Skip to main content

Enzymes and Nanoparticles Produced by Microorganisms and Their Applications in Biotechnology

  • Chapter
  • First Online:
Fungal Nanotechnology

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

This chapter reports the most important microbial enzymes that have been studied extensively due to their production, low cost, purification, and characterization of their properties. Certain microorganisms have already been isolated from extreme sources under strict culture conditions. The aim of this process is to obtain isolated microbes that would have the capability to bio-synthesize special enzymes. Enzymes having special features and characteristics are needed by some bio-industries for their applications in preparation of necessary substrates and some renewable raw materials for production. The microbial enzymes serve as biocatalysts to make reactions in bioprocesses in an economical, safe, and eco-friendly way instead of utilizing chemical catalysts. Researchers benefited from the special features and characteristics of enzymes for their commercial interest and industrial applications, which involve thermotolerance, thermophilic nature, tolerance to a varied range of pH, stability of enzyme activity over a range of temperature and pH, and other harsh reaction conditions. It is assured that such enzymes have the utility in bio-applications such as food industry, leather and textile production, animal feed manufacturing, and in bioconversions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Abs:

Antibodies

AgNPs:

Silver nanoparticles

AuNPs:

Gold nanoparticles

BacMPs:

Bacterial magnetic particles

BMs:

Bacterial magnetosomes

Brec:

Bovine retinal endothelial cells

CdS-NPs:

CdS nanoparticles

CSE:

Cell-soluble extract

GTPase:

Guanosine triphosphatase

HRP:

Horseradish peroxidase

MRI:

Magnetic resonance imaging

MTB:

Magnetotactic bacteria

PHB:

Polyhydroxybutyrate BRECs

TEM:

Transmission electron microscope

References

  • Abbasifar A, Ghani S, Irvani MA, Rafiee B, Kaji BV, Akbari A (2017) Antibacterial activity of silver nanoparticles synthesized by using extract of hedera helix. Zahedan J Res Med Sci.10.17795/zjrms-5920

  • Agnihotri M, Joshi S, Kumar AR, Zinjarde S, Kulkarni S (2009) Biosynthesis of gold nanoparticles by the tropical marine yeastYarrowia lipolytica NCIM 3589. Mater Lett 63(15):1231–1234

    Article  CAS  Google Scholar 

  • Ahmad A, Mukherjee P, Mandal D (2002) Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus,Fusarium oxysporum. J Am Chem Soc 124(41):12108–12109

    Article  CAS  PubMed  Google Scholar 

  • Ahmad A, Mukherjee P, Senapati S (2003a) Extracellular biosynthesis of silver nanoparticles using the fungusFusarium oxysporum. Colloids Surf B: Biointerfaces 28(4):313–318

    Article  CAS  Google Scholar 

  • Ahmad A, Senapati S, Khan MI (2003b) Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete,Rhodococcus species. Nanotechnology 14(7):824–828

    Article  CAS  Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2003c) Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, thermomonospora sp. Langmuir 19(8):3550–3553

    Article  CAS  Google Scholar 

  • Ahmed S, Riaz S, Jamil A (2009) Molecular cloning of fungal xylanases: an overview. Appl Microbiol Biotechnol 84:19–35

    Article  CAS  PubMed  Google Scholar 

  • Alanazi FK, Radwan AA, Alsarra IA (2010) Biopharmaceutical applications of nanogold. Saudi Pharm J 18(4):179–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amemiya Y, Arakaki A, Staniland SS, Tanaka T, Matsunaga T (2007) Controlled formation of magnetite crystal by partial oxidation of ferrous hydroxide in the presence of recombinant magnetotactic bacterial protein Mms6. Biomaterials 28(35):5381–5389

    Article  CAS  PubMed  Google Scholar 

  • Arakaki A, Nakazawa H, Nemoto M, Mori T, Matsunaga T (2008) Formation of magnetite by bacteria and its application. J R Soc Interface 5(26):977–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arakaki A, Shibusawa M, Hosokawa M, Matsunaga T (2010a) Preparation of genomic DNA from a single species of uncultured magnetotactic bacterium by multiple-displacement amplification. Appl Environ Microbiol 76(5):1480–1485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arakaki A, Masuda F, Amemiya Y, Tanaka T, Matsunaga T (2010b) Control of the morphology and size of magnetite particles with peptides mimicking the Mms6 protein from magnetotactic bacteria. J Colloid Interface Sci 343(1):65–70

    Article  CAS  PubMed  Google Scholar 

  • Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612.https://doi.org/10.1021/acs.langmuir.5b03081

    Article  CAS  PubMed  Google Scholar 

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes ofMucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984.https://doi.org/10.3389/fmicb.2016.01984

    Article  PubMed  PubMed Central  Google Scholar 

  • Babu MMG, Gunasekaran P (2009) Production and structural characterization of crystalline silver nanoparticles fromBacillus cereus isolate. Colloids Surf B: Biointerfaces 74(1):191–195

    Article  CAS  Google Scholar 

  • Bai HJ, Zhang ZM (2009) Microbial synthesis of semiconductor lead sulfide nanoparticles using immobilized Rhodobacter sphaeroides. Mater Lett 63(9–10):764–766

