Skip to main content

Chapter 7 The Classical Lagrangians of Gauge Theories

  • Chapter
  • First Online:
  • 7286 Accesses

Part of the book series: Universitext ((UTX))

Abstract

Lagrangians can be categorized depending on which types of fields and interactions they involve: there are Lagrangians for free fields, Lagrangians for a single interacting field and Lagrangians for several interacting fields.In this chapter we will discuss the Lagrangians that appear in the Standard Model: the Yang-Mills-Lagrangian, the Klein-Gordon and Higgs Lagrangian, and the Dirac Lagrangian, as well as Yukawa couplings.

This is a preview of subscription content, log in via an institution.

Notes

  1. 1.

    I thank Anthony Britto for pointing out this reference.

  2. 2.

    An exception, that we do not discuss in this book, is the topological theta term \(\left \langle F_{M}^{A},{\ast}F_{M}^{A}\right \rangle _{\mathrm{Ad}(P)}\), that appears in some modifications of QCD and in supersymmetric gauge theories.

  3. 3.

    There is another concept of unitarity (unitarity of the S-matrix, i.e. of time evolution) that we do not consider here.

References

  1. Abe, K. et al. (The T2K Collaboration): First combined analysis of neutrino and antineutrino oscillations at T2K. arXiv:1701.00432

    Google Scholar 

  2. Adams, J.F.: On the non-existence of elements of Hopf invariant one. Ann. Math. 72, 20–104 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  3. Adams, J.F.: Vector fields on spheres. Ann. Math. 75, 603–632 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  4. Argyres, P.C.: An introduction to global supersymmetry. Lecture notes, Cornell University 2001. Available at http://homepages.uc.edu/~argyrepc/cu661-gr-SUSY/index.html

    Google Scholar 

  5. Atiyah, M.F.: K-Theory. Notes by D.W. Anderson. W.A. Benjamin, New York/Amsterdam (1967)

    MATH  Google Scholar 

  6. Atiyah, M.F., Bott, R.: The Yang–Mills equations over Riemann surfaces. Phil. Trans. R. Soc. Lond. A 308, 523–615 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  7. Atiyah, M.F., Bott, R., Shapiro, A.: Clifford modules. Topology 3, 3–38 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  8. Baez, J.C.: The octonions. Bull. Am. Math. Soc. (N.S.) 39, 145–205 (2002); Erratum: Bull. Am. Math. Soc. (N.S.) 42, 213 (2005)

    Google Scholar 

  9. Baez, J., Huerta, J.: The algebra of grand unified theories. Bull. Am. Math. Soc. (N.S.) 47, 483–552 (2010)

    Google Scholar 

  10. Bailin, D., Love, A.: Introduction to Gauge Field Theory. Institute of Physics Publishing, Bristol/Philadelphia (1993)

    MATH  Google Scholar 

  11. Ball. P.: Nuclear masses calculated from scratch. Nature, published online 20 November 2008. doi:10.1038/news.2008.1246

    Google Scholar 

  12. Barut, A.O., Raczka, R.: Theory of Group Representations and Applications. Polish Scientific Publishers, Warszawa (1980)

    MATH  Google Scholar 

  13. Baum, H.: Spin-Strukturen und Dirac-Operatoren über pseudoriemannschen Mannigfaltigkeiten. Teubner Verlagsgesellschaft, Leipzig (1981)

    MATH  Google Scholar 

  14. Baum, H.: Eichfeldtheorie. Springer, Berlin/Heidelberg (2014)

    Book  MATH  Google Scholar 

  15. Berline, N., Getzler, E., Vergne, M.: Heat Kernels and Dirac Operators. Springer, Berlin/Heidelberg (2004)

    MATH  Google Scholar 

  16. Bleecker, D.: Gauge Theory and Variational Principles. Addison-Wesley Publishing Company, Reading, MA (1981)

    MATH  Google Scholar 

  17. Bogolubov, N.N., Logunov, A.A., Todorov, I.T.: Introduction to Axiomatic Quantum Field Theory. W. A. Benjamin, Reading, MA (1975)

