Skip to main content

Basic Elements of Unstructured Shock-Fitting: Results Achieved and Future Developments

  • Chapter
  • First Online:
Shock Fitting

Part of the book series: Shock Wave and High Pressure Phenomena ((SHOCKWAVE))

  • 599 Accesses

Abstract

Ten years have passed since the authors started developing a shock-fitting technique for unstructured grids. It is now time to make a first assessment of the state-of-the-art of the technique, highlighting its achievements, the yet un-solved issues and to outline its future developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A different approach for dealing with the shock-downstream boundary is described in [12, 25].

References

  1. Abgrall, R.: Residual distribution schemes: current status and future trends. Comput. Fluids 35(7), 641–669 (2006). https://doi.org/10.1016/j.compfluid.2005.01.007. Special Issue Dedicated to Professor Stanley G. Rubin on the Occasion of his 65th Birthday

  2. Arnone, A., Swanson, R.C.: A Navier-Stokes solver for turbomachinery applications. J. Turbomach. 115(2), 305–313 (1993). https://doi.org/10.1115/1.2929236

  3. Arnone, A., Liou, M.S., Povinelli, L.A.: Transonic cascade flow calculations using non-periodic c-type grids. Technical Report 19910011758, NASA Lewis Research Center, Cleveland, OH, United States (1991)

    Google Scholar 

  4. Arpaia, L., Ricchiuto, M., Abgrall, R.: An ale formulation for explicit runge-kutta residual distribution. J. Sci. Comput. 190(34), 1467–1482 (2014)

    Google Scholar 

  5. Bonfiglioli, A.: Fluctuation Splitting schemes for the compressible and incompressible Euler and Navier-Stokes equations. Int. J. Comput. Fluid Dyn. 14(1), 21–39 (2000). https://doi.org/10.1080/10618560008940713

  6. Bonfiglioli, A., Paciorri, R.: A mass-matrix formulation of unsteady fluctuation splitting schemes consistent with Roe’s parameter vector. Int. J. Comput. Fluid Dyn. 27(4–5), 210–227 (2013). https://doi.org/10.1080/10618562.2013.813491

  7. Bonfiglioli, A., Paciorri, R.: Convergence analysis of shock-capturing and shock-fitting solutions on unstructured grids. AIAA J. 52(7), 1404–1416 (2014). https://doi.org/10.2514/1.J052567

  8. Bonfiglioli, A., Paciorri, R., Campoli, L.: Unstructured shock-fitting calculations of transonic turbo-machinery flows. In: 11th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics, ETC (2015). http://www.euroturbo.eu/paper/ETC2015-100.pdf

  9. Bonfiglioli, A., Grottadaurea, M., Paciorri, R., Sabetta, F.: An unstructured, three-dimensional, shock-fitting solver for hypersonic flows. Comput. Fluids 73(0), 162–174 (2013). https://doi.org/10.1016/j.compfluid.2012.12.022

  10. Bonfiglioli, A., Paciorri, R., Campoli, L.: Unsteady shock-fitting for unstructured grids. Int. J. Numer. Methods Fluids 81(4), 245–261 (2016). https://doi.org/10.1002/fld.4183. Fld.4183

  11. Campoli, L., Quemar, P., Bonfiglioli, A., Ricchiuto, M.: Shock-fitting and predictor-corrector explicit ALE residual distribution. In: Onofri, M., Paciorri, R. (eds.) Shock Fitting: Classical Techniques, Recent Developments, and Memoirs of Gino Moretti, pp. 113–129. Springer International Publishing, Berlin (2017)

    Google Scholar 

  12. De Amicis, V.: An unstructured, two-dimensional, shock-fitting solver for hypersonic flows. Project report, Von Karman Institute, Chaussée de Waterloo, 72 B-1640 Rhode-St-Genèse Belgium (2015). Supervisors: Dr. Andrea Lani and Prof. Herman Deconinck

    Google Scholar 

  13. Deconinck, H., Paillère, H., Struijs, R., Roe, P.L.: Multidimensional upwind schemes based on fluctuation-splitting for systems of conservation laws. Comput. Mech. 11, 323–340 (1993). https://doi.org/10.1007/BF00350091