    Article  CAS  Google Scholar 

  • Bai HJ, Zhang ZM, Gong J (2006) Biological synthesis of semiconductor zinc sulfide nanoparticles by immobilizedRhodobacter sphaeroides. Biotechnol Lett 28(14):1135–1139

    Article  CAS  PubMed  Google Scholar 

  • Bai HJ, Zhang ZM, Guo Y, Yang GE (2009) Biosynthesis of cadmium sulfide nanoparticles by photosynthetic bacteriaRhodopseudomonas palustris. Colloids Surf B: Biointerfaces 70(1):142–146

    Article  CAS  PubMed  Google Scholar 

  • Baihong L, Juan Z, Zhen F, Lei G, Xiangru L, Guocheng D, Jian C (2013) Enhanced thermostability of keratinase by computational design and empirical mutation. J Ind Microbiol Biotechnol 40:697–704

    Article  CAS  Google Scholar 

  • Banat IM, Nigam P, Marchant R (1992) Isolation of a thermotolerant, fermentative yeasts growing at 52°C and producing ethanol at 45°C & 50°C. World J Microbiol Biotechnol 8:259–263

    Article  CAS  PubMed  Google Scholar 

  • Bansal V, Rautaray D, Ahmad A, Sastry M (2004) Biosynthesis of zirconia nanoparticles using the fungusFusarium oxysporum. J Mater Chem 22:3303–3305

    Article  CAS  Google Scholar 

  • Bansal V, Rautaray D, Bharde A (2005) Fungus-mediated biosynthesis of silica and titania particles. J Mater Chem 15(26):2583–2589

    Article  CAS  Google Scholar 

  • Bansal V, Poddar P, Ahmad A, Sastry M (2006) Room temperature biosynthesis of ferroelectric barium titanate nanoparticles. J Am Chem Soc 128(36):11958–11963

    Article  CAS  PubMed  Google Scholar 

  • Bao H, Lu Z, Cui X (2010) Extracellular microbial synthesis of biocompatible CdTe quantum dots. Acta Biomater 6(9):3534–3541

    Article  CAS  PubMed  Google Scholar 

  • Bazylinski DA, Garratt-Reed AJ, Frankel RB (1994) Electron microscopic studies of magnetosomes in magnetotactic bacteria. Microsc Res Tech 27(5):389–401

    Article  CAS  PubMed  Google Scholar 

  • Bazylinski DA, Frankel RB, Heywood BR (1995) Controlled biomineralization of magnetite (Fe3O4) and greigite (Fe3S4) in a magnetotactic bacterium. Appl Environ Microbiol 61(9):3232–3239

    CAS  PubMed  PubMed Central  Google Scholar 

  • Benzerara K, Miot J, Morin G, Ona-Nguema G, Skouri-Panet F, Ferard C (2010) Significance, mechanisms and ´ environmental implications of microbial biomineralization. Compt Rendus Geosci 343(2–3):160–167

    Google Scholar 

  • Berka RM, Grigoriev IV, Otillar R, Salamov A, Grimwood J, Reid I, Ishmael N, John T, Darmond C, Moisan MC (2011) Comparative genomic analysis of the thermophilic biomass-degrading fungiMyceliophthora thermophila andThielavia terrestris. Nat Biotechnol 29:922–927

    Article  CAS  PubMed  Google Scholar 

  • Bhainsa KC, D’Souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungusAspergillus fumigatus. Colloids Surf B: Biointerfaces 47(2):160–164

    Article  CAS  PubMed  Google Scholar 

  • Blakemore R (1975) Magnetotactic bacteria. Science 190(4212):377–379

    Article  CAS  PubMed  Google Scholar 

  • Bose S, Hochella MF, Gorby YA et al (2009) Bioreduction of hematite nanoparticles by the dissimilatory iron reducing bacteriumShewanella oneidensis MR-1. Geochim Cosmochim Acta 73(4):962–976

    Article  CAS  Google Scholar 

  • Brahmachari G, Adrio JL, Demain AL (2017) Biotechnology of microbial enzymes: production, biocatalysis and industrial application. Elsevier Academic press, Amsterdam, pp 1–11

    Google Scholar 

  • Brandelli A, Daroit DJ, Riffel A (2010) Biochemical features of microbial keratinases and their production and applications. Appl Microbiol Biotechnol 85:1735–1750

    Article  CAS  PubMed  Google Scholar 

  • Cai H, Shi P, Bai Y, Huang H, Yuan T, Yang P, Luo H, Meng K, Yao B (2011) A novel thermoacidophilic family 10 xylanase fromPenicillium pinophilum C1. Process Biochem 46:2341–2346

    Article  CAS  Google Scholar 

  • Castro-Longoria E, Vilchis-Nestor AR, Avalos Borja M (2011) Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungusNeurospora crassa. Colloids Surf B: Biointerfaces 83(1):42–48

    Article  CAS  PubMed  Google Scholar 

  • Chakdar H, Kumar M, Pandiyan K, Singh A, Nanjappan K, Kashyap PL, Srivastava AK (2016) Bacterial xylanases: biology to biotechnology. 3 Biotech 6(2):150–165