    Google Scholar 

  18. Borsanyi, Sz. et al: Ab initio calculation of the neutron-proton mass difference. Science 347(6229), 1452–1455 (2015)

    Google Scholar 

  19. Bott, M.R.: An application of the Morse theory to the topology of Lie-groups, Bull. Soc. Math. France 84, 251–281 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bourguignon, J.-P., Hijazi, O., Milhorat, J.-L., Moroianu, A., Moroianu, S.: A Spinorial Approach to Riemannian and Conformal Geometry. European Mathematical Society, Zürich (2015)

    Book  MATH  Google Scholar 

  21. Brambilla, N. et al.: QCD and strongly coupled gauge theories: challenges and perspectives. Eur. Phys. J. C 74, 2981 (2014)

    Article  Google Scholar 

  22. Branco, G.C., Lavoura, L., Silva, J.P.: CP Violation. Oxford University Press, Oxford (1999)

    Google Scholar 

  23. Bredon, G.E.: Introduction to Compact Transformation Groups. Academic Press, New York/London (1972)

    MATH  Google Scholar 

  24. Bröcker, T., tom Dieck, T.: Representations of Compact Lie Groups. Springer, Berlin/Heidelberg/New York (2010)

    Google Scholar 

  25. Bröcker, T., Jänich, K.: Einführung in die Differentialtopologie. Springer, Berlin/Heidelberg/New York (1990)

    MATH  Google Scholar 

  26. Bryant, R.L.: Metrics with exceptional holonomy. Ann. Math. 126, 525–576 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  27. Bryant, R.L.: Submanifolds and special structures on the octonians. J. Differ. Geom. 17, 185–232 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  28. Budinich, R., Trautman, A.: The Spinorial Chessboard. Springer, Berlin/Heidelberg (1988)

    Book  MATH  Google Scholar 

  29. Bueno, A. et al.: Nucleon decay searches with large liquid Argon TPC detectors at shallow depths: atmospheric neutrinos and cosmogenic backgrounds. JHEP 0704, 041 (2007)

    Article  Google Scholar 

  30. Čap, A., Slovák, J.: Parabolic Geometries I: Background and General Theory. American Mathematical Society, Providence, RI (2009)

    Book  MATH  Google Scholar 

  31. CERN Press Release: CERN experiments observe particle consistent with long-sought Higgs boson. Available at http://press.cern/press-releases/2012/07/cern-experiments-observe-particle-consistent-long-sought-higgs-boson

  32. Chaichian, M., Nelipa, N.F.: Introduction to Gauge Field Theories. Springer, Berlin/Heidelberg/New York/Tokyo (1984)

    Book  Google Scholar 

  33. Cheng, T.-P., Li, L.-F.: Gauge Theory of Elementary Particle Physics. Oxford University Press, Oxford (1988)

    Google Scholar 

  34. Chevalley, C.: Theory of Lie Groups I. Princeton University Press, Princeton (1946)

    MATH  Google Scholar 

  35. Chevalley, C.: The Algebraic Theory of Spinors and Clifford Algebras. Collected Works, Vol. 2. Springer, Berlin/Heidelberg (1997)

    Google Scholar 

  36. Chivukula, R.S.: The origin of mass in QCD. arXiv:hep-ph/0411198

    Google Scholar 

  37. Clay Mathematics Institute: Millenium problems. Yang–Mills and mass gap. Available at http://www.claymath.org/millennium-problems/yang--mills-and-mass-gap

  38. Costello, K.: Renormalization and Effective Field Theory. Mathematical Surveys and Monographs, Vol. 170. American Mathematical Society, Providence, RI (2011)

    Google Scholar 

  39. Darling, R.W.R.: Differential Forms and Connections. Cambridge University Press, Cambridge (1994)

    Book  MATH  Google Scholar 

  40. D’Auria, R., Ferrara, S., Lledó, M.A., Varadarajan, V.S.: Spinor algebras. J. Geom. Phys. 40, 101–129 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  41. Derdzinski, A.: Geometry of the Standard Model of Elementary Particles. Springer, Berlin/Heidelberg (1992)

