Skip to main content

Biogenic Synthesis of Silver Nanoparticles and Their Applications in Medicine

  • Chapter
  • First Online:
Fungal Nanotechnology

Part of the book series: Fungal Biology ((FUNGBIO))

  • 1194 Accesses

Abstract

The synthesis of metal nanoparticles is gaining momentum because of their novel chemical, optical, electrical, and magnetic properties. Several methods have been used for biofabrication of metal nanoparticles such as chemical reduction, photochemical or radiation reduction, metallic wire explosion, sonochemical and polyol methods. In order to eliminate toxic chemical emanation during these processes, green synthesis of nanoparticles using bacteria, fungi, enzyme, and plant extract is an ecofriendly alternative to the abovementioned processes.

The nanoparticles produced through this technique have attained great interest due to changes in optical, chemical, and photoelectrochemical properties and their composition, shape, and size. The nanoparticles have several important applications in the field of bio-labeling, sensors, antimicrobial agents, filters purifying drinking water, degrading pesticides, and killing human pathogenic bacteria. Furthermore, the development of nanoparticle structures can be made by employing different substrates for delivery of drugs or therapeutic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad N, Sharma S, Singh VN, Shamsi SF, Fatma A, Mehta BR (2011) Biosynthesis of silver nanoparticles from Desmodium triflorum, a novel approach towards weed utilization. Biotechnol Res Int 1:1–8

    Article  CAS  Google Scholar 

  • Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612. https://doi.org/10.1021/acs.langmuir.5b03081

    Article  CAS  PubMed  Google Scholar 

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. https://doi.org/10.3389/fmicb.2016.01984

    Article  PubMed  PubMed Central  Google Scholar 

  • Balaprasad A, Chinmay D, Absar C, Murali S (2005) Biosynthesis of gold and silver nanoparticles using emblica officinalis fruit extract, their phase transfer and transmetallation in an organic solution. J Nanosci Nanotech 5(10):1665–1671

    Article  Google Scholar 

  • Baram-Pinto D, Shukla S, Gedanken A, Sarid R (2010) Inhibition of HSV-1 attachment, entry, and cell-to-cell spread by functionalized multivalent gold nanoparticles. Small 6:1044–1050

    Article  CAS  PubMed  Google Scholar 

  • Bhainsa KC, D’Souza SF (2006) Extracellular synthesis using the fungus Aspergillus fumigates. Colloids Surf B Biointerfaces 47:152–157

    Article  Google Scholar 

  • Cao YM, Jin R, Mirkin CA (2001) DNA-modified core–shell Ag/Au nanoparticles. J Am Chem Soc 123:7961–7962

    Article  CAS  PubMed  Google Scholar 

  • Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006) Nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotech Progr 22:577–583

    Article  CAS  Google Scholar 

  • Chen YH, Yeh CS (2002) Laser ablation method, use of surfactants to form the dispersed Ag nanoparticles. Colloids Surf A Physicochem Eng Asp 197:133–139

    Article  CAS  Google Scholar 

  • Chen N, Zheng Y, Yin J (2013) Inhibitory effects of silver nanoparticles against adenovirus type 3 in vitro. J Virol Methods 193:470–477

    Article  CAS  PubMed  Google Scholar 

  • Coccini T, Gornati R, Rossi F (2014) Gene expression changes in rat liver and testes after lung instillation of a low dose of silver nanoparticles. J Nanomed Nanotechnol 5:227–232

    Article  Google Scholar 

  • Coulter JA, Hyland WB, Nicol J, Currell FJ (2013) Radio sensitizing nanoparticles as novel cancer therapeutics: pipe dream or realistic prospect. Clin Oncol 25:593–603

    Article  CAS  Google Scholar 

  • Deva AN, Alice ME, Santhosh C, Grace AN, Vimala R (2016) Optimization of process parameters for the microbial synthesis of silver nanoparticles using 3-level box- Behnken design. Eco Engg 87:168–174

    Article  Google Scholar 

  • Duran N, Marcato PD, Alves OL, Souza GIH, De Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotech 3:1–8

    Article  Google Scholar 

  • Dwivedi AD, Gopal K (2010) Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Coll Surf A 369:27–33

    Article  CAS  Google Scholar 

  • El-rafie MH, Shaheen TI, Mohamed AA, Hebeish A (2012) Biosynthesis and applications of silver nanoparticles onto cotton fabrics. Carbohyd Poly 90(2):915–920

    Article  CAS  Google Scholar 

  • Faraday M (1857) Experimental relations of gold (and other metals) to light. Phil Trans R Soc London 147:145–181