    Article  PubMed  PubMed Central  Google Scholar 

  • Chakravarthy KV, Bonoiu AC, Davis WG (2010) Gold nanorod delivery of an ssRNA immune activator inhibits pandemic H1N1 influenza viral replication. Proc J Nanomater Nati Acad Sci USA 107(22):10172–10177

    Article  CAS  Google Scholar 

  • Chan WCW, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281(5385):2016–2018

    Article  CAS  PubMed  Google Scholar 

  • Chen T, Xu Y, Peng Z, Li A, Liu J (2017) Simultaneous enhancement of bioactivity and stability of laccase by Cu2+/PAA/PPEGA matrix for efficient biosensing and recyclable decontamination of pyrocatechol. Anal Chem 89(3):2065–2072

    Article  CAS  PubMed  Google Scholar 

  • Chertok B, Moffat BA, David AE (2008) Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials 29(4):487–496

    Article  CAS  PubMed  Google Scholar 

  • Chirumamilla RR, Muralidhar R, Marchant R, Nigam P (2001) Improving the quality of industrially important enzymes by directed evolution. Mol Cell Biochem 224:159–168

    Article  CAS  PubMed  Google Scholar 

  • Chudasama CJ, Jani SA, Jajda HM, Pate HN (2010) Optimization and production of alkaline protease from bacillus thuringiensis CC7. J Cell Tissue Res 10:2257–2262

    CAS  Google Scholar 

  • Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29:3–23

    Article  CAS  PubMed  Google Scholar 

  • Cui D, Tian F, Coyer SR (2007) Effects of antisense-myc-conjugated single-walled carbon nanotubes on HL-60 cells. J Nanosci Nanotechnol 7(4–5):1639–1646

    Article  CAS  PubMed  Google Scholar 

  • Cunningham DP, Lundie LL (1993) Precipitation of cadmium byClostridium thermoaceticum. Appl Environ Microbiol 59(1):7–14

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dahiya JS, Singh D, Nigam P (1998) Characterisation of laccase produced byConiothyrium minitans. J Basic Microbiol 38:349–359

    Article  CAS  Google Scholar 

  • Dahiya J, Singh D, Nigam P (2001) Decolourisation of synthetic and spentwash-melanoidins using the white-rot fungusPhanerochaete chrysosporium JAG-40. Bioresour Technol 78:95–98

    Article  CAS  PubMed  Google Scholar 

  • Dameron CT, Reese RN, Mehra RK (1989) Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338(6216):596–597

    Article  CAS  Google Scholar 

  • De la Isla A, Brostow W, Bujard B (2003) Nanohybrid scratch resistant coatings for teeth and bone viscoelasticity manifested in tribology. Mater Res Innov 7(2):110–114

    Article  Google Scholar 

  • De Windt W, Aelterman P, Verstraete W (2005) Bioreductive deposition of palladium nanoparticles onShewanella oneidensis with catalytic activity towards reductive dechlorination of polychlorinated biphenyls. Environ Microbiol 7(3):314–325

    Article  PubMed  Google Scholar 

  • Dias AMGC, Hussain A, Marcos AS, Roque ACA (2011) A biotechnological perspective on the application of iron oxide magnetic colloids modified with polysaccharides. Biotechnol Adv 29(1):142–155

    Article  CAS  PubMed  Google Scholar 

  • Dinali R, Ebrahiminezhad A, Manley-Harris M, Ghasemi Y, Berenjian A (2017) Iron oxide nanoparticles in modern microbiology and biotechnology. Crit Rev Microbiol 10:1–15

    Google Scholar 

  • Du L, Jiang H, Liu X, Wang E (2007) Biosynthesis of gold nanoparticles assisted byEscherichia coli DH5α and its application on direct electrochemistry of hemoglobin. Electrochem Commun 9(5):1165–1170

    Article  CAS  Google Scholar 

  • Du Y, Shi P, Huang H, Zhang X, Luo H, Wang Y, Yao B (2013) Characterization of three novel thermophilic xylanases fromHumicola insolens Y1 with application potentials in the brewing industry. Bioresour Technol 130:161–167

    Article  CAS  PubMed  Google Scholar 

  • Duran N, Marcato PD, De Souza GIH, Alves OL, Esposito E (2007) Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotechnol 3(2):203–208

    Article  CAS  Google Scholar 

  • Dwivedi P, Vivikanand V, Pareek N, Sharma A, Singh RP (2010) Bleach enhancement of mixed wood pulp by xylanase-laccase concoction derived through co-culture strategy. Appl Biochem Biotechnol 160:255–268

    Article  CAS  PubMed  Google Scholar 

  • Edelstein RL, Tamanaha CR, Sheehan PE (2000) The BARC biosensor applied to the detection of biological warfare agents. Biosens Bioelectron 14(10–11):805–813

    Article  CAS  PubMed  Google Scholar 

  • Emerich DF, Thanos CG (2006) The pinpoint promise of nanoparticle-based drug delivery and molecular diagnosis. Biomol Eng 23(4):171–184

    Article  CAS  PubMed  Google Scholar 

  • Fadeel B, Garcia-Bennett AE (2010) Better safe than sorry: understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical application. Adv Drug Deliv Rev 62(3):362–374