    Book  MATH  Google Scholar 

  42. Dissertori, G., Knowles, I., Schmelling, M.: Quantum Chromodynamics. High Energy Experiments and Theory. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  43. Drexlin, G., Hannen, V., Mertens, S., Weinheimer, C.: Current direct neutrino mass experiments. Adv. High Energy Phys. 2013, Article ID 293986 (2013)

    Article  Google Scholar 

  44. Dürr, S. et al.: Ab initio determination of light hadron masses. Science 322, 1224–1227 (2008)

    Article  Google Scholar 

  45. Duncan, A.: The Conceptual Framework of Quantum Field Theory. Oxford University Press, Oxford (2013)

    MATH  Google Scholar 

  46. Dynkin, E.B.: Semisimple subalgebras of the semisimple Lie algebras. (Russian) Mat. Sbornik 30, 349–462 (1952); English translation: Am. Math. Soc. Transl. Ser. 2 6, 111–244 (1957)

    Google Scholar 

  47. Elliott, C.: Gauge Theoretic Aspects of the Geometric Langlands Correspondence. Ph.D. Thesis, Northwestern University (2016)

    Google Scholar 

  48. Englert, F., Brout R.: Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett. 13, 321–323 (1964)

    Article  MathSciNet  Google Scholar 

  49. Figueroa-O’Farrill, J.: Majorana Spinors. Lecture Notes. University of Edinburgh (2015)

    Google Scholar 

  50. Flory, M., Helling, R.C., Sluka, C.: How I learned to stop worrying and love QFT. arXiv:1201.2714 [math-ph]

    Google Scholar 

  51. Folland, G.B.: Quantum Field Theory. A Tourist Guide for Mathematicians. American Mathematical Society, Providence, Rhodes Island (2008)

    Book  MATH  Google Scholar 

  52. Freed, D.S.: Classical Chern–Simons theory, 1. Adv. Math. 113, 237–303 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  53. Freed, D.S.: Five Lectures on Supersymmetry. American Mathematical Society, Providence, RI (1999)

    MATH  Google Scholar 

  54. Freedman, D.Z., Van Proeyen, A.: Supergravity. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  55. Friedrich, T.: Dirac Operators in Riemannian Geometry. American Mathematical Society, Providence, RI (2000)

    Book  MATH  Google Scholar 

  56. Fritzsch, H., Minkowski, P.: Unified interactions of leptons and hadrons. Ann. Phys. 93, 193–266 (1975)

    Article  MathSciNet  Google Scholar 

  57. Geiges, H.: An Introduction to Contact Topology. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  58. Georgi, H.: The state of the art – gauge theories. In: Carlson, C.E. (ed.) Particles and Fields – 1974: Proceedings of the Williamsburg Meeting of APS/DPF, pp. 575–582. AIP, New York (1975)

    Google Scholar 

  59. Georgi, H., Glashow, S.L.: Unity of all elementary-particle forces. Phys. Rev. Lett. 32, 438–441 (1974)

    Article  Google Scholar 

  60. Georgi, H.M., Glashow, S.L., Machacek, M.E., Nanopoulos, D.V.: Higgs Bosons from two-gluon annihilation in proton-proton collisions. Phys. Rev. Lett. 40 692 (1978)

    Article  Google Scholar 

  61. Georgi, H., Quinn, H.R., Weinberg, S.: Hierarchy of interactions in unified gauge theories. Phys. Rev. Lett. 33, 451–454 (1974)

    Article  Google Scholar 

  62. Giunti, C., Kim, C.W.: Fundamentals of Neutrino Physics and Astrophysics. Oxford University Press, Oxford (2007)

    Book  Google Scholar 

  63. Glashow, S.L.: Trinification of all elementary particle forces. In: 5th Workshop on Grand Unification, Providence, RI, April 12–14, 1984