  14. Dolejší, V.: Anisotropic mesh adaptation for finite volume and finite element methods on triangular meshes. Comput. Vis. Sci. 1(3), 165–178 (1998). https://doi.org/10.1007/s007910050015

  15. Frey, P.J.: Yams: a fully automatic adaptive isotropic surface remeshing procedure. Rapport technique n 0252, Institut National de Recherche en Informatique et en Automatique (I.N.R.I.A.), INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France) (2001). ISSN 0249-0803

    Google Scholar 

  16. Garicano-Mena, J., Pepe, R., Lani, A., Deconinck, H.: Assessment of heat flux prediction capabilities of residual distribution method: application to atmospheric entry problems. Commun. Comput. Phys. 17(3), 682–702 (2015). https://doi.org/10.4208/cicp.070414.211114a

  17. Gnoffo, P.: Simulation of stagnation region heating in hypersonic flow on tetrahedral grids (invited). In: Fluid Dynamics and Co-located Conferences. American Institute of Aeronautics and Astronautics, Reston (2007). https://doi.org/10.2514/6.2007-3960. AIAA 2007-3960

  18. Gnoffo, P.: Multi-dimensional inviscid flux reconstruction for simulation of hypersonic heating on tetrahedral grids. In: Aerospace Sciences Meetings. American Institute of Aeronautics and Astronautics, Reston (2009). https://doi.org/10.2514/6.2009-599

  19. Gnoffo, P., White, J.A.: Computational aerothermodynamic simulation issues on unstructured grids. In: 37th AIAA Thermophysics Conference. American Institute of Aeronautics and Astronautics (AIAA), Reston (2004). https://doi.org/10.2514/6.2004-2371. AIAA-2004-2371

  20. Grasso, F., Pirozzoli, S.: Shock-wave-vortex interactions: shock and vortex deformations, and sound production. Theor. Comput. Fluid Dyn. 13(6), 421–456 (2000). https://doi.org/10.1007/s001620050121

  21. Ivanov, M.S., Bonfiglioli, A., Paciorri, R., Sabetta, F.: Computation of weak steady shock reflections by means of an unstructured shock-fitting solver. Shock Waves 20(4), 271–284 (2010). https://doi.org/10.1007/s00193-010-0266-y

  22. Kanamori, M., Suzuki, K.: Shock waves detection in two-dimensional flow based on the theory of characteristics from CFD data. J. Comput. Phys. 230(8), 3985–3082 (2011)

    Google Scholar 

  23. Kanamori, M., Suzuki, K.: Shock wave detection based on the theory of characteristics. In: Onofri, M., Paciorri, R. (eds.) Shock Fitting: Classical Techniques, Recent Developments, and Memoirs of Gino Moretti, pp. 171–189. Springer International Publishing, Berlin (2017)

    Google Scholar 

  24. Kiock, R., Lehthaus, F., Baines, N.C., Sieverding, C.H.: The transonic flow through a plane turbine cascade as measured in four european wind tunnels. J. Eng. Gas Turbines Power 108(2), 277–284 (1986). https://doi.org/10.1115/1.3239900

  25. Lani, A., De Amicis, V.: SF: An open source object-oriented platform for unstructured shock-fitting methods. In: Onofri, M., Paciorri, R. (eds.) Shock Fitting: Classical Techniques, Recent Developments, and Memoirs of Gino Moretti, pp. 85–112. Springer International Publishing, Berlin (2017)

    Google Scholar 

  26. Lani, A., Quintino, T., Kimpe, D., Deconinck, H.: The COOLFluiD framework - design solutions for high-performance object oriented scientific computing software. In: International Conference Computational Science 2005, vol. 1, pp. 281–286. Springer-Verlag, Atlanta (2005)

    Google Scholar 

  27. Lani, A., et al.: COOLFluiD Wiki page. https://github.com/andrealani/COOLFluiD/wiki (2016)

  28. Liu, J., Zou, D.: A shock-fitting technique for ALE finite-volume methods on unstructured dynamic meshes. In: Onofri, M., Paciorri, R. (eds.) Shock Fitting: Classical Techniques, Recent Developments, and Memoirs of Gino Moretti, pp. 131–149. Springer International Publishing, Berlin (2017)