    Article  CAS  PubMed  Google Scholar 

  • Fan TX, Chow SK, Zhang D (2009) Biomorphic mineralization: from biology to materials. Prog Mater Sci 54(5):542–659

    Article  CAS  Google Scholar 

  • Fayaz MA, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedecine 6(1):e103–e109

    Article  CAS  Google Scholar 

  • Felfoul O, Mohammadi M, Martel S (2007) Magnetic resonance imaging of Fe3O4 nanoparticles embedded in living magnetotactic bacteria for potential use as carriers for in vivo applications. In: Proceedings of the 29th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBS ‘07), p 1463–1466

    Google Scholar 

  • Gali NK, Kotteazeth S (2012) Isolation, purification and characterization of thermophilic laccase from xerophyteCereus pterogonus. Chem Nat Compd 248:451–456

    Article  CAS  Google Scholar 

  • Gali NK, Kotteazeth S (2013) Biophysical characterization of thermophilic laccase from the xerophytes:Cereus pterogonus andOpuntia vulgaris. Cellulose 20:115–125

    Article  CAS  Google Scholar 

  • Garg AP, Roberts JC, McCarthy A (1998) Bleach boosting effect of cellulase free xylanase ofStreptomyces thermoviolaceus and its comparison with two commercial enzyme preparations on birchwood Kraft pulp. Enzym Microb Biotechnol 22:594–598

    Article  CAS  Google Scholar 

  • Genckal H, Tari C (2006) Alkaline protease production from alkalophilic Bacillus sp. isolated from natural habitats. Enzym Microb Technol 39:703–710

    Article  CAS  Google Scholar 

  • Gericke M, Pinches A (2006) Biological synthesis of metal nanoparticles. Hydrometallurgy 83(1–4):132–140

    Article  CAS  Google Scholar 

  • Ghashghaei S, Emtiazi G (2016) The methods of nanoparticle synthesis using bacteria as biological nanofactories, their mechanisms and major applications. Current Biotechnol 1(1):3–17

    Google Scholar 

  • Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Gold nanoparticles for biology and medicine. Angew Chem Int Ed 49(19):3280–3294

    Article  CAS  Google Scholar 

  • Gopinath SCB, Anbu P, Lakshmipriya T (2015) Biotechnological aspects and perspective of microbial keratinase production. Biomed Res 2015:1–10

    Article  CAS  Google Scholar 

  • Gupta R, Beg QK, Lorenz P (2002) Bacterial alkaline proteases: molecular approaches and industrial applications. Appl Microbiol Biotechnol 59:15–32

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Joseph B, Mani A, Thomas G (2008) Biosynthesis and properties of an extracellular thermostable serine alkaline protease fromVirgibacillus pantothenticus. World J Microbiol Biotechnol 24:237–243

    Article  CAS  Google Scholar 

  • Gupta R, Sharma R, Beg QK (2013) Revisiting microbial keratinases: next generation proteases for sustainable biotechnology. Crit Rev Biotechnol 33:216–228

    Article  CAS  PubMed  Google Scholar 

  • Gurumurthy DM, Neelagund SE (2012) Molecular characterization of industrially viable extreme thermostable novel alpha-amylase ofGeobacillus sp Iso5 isolated from geothermal spring. J Pure Appl Microbiol 6:1759–1773

    CAS  Google Scholar 

  • Gurunathan S, Kalishwaralal K, Vaidyanathan R (2009) Biosynthesis, purification and characterization of silver nanoparticles usingEscherichia coli. Colloids Surf B: Biointerfaces 74(1):328–335

    Article  CAS  PubMed  Google Scholar 

  • Gushterova A, Vasileva-Tonkova E, Dimova E, Nedkov P, Haertle T (2005) Keratinase production by newly isolated Antarctic actinomycete strains. World J Microbiol Biotechnol 21:831–834

    Article  CAS  Google Scholar 

  • Hadj-Ali NE, Rym A, Basma GF, Alya SK, Safia K, Moncef N (2007) Biochemical and molecular characterization of a detergent stable alkaline serine protease from a newly isolatedBacillus licheniformis NH1. Enzym Microb Technol 40:515–523

    Article  CAS  Google Scholar 

  • Hayat MA (1989) Colloidal gold: principles, methods, and applications. Academic, San Diego

    Google Scholar 

  • He S, Guo Z, Zhang Y, Zhang S, Wang J, Gu N (2007) Biosynthesis of gold nanoparticles using the bacteriaRhodopseudomonas capsulate. Mater Lett 61(18):3984–3987

    Article  CAS  Google Scholar 

  • Hergt R, Dutz S (2007) Magnetic particle hyperthermia biophysical limitations of a visionary tumour therapy. J Magn Magn Mater 311(1):187–192

    Article  CAS  Google Scholar 

  • Hergt R, Hiergeist R, Zeisberger M (2005) Magnetic properties of bacterial magnetosomes as potential diagnostic and therapeutic tools. J Magn Magn Mater 293(1):80–86

    Article  CAS  Google Scholar 

  • Higby GJ (1982) Gold in medicine: a review of its use in the west before 1900. Gold Bull 15(4):130–140