    Google Scholar 

  64. Glashow, S.L., Iliopoulos, J., Maiani, L.: Weak interactions with lepton-hadron symmetry. Phys. Rev. D 2, 1285–1292 (1970)

    Article  Google Scholar 

  65. Gleason, A.M.: Groups without small subgroups. Ann. Math. 56, 193–212 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  66. Grimus, W., Rebelo, M.N.: Automorphisms in gauge theories and the definition of CP and P. Phys. Rep. 281, 239–308 (1997)

    Article  MathSciNet  Google Scholar 

  67. Guralnik, G.S., Hagen, C.R., Kibble, T.W.B.: Global conservation laws and massless particles. Phys. Rev. Lett. 13, 585–587 (1964)

    Article  Google Scholar 

  68. Gürsey, F., Ramond, P., Sikivie, P.: A universal gauge theory model based on E6. Phys. Lett. B 60, 177–180 (1976)

    Article  Google Scholar 

  69. Haag, R.: Local Quantum Physics. Fields, Particles, Algebras. Springer, Berlin/ Heidelberg/New York (1996)

    Book  MATH  Google Scholar 

  70. Hall, B.C.: Lie Groups, Lie Algebras and Representations. An Elementary Introduction. Springer, Cham Heidelberg/New York/Dordrecht/London (2016)

    Google Scholar 

  71. Halzen, F., Martin, A.D.: Quarks and Leptons. An Introductory Course in Modern Particle Physics. Wiley, New York/Chichester/Brisbane/Toronto/Singapore (1984)

    Google Scholar 

  72. Hartanto, A., Handoko L.T.: Grand unified theory based on the SU(6) symmetry. Phys. Rev. D 71, 095013 (2005)

    Article  Google Scholar 

  73. Harvey, R., Lawson, H.B.: Calibrated geometries. Acta Math. 148, 47–157 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  74. Hatcher, A.: Vector bundles and K-theory. Version 2.1, May 2009

    Google Scholar 

  75. Heeck, J.: Interpretation of lepton flavor violation. Phys. Rev. D 95, 015022 (2017)

    Article  Google Scholar 

  76. Higgs, P.W.: Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13, 508–509 (1964)

    Article  MathSciNet  Google Scholar 

  77. Hilgert, J., Neeb, K.-H.: Structure and Geometry of Lie Groups. Springer, New York/ Dordrecht/Heidelberg/London (2012)

    Book  MATH  Google Scholar 

  78. Hirsch, M.W.: Differential Topology. Springer, New York/Berlin/Heidelberg (1997)

    Google Scholar 

  79. Hoddeson, L., Brown, L., Riordan, M., Dresden, M. (ed.): The Rise of the Standard Model: Particle Physics in the 1960s and 1970s. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  80. Hollowood, T.J.: Renormalization Group and Fixed Points in Quantum Field Theory. Springer, Heidelberg/New York/Dordrecht/London (2013)

    Book  MATH  Google Scholar 

  81. Husemoller, D.: Fibre Bundles. Springer, New York (1994)

    Book  MATH  Google Scholar 

  82. Klaczynski, L.: Haag’s Theorem in renormalisable quantum field theory. Ph.D. Thesis, Humboldt Universität zu Berlin (2015)

    Google Scholar 

  83. Knapp, A.W.: Lie Groups Beyond an Introduction. Birkhäuser, Boston/Basel/Berlin (2002)

    MATH  Google Scholar 

  84. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, Vol. I. Interscience Publishers, New York/London (1963)

    MATH  Google Scholar 

  85. Kounnas, C., Masiero, A., Nanopoulos, D.V., Olive, K.A.: Grand Unification with and Without Supersymmetry and Cosmological Implications. World Scientific, Singapore (1984)