    Article  Google Scholar 

  • Gaikwad S, Ingle A, Gade A (2013) Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. Int J Nanomedicine 8:4303–4314

    PubMed  PubMed Central  Google Scholar 

  • Gracias DH, Tien J, Breen T, Hsu C, Whitesides GM (2002) Forming electrical networks in three dimensions by self-assembly. Sci 289:1170–1172

    Article  Google Scholar 

  • Gunther B, Kumpmann A (1992) Ultrafine oxide powders prepared by inert gas evaporation. Nanostr Mater 1:27–30

    Article  Google Scholar 

  • Gurav A, Kodas T, Wang L, Kauppinen E, Joutsensaari J (1994) Synthesis of fullerene-rhodium nanocomposites of nano-meter size fullerene particles via aerosol routes. Chem Phys Letter 218:304–308

    Article  CAS  Google Scholar 

  • Haefeli C, Franklin C, Hardy K (1984) Plasmid-determined silver resistance in Pseudomonas stutzeri isolated from a silver mine. J Bacteriol 158:389–392

    CAS  PubMed  PubMed Central  Google Scholar 

  • He L, Liu Y, Mustapha A, Lin M (2010) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166:207–215

    Article  PubMed  Google Scholar 

  • Jain D, Kachhwaha S, Jain R, Srivastava G, Kothari SL (2010) Novel microbial route to synthesize silver nanoparticles using spore crystal mixture of Bacillus thuringiensis. Indian J Exp Bio 48(11):1152–1156

    CAS  Google Scholar 

  • Jannathul FM, Lalitha P (2015) Apoptotic efficacy of biogenic silver nanoparticles on human breast cancer MCF-7 cell lines. Prog Biomater 4:113–121

    Article  Google Scholar 

  • Jeyaraj M, Rajesh M, Arun R (2013) An investigation on the cytotoxicity and caspase-mediated apoptotic effect of biologically synthesized silver nanoparticles using Podophyllum hexandrum on human cervical carcinoma cells. Colloid Surf B 102:708–717

    Article  CAS  Google Scholar 

  • Jha AK, Prasad K, Prasad K, Kulkarni AR (2009) Plant system: nature’s nanofactory. Colloids Surf B Biointerfaces 73:219–223

    Article  CAS  PubMed  Google Scholar 

  • Kabashin AV, Meunier M (2003) Synthesis of colloidal nanoparticles during femtosecond laser ablation of gold in water. J Appl Phys 94:7941–7943

    Article  CAS  Google Scholar 

  • Kamat PV (2002) Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J Phy Chem B 106:7729–7744

    Article  CAS  Google Scholar 

  • Karthikeyan AP, Kadarkarai M, Chellasamy P, Sekar P, Jiang-Shiou H, Marcello N (2012) Biolarvicidal and pupicidal potential of silver nanoparticles synthesized using Euphorbia hirta against Anopheles stephensi Liston (Diptera: Culicidae). Parasi Res 111:997–1006

    Article  Google Scholar 

  • Kathiresan K, Manivannan S, Nabeal MA, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Coll Surf B 71:133–137

    Article  CAS  Google Scholar 

  • Krishnaraj C, Ramachandran R, Mohan K, Kalaichelvan PT (2012) Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochem Acta 93:95–99

    Article  CAS  Google Scholar 

  • Kruis FE, Fissan H, Rellinghaus B (2000) Sintering and evaporation characteristics of gas-phase synthesis of size-selected PbS nanoparticles. Mater Sci Eng 69:329–334

    Article  Google Scholar 

  • Kumar AS, Abyaneh MK, Gosavi Sulabha SW, Ahmad A, Khan MI (2007) Nitrate reductase mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett 29:439–445

    Article  CAS  Google Scholar 

  • Lara HH, Trevino EG, Turrent LI, Singh DK (2011) Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J Nanobiotechnol 9:30

    Google Scholar 

  • Li S, Qui L, Shen Y, Xie A, Yu X, Zhang L, Zhang Q (2007) Green synthesis of silver nanoparticles using Capsicum annum L. extract. Green Chem 9:852–858

    Article  CAS  Google Scholar 

  • Liau S, Read D, Pugh W, Furr J, Russell A (1997) Interaction of silver nitrate with readily identifiable groups, relationship to the antibacterial action of silver ions. Lett Appl Microbio 25:279–283

    Article  CAS  Google Scholar 

  • Locatelli E, Naddaka M, Uboldi C (2014) Targeted delivery of silver nanoparticles and alisertib: in vitro and in vivo synergistic effect against glioblastoma. Nanomedicine 9(6):839–849