    Google Scholar 

  29. Lovely, D., Haimes, R.: Shock detection from computational fluid dynamics results. AIAA-99-3285 (1999)

    Google Scholar 

  30. Ma, K.L., Rosendale, J.V., Vermeer, W.: 3D shock wave visualization on unstructured grids. In: Proceedings of 1996 Symposium on Volume Visualization, pp. 87–94, 104 (1996). https://doi.org/10.1109/SVV.1996.558049

  31. Marconi, F., Moretti, G.: Highly accurate prediction of unsteady viscous flows. Technical report, DTIC Document (1992)

    Google Scholar 

  32. Moretti, G.: On the matter of shock fitting. In: Richtmyer, R.D. (ed.) Proceedings of the Fourth International Conference on Numerical Methods in Fluid Dynamics. Lecture Notes in Physics, vol. 35, pp. 287–292. Springer, Berlin/Heidelberg (1974). https://doi.org/10.1007/bfb0019764

  33. Moretti, G.: Computation of flows with shocks. Annu. Rev. Fluid Mech. 19(1), 313–337 (1987). https://doi.org/10.1146/annurev.fl.19.010187.001525

  34. Moretti, G.: A general-purpose technique for two dimensional transonic flows. NASA Contractor Reports 194186, NASA (1987)

    Google Scholar 

  35. Moretti, G.: Thirty-six years of shock fitting. Comput. Fluids 31(4–7), 719–723 (2002)

    Google Scholar 

  36. Moretti, G.: Shock-fitting analysis. In: Onofri, M., Paciorri, R. (eds.) Shock Fitting: Classical Techniques, Recent Developments, and Memoirs of Gino Moretti, pp. 3–31. Springer International Publishing, Berlin (2017)

    Google Scholar 

  37. Moretti, G., Valorani, M.: Detection and fitting of two-dimensional shocks. Notes Numer. Fluid Mech. 20, 239–246 (1988)

    Google Scholar 

  38. Nasuti, F., Onofri, M.: Analysis of unsteady supersonic viscous flows by a shock-fitting technique. AIAA J. 34, 1428–1434 (1996)

    Google Scholar 

  39. Nasuti, F., Onofri, M.: Viscous and inviscid vortex generation during startup of rocket nozzles. AIAA J. 36(5), 809–815 (1998). https://doi.org/10.2514/2.440

  40. Onofri, M., Nasuti, F.: The physical origins of side loads in rocket nozzles. In: 35th Joint Propulsion Conference and Exhibit, Joint Propulsion Conferences. American Institute of Aeronautics and Astronautics, Reston (1999). https://doi.org/10.2514/6.1999-2587

  41. Paciorri, R., Bonfiglioli, A.: A shock-fitting technique for 2d unstructured grids. Comput. Fluids 38(3), 715–726 (2009). https://doi.org/10.1016/j.compfluid.2008.07.007

  42. Paciorri, R., Bonfiglioli, A.: Shock interaction computations on unstructured, two-dimensional grids using a shock-fitting technique. J. Comput. Phys. 230(8), 3155–3177 (2011). https://doi.org/10.1016/j.jcp.2011.01.018

  43. Paciorri, R., Bonfiglioli, A.: Recognition of shock-wave patterns from shock-capturing solutions. In: Computational Modelling of Objects Represented in Images III, pp. 91–96. CRC Press, Boca Raton (2012). https://doi.org/10.1201/b12753-17

  44. Paciorri, R., Bonfiglioli, A.: Detection of shock-waves from shock-capturing solutions. In: Spitaleri, R.M. (ed.) MASCOT11 Proceedings, IMACS Series in Computational and Applied Mathematics 17 (2013), IMACS, pp. 161–170. IMACS, Rome (2013)

    Google Scholar 

  45. Pagendarm, H., Seitz, B.: An algorithm for detection and visualization of discontinuities an scientifc data fields applied to flow data with shock waves. In: Palamidese, P. (ed.) Scientific Visualization: Advanced Software Techniques. Prentice Hall India, Delhi (1993)

    Google Scholar 

  46. Pepe, R., Bonfiglioli, A., D’Angola, A., Colonna, G., Paciorri, R.: Shock-fitting versus shock-capturing modeling of strong shocks in nonequilibrium plasmas. IEEE Trans. Plasma Sci. 42(10), 2526–2527 (2014). https://doi.org/10.1109/TPS.2014.2324493