    Google Scholar 

  86. Lancaster, T., Blundell, S. J.: Quantum Field Theory for the Gifted Amateur. Oxford University Press, Oxford (2014)

    Book  MATH  Google Scholar 

  87. Langacker, P.: Grand unified theories and proton decay. Phys. Rep. 72, 185–385 (1981)

    Article  Google Scholar 

  88. Lawson, H.B. Jr., Michelsohn, M.-L.: Spin Geometry. Princeton University Press, Princeton, NJ (1989)

    MATH  Google Scholar 

  89. Lee, J.M.: Introduction to Smooth Manifolds. Springer, New York/Heidelberg/Dordrecht/ London (2013)

    MATH  Google Scholar 

  90. Leigh, R.G., Strassler, M.J.: Duality of Sp(2N c ) and SO(N c ) supersymmetric gauge theories with adjoint matter. Phys. Lett. B 356, 492–499 (1995)

    Article  MathSciNet  Google Scholar 

  91. Martin, S.P.: A supersymmetry primer. arXiv:hep-ph/9709356

    Google Scholar 

  92. Mayer, M.E.: Review: David D. Bleecker, Gauge theory and variational principles. Bull. Am. Math. Soc. (N.S.) 9, 83–92 (1983)

    Google Scholar 

  93. Meinrenken, E.: Clifford Algebras and Lie Theory. Springer, Berlin/Heidelberg (2013)

    Book  MATH  Google Scholar 

  94. Milnor, J.: On manifolds homeomorphic to the 7-sphere. Ann. Math. 64, 399–405 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  95. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. W. H. Freeman and Company, New York (1973)

    Google Scholar 

  96. Mohapatra, R.N.: Unification and Supersymmetry. The Frontiers of Quark-Lepton Physics. Springer, New York/Berlin/Heidelberg (2003)

    MATH  Google Scholar 

  97. Montgomery, D., Zippin, L.: Small subgroups of finite-dimensional groups. Ann. Math. 56, 213–241 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  98. Moore, J.D.: Lectures on Seiberg–Witten Invariants. Springer, Berlin/Heidelberg/New York (2001)

    MATH  Google Scholar 

  99. Morgan, J.W.: The Seiberg–Witten Equations and Applications to the Topology of Smooth Four-Manifolds. Princeton University Press, Princeton, NJ (1996)

    MATH  Google Scholar 

  100. Mosel, U.: Fields, Symmetries, and Quarks. Springer, Berlin/Heidelberg (1999)

    Book  MATH  Google Scholar 

  101. Naber, G.L.: Topology, Geometry and Gauge Fields. Foundations. Springer, New York (2011)

    MATH  Google Scholar 

  102. Naber, G.L.: Topology, Geometry and Gauge Fields. Interactions. Springer, New York (2011)

    MATH  Google Scholar 

  103. Nakahara, M.: Geometry, Topology and Physics, 2nd edn. IOP Publishing Ltd, Bristol/ Philadelphia (2003)

    MATH  Google Scholar 

  104. O’Raifeartaigh, L.: Group Structure of Gauge Theories. Cambridge University Press, Cambridge (1986)

    Book  MATH  Google Scholar 

  105. Patrignani, C. et al. (Particle Data Group): 2016 Review of particle physics. Chin. Phys. C 40, 100001 (2016). http://www-pdg.lbl.gov/

  106. Patrignani, C. et al. (Particle Data Group): 2016 Review of particle physics. Particle listings. Chin. Phys. C 40, 100001 (2016). http://www-pdg.lbl.gov/

  107. Patrignani, C. et al. (Particle Data Group): 2016 Review of particle physics. Particle listings. Neutrino mixing. Chin. Phys. C 40, 100001 (2016). http://www-pdg.lbl.gov/

  108. Patrignani, C. et al. (Particle Data Group): 2016 Review of particle physics. Reviews, tables, and plots. 1. Physical constants. Chin. Phys. C 40, 100001 (2016). http://www-pdg.lbl.gov/

  109. Patrignani, C. et al. (Particle Data Group): 2016 Review of particle physics. Reviews, tables, and plots. 10. Electroweak model and constraints on new physics. Chin. Phys. C 40, 100001 (2016). http://www-pdg.lbl.gov/