    Article  CAS  PubMed  Google Scholar 

  • Hildebrand H, Mackenzie K, Kopinke FD (2008) Novel nano-catalysts for waste water treatment. Global NEST J 10:47–53

    Google Scholar 

  • Hou S, Zhang A, Su M (2016) Nanomaterials for biosensing applications. Nanomaterials 6:58.https://doi.org/10.3390/nano6040058

    Article  PubMed Central  Google Scholar 

  • Husseiny MI, El-Aziz MA, Badr Y, Mahmoud MA (2007) Biosynthesis of gold nanoparticles usingPseudomonas aeruginosa. Spectrochim Acta 67(3–4):1003–1006

    Article  CAS  Google Scholar 

  • Indhuja S, Shiburaj S, Pradeep NS, Thankamani V, Abraham TK (2012) Extracellular keratinolytic proteases from an AlkalophilicStreptomyces albidoflavus TBG-S13A5: enhanced production and characterization. J Pure Appl Microbiol 6:1599–1607

    CAS  Google Scholar 

  • Jain N, Bhargava A, Majumdar S, Tarafdar JC, Panwar J (2011) Extracellular biosynthesis and characterization of silver nanoparticles usingAspergillus flavus NJP08: a mechanism perspective. Nanoscale 3(2):635–641

    Article  CAS  PubMed  Google Scholar 

  • Jha AK, Prasad K (2010) Ferroelectric BaTiO3 nanoparticles: biosynthesis and characterization. Colloids Surf B: Biointerfaces 75(1):330–334

    Article  CAS  PubMed  Google Scholar 

  • Jha AK, Prasad K, Prasad K (2009a) A green low-cost biosynthesis of Sb2O3 nanoparticles. Biochem Eng J 43(3):303–306

    Article  CAS  Google Scholar 

  • Jha AK, Prasad K, Kulkarni AR (2009b) Synthesis of TiO2 nanoparticles using microorganisms. Colloids Surf B Biointerfaces 71(2):226–229

    Article  CAS  PubMed  Google Scholar 

  • Jhamb K, Sahoo DK (2012) Production of soluble recombinant proteins in Escherichia coli: effects of process conditions and chaperone co-expression on cell growth and production of xylanase. Bioresour Technol 123:135–143

    Article  CAS  PubMed  Google Scholar 

  • Johnvesly B, Naik GK (2001) Studies on production of thermostable alkaline protease from thermophilic and alkaliphilic Bacillus sp. JB-99 in a chemical defined medium. Process Biochem 37:139–144

    Article  CAS  Google Scholar 

  • Juibari MM, Abbasalizadeh S, Jouzani GS, Noruzi M (2011) Intensified biosynthesis of silver nanoparticles using a native extremophilicUreibacillus thermosphaericus strain. Mater Lett 65(6):1014–1017

    Article  CAS  Google Scholar 

  • Kalimuthu K, Suresh Babu R, Venkataraman D, Bilal M, Gurunathan S (2008) Biosynthesis of silver nanocrystals byBacillus licheniformis. Colloids Surf B: Biointerfaces 65(1):150–153

    Article  CAS  PubMed  Google Scholar 

  • Kalishwaralal K, Deepak V, Ramkumarpandian S, Nellaiah H, Sangiliyandi G (2008) Extracellular biosynthesis of silver nanoparticles by the culture supernatant ofBacillus licheniformis. Mater Lett 62(29):4411–4413

    Article  CAS  Google Scholar 

  • Kalishwaralal K, Banumathi E, Pandian SRK (2009) Silver nanoparticles inhibit VEGF induced cell proliferation and migration in bovine retinal endothelial cells. Colloids Surf B 73(1):51–57

    Article  CAS  Google Scholar 

  • Kalishwaralal K, Deepak V, Ram S (2010) Biosynthesis of silver and gold nanoparticles usingBrevibacterium casei. Colloids Surf B: Biointerfaces 77(2):257–262

    Article  CAS  PubMed  Google Scholar 

  • Kashefi K, Lovley DR (2000) Reduction of Fe(III), Mn(IV), and toxic metals at 100°C byPyrobaculum islandicum. Appl Environ Microbiol 66(3):1050–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khusro A, Baraathikannan K, Aarti C, Agastian P (2017) Optimization of thermo-alkali stable amylase production and biomass yield from bacillus sp. under submerged cultivation. Ferment 3(7).https://doi.org/10.3390/fermentation3010007

  • Klaus T, Joerger R, Olsson E, Granqvist CG (1999) Silver based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci U S A 96(24):13611–13614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohli U, Nigam P, Singh D, Chaudhary K (2001) Thermostable, alkalophilic and cellulase free xylanase production byThermonoactinomyces thalophilus subgroup C. Enzym Microb Technol 28:606–610

    Article  CAS  Google Scholar 

  • Konishi Y, Tsukiyama T, Tachimi T, Saitoh N, Nomura T, Nagamine S (2007a) Microbial deposition of gold nanoparticles by the metal-reducing bacterium Shewanella algae. Electrochim Acta 53(1):186–192

    Article  CAS  Google Scholar 

  • Konishi Y, Ohno K, Saitoh N (2007b) Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. J Biotechnol 128(3):648–653

