU(7) Grand Unified Theory. Ph.D. thesis, Kyoto University (1981)Google Scholar
  152. 152.
    Zhang, F.: Quaternions and matrices of quaternions. Linear Algebra Appl. 251, 21–57 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  153. 153.
    Ziller, W.: Lie Groups. Representation theory and symmetric spaces. Lecture Notes, University of Pennsylvania, Fall 2010. Available at Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Mark J. D. Hamilton
    • 1
  1. 1.Department of MathematicsLudwig-Maximilian University of MunichMunichGermany

Personalised recommendations