  110. Patrignani, C. et al. (Particle Data Group): 2016 Review of particle physics. Reviews, tables, and plots. 12. The CKM quark-mixing matrix. Chin. Phys. C 40, 100001 (2016). http://www-pdg.lbl.gov/

  111. Patrignani, C. et al. (Particle Data Group): 2016 Review of particle physics. Reviews, tables, and plots. 16. Grand unified theories. Chin. Phys. C 40, 100001 (2016). http://www-pdg.lbl.gov/

  112. Pich, A.: The Standard Model of electroweak interactions. arXiv:1201.0537 [hep-ph]

    Google Scholar 

  113. Quigg, C.: Gauge Theories of the Strong, Weak, and Electromagnetic Interactions. Westview Press, Boulder, Colorado (1997)

    MATH  Google Scholar 

  114. Robinson, M.: Symmetry and the Standard Model. Mathematics and Particle Physics. Springer, New York/Dordrecht/Heidelberg/London (2011)

    Book  MATH  Google Scholar 

  115. Roe, J.: Elliptic Operators, Topology and Asymptotic Methods. Longman Scientific & Technical, Harlow (1988)

    MATH  Google Scholar 

  116. Roman, P.: Introduction to Quantum Field Theory. Wiley, New York/London/Sydney/Toronto (1969)

    MATH  Google Scholar 

  117. Royal Swedish Academy of Sciences: The official web site of the nobel prize. https://www.nobelprize.org/nobel_prizes/physics/

  118. Royal Swedish Academy of Sciences: Asymptotic freedom and quantum chromodynamics: the key to the understanding of the strong nuclear forces. Advanced information on the Nobel Prize in Physics, 5 October 2004. https://www.nobelprize.org/nobel_prizes/physics/laureates/2004/advanced.html

  119. Royal Swedish Academy of Sciences: Class of Physics. Broken symmetries. Scientific Background on the Nobel Prize in Physics 2008. https://www.nobelprize.org/nobel_prizes/physics/laureates/2008/advanced.html

  120. Royal Swedish Academy of Sciences: Class of Physics. The BEH-mechanism, interactions with short range forces and scalar particles. Scientific Background on the Nobel Prize in Physics 2013. https://www.nobelprize.org/nobel_prizes/physics/laureates/2013/advanced.html

  121. Royal Swedish Academy of Sciences: Class of Physics. Neutrino oscillations. Scientific Background on the Nobel Prize in Physics 2015. https://www.nobelprize.org/nobel_prizes/physics/laureates/2015/advanced.html

  122. Rudolph, G., Schmidt, M.: Differential Geometry and Mathematical Physics. Part I. Manifolds, Lie Groups and Hamiltonian Systems. Springer Netherlands, Dordrecht (2013)

    Google Scholar 

  123. Rudolph, G., Schmidt, M.: Differential Geometry and Mathematical Physics. Part II. Fibre Bundles, Topology and Gauge Fields. Springer Netherlands, Dordrecht (2017)

    Google Scholar 

  124. Ryder, L.H.: Quantum Field Theory. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  125. Schwartz, M.D.: Quantum Field Theory and the Standard Model. Cambridge University Press, Cambridge (2014)

    Google Scholar 

  126. Seiberg, N.: Five dimensional SUSY field theories, non-trivial fixed points and string dynamics. Phys. Lett. B 388, 753–760 (1996)

    Article  MathSciNet  Google Scholar 

  127. Seiberg, N., Witten, E.: Electric-magnetic duality, monopole condensation, and confinement in N = 2 supersymmetric Yang–Mills theory. Nucl. Phys. B 426, 19–52 (1994). Erratum: Nucl. Phys. B 430, 485–486 (1994)

    MATH  Google Scholar 

  128. Seiberg, N., Witten, E.: Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD. Nucl. Phys. B 431, 484–550 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  129. Sepanski, M.R.: Compact Lie Groups. Springer Science+Business Media LLC, New York (2007)