    Article  CAS  PubMed  Google Scholar 

  • Lu L, Sun RW, Chen R, Hui CK, Ho CM, Luk JM, Lau GK, Che CM (2008) Silver nanoparticles inhibit hepatitis B virus replication. Antivir Ther 13:253–262

    CAS  PubMed  Google Scholar 

  • Mafune F, Kohno J, Takeda Y, Kondow T, Sawabe H (2000) Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation. J Phys Chem 104:8333–8337

    Article  CAS  Google Scholar 

  • Maier SA, Brongersma ML, Kik PG, Meltzer S, Requicha AAG, Atwater HA (2001) Plasmonics- a route to nanoscale optical devices. Adv Mater 19:1501–1505

    Article  Google Scholar 

  • Matejka P, Vlckova B, Vohlidal J, Pancoska P, Baumruk V (1992) The role of triton X-100 as an adsorbate and a molecular spacer on the surface of silver colloid, a surface enhanced Raman scattering study. J Phys Chem 96(3):1361–1366

    Article  CAS  Google Scholar 

  • Matsumura Y, Yoshikata K, Kunisaki SI, Tsuchido T (2003) Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl Env Microbiol 69:4278–4281

    Article  CAS  Google Scholar 

  • Mirkin CA, Letsinger RL, Mucic RC, Storhof JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609

    Article  CAS  PubMed  Google Scholar 

  • Mude N, Ingle A, Gade A, Rai M (2009) Synthesis of silver nanoparticles using callus extract of Carica papaya – a first report. J Plant Biochem Biotech 18(1):83–86

    Article  CAS  Google Scholar 

  • Musarrat J, Dwivedi S, Singh BR, Al-Khedhairy AA, Azam A, Naqvi A (2010) Production of antimicrobial silver nanoparticles in water extracts of the fungus Amylomyces rouxii strain KSU-09. Bioresour Technol 101:8772–8776

    Article  CAS  PubMed  Google Scholar 

  • Nanda A, Lakshmipathy M, Elumalai D, Kaleena PK, Nayak BK (2015) Application of biosynthesized silver nanoparticles as a novel vector control agent. Der Pharm Lett 7(8):228–231

    CAS  Google Scholar 

  • Nayak RR, Pradhan N, Behera D, Pradhan KM, Mishra S, Sukla LB, Mishra BK (2011) Green synthesis of silver nanoparticle by Penicillium purpurogenum NPMF: the process and optimization. J Nanopart Res 13:3129

    Article  CAS  Google Scholar 

  • Ong C, Lim JZ, Ng CT, Li JJ, Yung LY, Bay BH (2013) Silver nanoparticles in cancer: therapeutic efficacy and toxicity. Curr Med Chem 20(6):772–781

    CAS  PubMed  Google Scholar 

  • Percival SL, Bowler PG, Dolman J (2007) Antimicrobial activity of silver- containing dressings on wound microorganisms using an in vitro biofilm model. Int Wound J 4:186–191

    Article  PubMed  Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanopart, Article ID 963961, https://doi.org/10.1155/2014/963961

  • Prasad R, Swamy VS (2013) Antibacterial activity of silver nanoparticles synthesized by bark extract of Syzygium cumini. J Nanopart https://doi.org/10.1155/2013/431218

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Article  CAS  Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363

    Article  Google Scholar 

  • Prasad R, Pandey R, Varma A, Barman I (2017a) Polymer based nanoparticles for drug delivery systems and cancer therapeutics. In: Kharkwal H, Janaswamy S (eds) Natural polymers for drug delivery. CAB International, UK, pp 53–70

    Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017b) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014

    Article  PubMed  PubMed Central  Google Scholar 

  • Rogers JV, Parkinson CV, Choi YW, Speshock JL, Hussain SM (2008) A preliminary assessment of silver nanoparticles inhibition of monkeypox virus plaque formation. Nanoscale Res Lett 3:129–133

    Article  PubMed Central  Google Scholar 

  • Rudge S, Peterson C, Vessely C, Koda J, Stevens S, Catterall L (2001) Adsorption and desorption of chemotherapeutic drugs from a magnetically targeted carrier (MTC). J Control Release 74:335–340

    Article  CAS  PubMed  Google Scholar 

  • Sadowski IH, Maliszewska B, Grochowalska I, Polowczyk T, Kozlecki M (2008) Synthesis of silver nanoparticles using microorganisms. Mater Sci Poland 26:2–10