    Article  CAS  PubMed  Google Scholar 

  • Kowshik M, Deshmuke N, Vogal W (2002) Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnol Bioeng 78(5):583–588

    Article  CAS  PubMed  Google Scholar 

  • Kumar GN, Srikumar K (2011) Thermophilic laccase from xerophyte speciesOpuntia vulgaris. Biomed Chromatogr 25:707–711

    Article  CAS  PubMed  Google Scholar 

  • Kumar GN, Srikumar K (2012) Characterization of xerophytic thermophilic laccase exhibiting metal ion-dependent dye decolorization potential. Appl Biochem Biotechnol 167:662–676

    Article  CAS  PubMed  Google Scholar 

  • Kumar CG, Takagi H (1999) Microbial alkaline proteases: from a bioindustrial viewpoint. Biotechnol Adv 17:561–594

    Article  CAS  PubMed  Google Scholar 

  • Kumar J, Dahiya JS, Singh D, Nigam P (2000) Production of endo-1,4-β-glucanase by a biocontrol fungusCladorrhinum foecundissimum. Bioresour Technol 75:95–97

    Article  CAS  Google Scholar 

  • Kumar SA, Ansary AA, Abroad A, Khan MI (2007) Extracellular biosynthesis of CdSe quantum dots by the fungus,Fusarium oxysporum. J Biomed Nanotechnol 3(2):190–194

    Article  CAS  Google Scholar 

  • Labrenz M, Druschel MGK, Thomsen-Ebert T (2000) Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science 290(5497):1744–1747

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Han J, Choi H, Hur HG (2007) Effects of temperature and dissolved oxygen on Se(IV) removal and Se(0) precipitation byShewanella sp. HN-41. Chemosphere 68(10):1898–1905

    Article  CAS  PubMed  Google Scholar 

  • Lefevre CT, Abreu F, Lins U, Bazylinski DA (2010a) Nonmagnetotactic multicellular prokaryotes from lowsaline, nonmarine aquatic environments and their unusual negative phototactic behavior. Appl Environ Microbiol 76(10):3220–3227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lefevre CT, Abreu F, Schmidt ML (2010b) Moderately thermophilic magnetotactic bacteria from hot springs in Nevada. Appl Environ Microbiol 76(11):3740–3743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lengke MF, Fleet ME, Southam G (2006a) Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from gold(I)-Thiosulfate and gold(III)-chloride complexes. Langmuir 22(6):2780–2787

    Article  CAS  PubMed  Google Scholar 

  • Lengke MF, Ravel B, Fleet ME, Wanger G, Gordon RA, Southam G (2006b) Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold(III)-chloride complex. Environ Sci Tech 40(20):6304–6309

    Article  CAS  Google Scholar 

  • Li W, Yu L, Zhou P, Zhu M (2007) A magnetospirillum strain WM-1 from a freshwater sediment with intracellular magnetosomes. World J Microbiol Biotechnol 23(10):1489–1492

    Article  CAS  Google Scholar 

  • Li Y, Niu D, Zhang L, Wang Z, Shi G (2013) Purification, characterization and cloning of a thermotolerant isoamylase produced fromBacillus sp. CICIM 304. J Ind Microbiol Biotechnol 40:437–446

    Article  CAS  PubMed  Google Scholar 

  • Li J, Li Q, Ma X, Tian B, Li T, Yu J, Da S, Weng Y, Hua Y (2016) Biosynthesis of gold nanoparticles by the extreme bacteriumDeinococcus radiodurans and an evaluation of their antibacterial properties. Int J Nanomedicine 11:5931–5944

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu B, Zhang J, Li B, Liao X, Du G, Chen J (2013) Expression and characterization of extreme alkaline, oxidation-resistant keratinase fromBacillus licheniformis in recombinantBacillus subtilis WB600 expression system and its application in wool fiber processing. World J Microbiol Biotechnol 29:825–832

    Article  PubMed  CAS  Google Scholar 

  • Lloyd JR, Yong P, Macaskie LE (1998) Enzymatic recovery of elemental palladium by using sulfate-reducing bacteria. Appl Environ Microbiol 64(11):4607–4609

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lover T, Henderson W, Bowmaker GA, Seakins JM, Cooney RP (1997) Functionalization and capping of a cds nanocluster: a study of ligand exchange by electrospray mass spectrometry. Chem Mater 9(8):1878–1886

    Article  CAS  Google Scholar 

  • Luo H, Li J, Yang J, Wang H, Yang Y, Huang H, Shi P, Yuan T, Fan Y, Yao B (2009) A thermophilic and acid stable family-10 xylanase from the acidophilic fungusBispora sp. MEY-1. Extremophiles 13:849–857

    Article  CAS  PubMed  Google Scholar 

  • Luo H, Wang K, Huang H, Shi P, Yang P, Yao B (2012) Gene cloning, expression and biochemical characterization of an alkali-tolerant b-mannanase fromHumicola insolens Y1. J Ind Microbiol Biotechnol 39:547–555

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Wong H, Kong LB, Peng KW (2003) Biomimetic processing of nanocrystallite bioactive apatite coating on titanium. Nanotechnology 14(6):619–623