  47. Pepe, R., Bonfiglioli, A., Paciorri, R., Lani, A., Mena, J.G., Olliver-Gooch, C.F.: Towards a modular approach for unstructured shock-fitting. WCCM XI, ECCM V, ECFD VI (2014)

    Google Scholar 

  48. Pepe, R., Bonfiglioli, A., D’Angola, A., Colonna, G., Paciorri, R.: An unstructured shock-fitting solver for hypersonic plasma flows in chemical non-equilibrium. Comput. Phys. Commun. 196, 179–193 (2015).https://doi.org/10.1016/j.cpc.2015.06.005

    Article  ADS  MathSciNet  Google Scholar 

  49. Pirozzoli, S.: Numerical methods for high-speed flows. Annu. Rev. Fluid Mech. 43(1), 163–194 (2011). https://doi.org/10.1146/annurev-fluid-122109-160718

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Ricchiuto, M.: An explicit residual based approach for shallow water flows. J. Comput. Phys. 80, 306–344 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Ricchiuto, M., Abgrall, R.: Explicit Runge-Kutta residual distribution schemes for time dependent problems: second order case. J. Comput. Phys. 229(16), 5653–5691 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Salas, M.: A Shock-Fitting Primer, 1st edn. CRC Applied Mathematics & Nonlinear Science. Chapman & Hall, London (2009)

    Book  Google Scholar 

  53. Shewchuk, J.R.: Triangle: Engineering a 2D quality mesh generator and delaunay triangulator. In: Lin, M.C., Manocha, D. (eds.) Applied Computational Geometry: Towards Geometric Engineering. Lecture Notes in Computer Science, vol. 1148, pp. 203–222. Springer, Berlin/Heidelberg (1996). From the First ACM Workshop on Applied Computational Geometry

    Google Scholar 

  54. Si, H.: TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM Trans. Math. Softw. 41(2), 11:1–11:36 (2015). https://doi.org/10.1145/2629697

  55. The CGAL Project: CGAL User and Reference Manual, 4.9 edn. CGAL Editorial Board. http://doc.cgal.org/4.9/Manual/packages.html (2016)

  56. Wu, Z., Xu, Y., Wang, W., Hu, R.: Review of shock wave detection method in CFD post-processing. Chin. J. Aeronaut. 26, 501–513 (2013)

    Article  Google Scholar 

  57. Zaide, D.W., Ollivier-Gooch, C.F.: Inserting a curve into an existing two dimensional unstructured mesh. In: Sarrate, J., Staten, M. (eds.) Proceedings of the 22nd International Meshing Roundtable, pp. 93–107. Springer International Publishing, Cham (2014)

    Chapter  Google Scholar 

  58. Zaide, D.W., Ollivier-Gooch, C.F.: Inserting a surface into an existing unstructured mesh. Int. J. Numer. Methods Eng. 106(6), 484–500 (2016). https://doi.org/10.1002/nme.5132. Nme.5132

    Article  MathSciNet  MATH  Google Scholar 

  59. Zaide, D.W., Ollivier-Gooch, C.F.: Inserting a shock surface into an existing unstructured mesh. In: Onofri, M., Paciorri, R. (eds.) Shock Fitting: Classical Techniques, Recent Developments, and Memoirs of Gino Moretti, pp. 151–169. Springer International Publishing, Berlin (2017)

    Chapter  Google Scholar 

  60. Zierep, J.: New results for the normal shock in inviscid flow at a curved surface. ZAMM - J. Appl. Math. Mech./Z. Angew. Math. Mech. 83(9), 603–610 (2003). https://doi.org/10.1002/zamm.200310051

  61. Zou, D., Xu, C., Dong, H., Liu, J.: A shock-fitting technique for cell-centered finite volume methods on unstructured dynamic meshes. J. Comput. Phys. 345, 866–882 (2017).https://doi.org/10.1016/j.jcp.2017.05.047

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato Paciorri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Paciorri, R., Bonfiglioli, A. (2017). Basic Elements of Unstructured Shock-Fitting: Results Achieved and Future Developments. In: Onofri, M., Paciorri, R. (eds) Shock Fitting. Shock Wave and High Pressure Phenomena. Springer, Cham. https://doi.org/10.1007/978-3-319-68427-7_3

Download citation

Publish with us

Policies and ethics