    Book  MATH  Google Scholar 

  130. Serre, J.-P.: Lie Algebras and Lie Groups. 1964 Lectures given at Harvard University. Springer, Berlin/Heidelberg (1992)

    Google Scholar 

  131. Slansky, R.: Group theory for unified model building. Phys. Rep. 79, 1–128 (1981)

    Article  MathSciNet  Google Scholar 

  132. Srednicki, M.: Quantum Field Theory. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  133. Steenrod, N.: The Topology of Fibre Bundles. Princeton University Press, Princeton (1951)

    Book  MATH  Google Scholar 

  134. Streater, R.F., Wightman, A.S.: PCT, Spin and Statistics, and All That. Princeton University Press, Princeton, NJ (2000)

    MATH  Google Scholar 

  135. Tao, T.: Hilbert’s Fifth Problem and Related Topics. Graduate Studies in Mathematics, Vol. 153. American Mathematical Society, Providence, RI (2014)

    Google Scholar 

  136. Taubes, C.H.: Differential Geometry. Bundles, Connections, Metrics and Curvature. Oxford University Press, Oxford (2011)

    Book  MATH  Google Scholar 

  137. Thomson, M.: Modern Particle Physics. Cambridge University Press, Cambridge (2013)

    Google Scholar 

  138. Vafa, C., Zwiebach, B.: N = 1 dualities of SO and USp gauge theories and T-duality of string theory. Nucl. Phys. B 506, 143–156 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  139. van den Ban, E.P.: Notes on quotients and group actions. Fall 2006. Universiteit Utrecht

    Google Scholar 

  140. Van Proeyen, A.: Tools for supersymmetry. arXiv:hep-th/9910030

    Google Scholar 

  141. van Vulpen, I.: The Standard Model Higgs boson. Part of the Lecture Particle Physics II, University of Amsterdam Particle Physics Master 2013–2014

    Google Scholar 

  142. Warner, F.W.: Foundations of Differentiable Manifolds and Lie Groups. Springer, New York (2010)

    Google Scholar 

  143. Weinberg, S.: The Quantum Theory of Fields, Vol. I. Foundations. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  144. Weinberg, S.: The Quantum Theory of Fields, Vol. II. Modern Applications. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  145. Weinberg, S.: The Quantum Theory of Fields, Vol. III. Supersymmetry. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  146. Wess, J., Bagger, J.: Supersymmetry and Supergravity, 2nd edn. Princeton University Press, Princeton, NJ (1992)

    MATH  Google Scholar 

  147. Wilczek, F.: Decays of heavy vector mesons into Higgs particles. Phys. Rev. Lett. 39, 1304 (1977)

    Article  Google Scholar 

  148. Witten, E.: Quest for unification. arXiv:hep-ph/0207124

    Google Scholar 

  149. Witten, E.: Chiral ring of Sp(N) and SO(N) supersymmetric gauge theory in four dimensions. Chin. Ann. Math. 24, 403 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  150. Witten, E.: Newton lecture 2010: String theory and the universe. Available at http://www.iop.org/resources/videos/lectures/page_44292.html Cited 20 Nov 2016

  151. Yamamoto, K.: SU(7) Grand Unified Theory. Ph.D. thesis, Kyoto University (1981)

    Google Scholar 

  152. Zhang, F.: Quaternions and matrices of quaternions. Linear Algebra Appl. 251, 21–57 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  153. Ziller, W.: Lie Groups. Representation theory and symmetric spaces. Lecture Notes, University of Pennsylvania, Fall 2010. Available at https://www.math.upenn.edu/~wziller/

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hamilton, M.J.D. (2017). Chapter 7 The Classical Lagrangians of Gauge Theories. In: Mathematical Gauge Theory. Universitext. Springer, Cham. https://doi.org/10.1007/978-3-319-68439-0_7

Download citation

Publish with us

Policies and ethics