    Article  CAS  Google Scholar 

  • Mahdihassan S (1988) Alchemy, Chinese versus Greek, an etymological approach: a rejoinder. Am J Chin Med 16(1–2):83–86

    Article  CAS  PubMed  Google Scholar 

  • Mahmoudi M, Sant S, Wang B, Laurent S, Sen T (2010) Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev 63:24–46

    Article  PubMed  CAS  Google Scholar 

  • Mamo G, Thunnissen M, Hatti-Kaul R, Mattiasson B (2009) An alkaline active xylanase: insights into mechanisms of high pH catalytic adaptation. Biochimie 91:1187–1196

    Article  CAS  PubMed  Google Scholar 

  • Marcano L, García-Prieto A, Muñoz D, Fernández Barquín L, Orue I, Alonso J, Muela A, Fdez-Gubieda ML (2017) Influence of the bacterial growth phase on the magnetic properties of magnetosomes synthesized byMagnetospirillum gryphiswaldense. Biochim Biophys Acta.https://doi.org/10.1016/j.bbagen.2017.01.012

  • Marques S, Alves L, Ribeiro S, Girio FM, Amaralcollaco MT (1998) Characterisation of a thermotolerant and alkalotolerant xylanase from a Bacillus sp. Appl Biochem Biotechnol 73:159–172

    Article  CAS  Google Scholar 

  • Matsunaga T, Ueki F, Obata K (2003) Fully automated immunoassay system of endocrine disrupting chemicals using monoclonal antibodies chemically conjugated to bacterial magnetic particles. Anal Chim Acta 475(1–2):75–83

    Article  CAS  Google Scholar 

  • Meng C, Tian J, Li Y, Zheng S (2010) Influence of native bacterial magnetic particles on mouse immune response. Wei Sheng Wu Xue Bao 50(6):817–821

    CAS  PubMed  Google Scholar 

  • Mergeay M, Monchy S, Vallaeys T (2003) Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: towards a catalogue of metal-responsive genes. FEMS Microbiol Rev 27(2–3):385–410

    Article  CAS  PubMed  Google Scholar 

  • Mishra A, Kumar S (2009) Kinetic studies of laccase enzyme ofCoriolus versicolor MTCC 138 in an inexpensive culture medium. Biochem Eng J 46:252–256

    Article  CAS  Google Scholar 

  • Mohammed Fayaz A, Balaji K, Kalaichelvan PT, Venkatesan R (2009) Fungal based synthesis of silver nanoparticles an effect of temperature on the size of particles. Colloids Surf B: Biointerfaces 74(1):123–126

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D (2001a) Bioreduction of AuCl4− ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed 40(19):3585–3588

    Article  CAS  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D (2001b) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1(10):515–519, 2001

    Article  CAS  Google Scholar 

  • Mukherjee P, Senapati S, Mandal D (2002) Extracellular synthesis of gold nanoparticles by the fungus fusarium oxysporum. Chem Bio Chem 3(5):461–463

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee P, Bhattacharya R, Patra CR (2007) Nanogold in cancer therapy and diagnosis, vol 7., chapter 3. Wiley-VCH, Weinheim

    Google Scholar 

  • Mukherjee AK, Adhikari H, Rai SK (2008) Production of alkaline protease by a thermophilicBacillus subtilis under solid-state fermentation (SSF) condition using Imperata cylindrical grass and potato peel as low-cost medium: characterization and application of enzyme in detergent formulation. J Biochem Eng 39:353–361

    Article  CAS  Google Scholar 

  • Nair B, Pradeep T (2002) Coalescence of nanoclusters and formation of submicron crystallites assisted by lactobacillus strains. Cryst Growth Des 2(4):293–298

    Article  CAS  Google Scholar 

  • Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interf Sci 156(1–2):1–13

    Article  CAS  Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51(6):730–750

    Article  CAS  PubMed  Google Scholar 

  • Nigam P, Pandey A (2009) Biotechnology for agro-industrial residues utilisation. Publisher Springer Science Business Media B.V., Germany, pp 1–466

    Book  Google Scholar 

  • Nigam P, Singh D (1995) Enzyme and microbial systems involved in starch processing. Enzym Microb Technol 17:770–778

    Article  CAS  Google Scholar 

  • Nigam P, Pandey A, Prabhu KA (1987a) Ligninolytic activity of two basidiomycetes moulds in the decomposition of bagasse. Biol Wastes 21:1–10

    Google Scholar 

  • Nigam P, Pandey A, Prabhu KA (1987b) Cellulase and ligninase production by Basidiomycetes culture in solidstate fermentation. Biol Wastes 20:1–9

    Google Scholar 

  • Orlov IA, Sankova TP, Babich PS, Sosnin IM, Ilyechova EY, Kirilenko DA, Brunkov PN, Ataev GL, Romanov AE, Puchkova LV (2016) New silver nanoparticles induce apoptosis-like process inE. coli and interfere with mammalian copper metabolism. Int J Nanomedicine 11:6561–6574

    Article  PubMed  PubMed Central  Google Scholar 

  • Panácek A, Kvítek L, Prucek R (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110(33):16248–16253