    Google Scholar 

  • Saifuddin N, Wong CW, Nuryasumira AA (2009) Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. Eur J Chem 6:61–70

    CAS  Google Scholar 

  • Sarsar V, Selwal KK, Selwal MK (2014) Nanosilver: potent antimicrobial agent and its biosynthesis. Afr J Biotech 13(4):546–554

    Article  Google Scholar 

  • Sarsar V, Selwal MK, Selwal KK (2015) Biofabrication, characterization and antibacterial efficacy of extracellular silver nanoparticles using novel fungal strain of Penicillium atramentosum KM. J Saudi Chem Soc 19:682–688

    Article  Google Scholar 

  • Sarsar V, Selwal MK, Selwal KK (2016) Biogenic synthesis, optimisation and antibacterial efficacy of extracellular silver nanoparticles using novel fungal isolate Aspergillus fumigatus MA. IET Nanobiotech. https://doi.org/10.1049/iet-nbt.2015.0058 www.ietdl.org

  • Saxena A, Tripathi RM, Singh RP (2010) Biological synthesis of silver nanoparticles by using onion (Allium cepa) extract and their antibacterial activity. Dig J Nanomat Biostru 5(2):427–432

    Google Scholar 

  • Selvi CG, Madhavan J, Santhanam A (2011) Cytotoxic effect of silver nanoparticles synthesized from Padina tetrastromatica on breast cancer cell line. Nanosci Nanotechnol 7(3):1–6

    Google Scholar 

  • Senapati S, Mandal D, Ahmad A, Khan MI, Sastry M, Kumar R (2004) Fungus mediated synthesis of silver nanoparticles, a novel biological approach. Ind J Phys 78:101–105

    Google Scholar 

  • Shahverdi AR, Minaeian S, Shahverdi HR, Jamalifar H, Nohi AA (2007) Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteriaceae: a novel biological approach. Process Biochem 42:919–923

    Article  CAS  Google Scholar 

  • Shivaji S, Madhu S, Singh S (2011) Extracellular synthesis of antibacterial silver nanoparticles using psychrophilic bacteria. Process Biochem 46:1800–1807

    Article  CAS  Google Scholar 

  • Siddhanta S, Paidi SK, Bushley K, Prasad R, Barman I (2017) Exploring morphological and biochemical linkages in fungal growth with label-free light sheet microscopy and Raman spectroscopy. ChemPhysChem 18(1):72–78

    Article  CAS  PubMed  Google Scholar 

  • Singhal G, Bhavesh R, Kasariya K, Sharma AR, Singh RP (2010) Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. J Nanopart Res 13(7):2981–2988

    Article  Google Scholar 

  • Sylvestre JP, Kabashin AV, Sacher E, Meunier M, Luong JHT (2004) Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins. J Am Chem Soc 126:7176–7177

    Article  CAS  PubMed  Google Scholar 

  • Tefry JC, Wooley DP (2012) Rapid assessment of antiviral activity and cytotoxicity of silver nanoparticles using a novel application of the tetrazolium-based colorimetric assay. J Virol Methods 183:19–24

    Article  Google Scholar 

  • Urbanska K, Pajak B, Orzechowski B, Sokolowska J, Grodzik M, Sawosz M, Sysa P (2015) The effect of silver nanoparticles (AgNPs) on proliferation and apoptosis of in vitro cultured glioblastoma multiforme (GBM) cells. Nanoscale Res Lett 10:98

    Article  PubMed  PubMed Central  Google Scholar 

  • Vahabi K, Mansoori GA, Karimi S (2011) Biosynthesis of silver nanoparticles by fungus Trichoderma Reesei (a route for large-scale production of AgNPs). Int Sci J 1(1):65–79

    CAS  Google Scholar 

  • Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol Prog 11:235–250

    Article  CAS  PubMed  Google Scholar 

  • Wei X, Luo M, Li W, Yang L, Liang X, Xu L (2012) Synthesis of silver nanoparticles by solar irradiation of cell-free Bacillus amyloliquefaciens extracts and AgNO3. Bioresour Technol 103:273–278

    Article  CAS  PubMed  Google Scholar 

  • Xiang DX, Chen Q, Pang L, Zheng CL (2011) Inhibitory effects of silver nanoparticles on H1N1 influenza a virus in vitro. J Virol Methods 178:137–142

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishan K. Selwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Selwal, M.K., Selwal, K.K. (2017). Biogenic Synthesis of Silver Nanoparticles and Their Applications in Medicine. In: Prasad, R. (eds) Fungal Nanotechnology. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-68424-6_9

Download citation

Publish with us

Policies and ethics