    Article  PubMed  CAS  Google Scholar 

  • Pandey A, Selvakumar P, Soccol CR, Nigam P (1999) Solid-state fermentation for the production of industrial enzymes. Curr Sci 77:149–162

    CAS  Google Scholar 

  • Pandey A, Nigam P, Soccol CR, Soccol VT, Singh D, Mohan R (2000a) Advances in microbial amylases. Biotechnol Appl Biochem 31:135–152

    Article  CAS  PubMed  Google Scholar 

  • Pandey A, Soccol CR, Nigam P (2000b) Biotechnological potential of agro-industrial residues, II-cassava bagasse. Bioresour Technol 74:81–87

    Article  CAS  Google Scholar 

  • Pandian SRK, Deepak V, Kalishwaralal K, Muniyandi J, Rameshkumar N, Gurunathan S (2009) Synthesis of PHB nanoparticles from optimized medium utilizing dairy industrial waste usingBrevibacterium casei SRKP2: a green chemistry approach. Colloids Surf B: Biointerfaces 74(1):266–273

    Article  CAS  Google Scholar 

  • Pantarotto D, Partidos CD, Hoebeke J (2003) Immunization with peptide-functionalized carbon nanotubes enhances virus-specific neutralizing antibody responses. Chem Biol 10(10):961–966

    Article  CAS  PubMed  Google Scholar 

  • Papinutti L, Dimitriu P, Forchiassin F (2008) Stabilization studies ofFomes sclerodermeus laccases. Bioresour Technol 99:419–424

    Article  CAS  PubMed  Google Scholar 

  • Parak WJ, Boudreau R, Le Gros M (2002) Cell motility and metastatic potential studies based on quantum dot imaging of phagokinetic tracks. Adv Mater 14(12):882–885

    Article  CAS  Google Scholar 

  • Patra CR, Bhattacharya R, Mukhopadhyay D, Mukherjee P (2010) Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer. Adv Drug Deliv Rev 62(3):346–361

    Article  CAS  PubMed  Google Scholar 

  • Perez-Gonzalez T, Jimenez-Lopez C, Neal AL (2010) Magnetite biomineralization induced byShewanella oneidensis. Geochim Cosmochim Acta 74(3):967–979

    Article  CAS  Google Scholar 

  • Piao MJ, Kang KA, Lee IK (2011) Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol Lett 201(1):92–100

    Article  CAS  PubMed  Google Scholar 

  • Polizeli ML, Rizzatti AC, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67:577–591

    Article  CAS  PubMed  Google Scholar 

  • Prade RA (1996) Xylanases: from biology to biotechnology. Biotechnol Genet Eng Rev 13:100–131

    Article  Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanoparticles, Article ID 963961,https://doi.org/10.1155/2014/963961

  • Prasad K, Jha AK (2010) Biosynthesis of CdS nanoparticles: an improved green and rapid procedure. J Colloid Interface Sci 342(1):68–72

    Article  CAS  PubMed  Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330.https://doi.org/10.1002/wnan.1363

    Article  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017a) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014.https://doi.org/10.3389/fmicb.2017.01014

    Article  PubMed  PubMed Central  Google Scholar 

  • Prasad R, Pandey R, Varma A, Barman I (2017b) Polymer based nanoparticles for drug delivery systems and cancer therapeutics. In: Kharkwal H, Janaswamy S (eds) Natural polymers for drug delivery. CAB International, UK, pp 53–70

    Google Scholar 

  • Quaratino D, Federici F, Petruccioli M, Fenice M, D’Annibale A (2007) Production, purification and partial characterisation of a novel laccase from the white-rot fungusPanus tigrinus CBS 577.79. Anton Leeuw Int J G 91:57–69

    Article  CAS  Google Scholar 

  • Rahman RNZRA, Basri M, Salleh AB (2003) Thermostable alkaline protease fromBacillus stearothermophilus F1; nutritional factors affecting protease production. Ann Microbiol 53:199–210

    CAS  Google Scholar 

  • Rautaray D, Sanyal A, Adyanthaya SD, Ahmad A, Sastry M (2004) Biological synthesis of strontium carbonate crystals using the fungus fusarium oxysporum. Langmuir 20(16):6827–6833

    Article  CAS  PubMed  Google Scholar 

  • Reddy K, Nasr M, Kumari S, Kumar S, Gupta SK, Enitan AM, Bux F (2017) Biohydrogen production from sugarcane bagasse hydrolysate: effects of PH,S/X, Fe>sup<2+>/sup<, and magnetite nanoparticles. Environ Sci Pollut Res Int.https://doi.org/10.1007/s11356-017-8560-1

  • Reith F, Lengke MF, Falconer D, Craw D, Southam G (2007) The geomicrobiology of gold. ISME J 1(7):567–584

    Article  CAS  PubMed  Google Scholar 

  • Riddin T, Gericke M, Whiteley CG (2010) Biological synthesis of platinum nanoparticles: effect of initial metal concentration. Enzym Microb Technol 46(6):501–505

    Article  CAS  Google Scholar 

  • Robinson T, Nigam P (2008) Remediation of textile dye-waste water using a white rot fungusBjerkandera adusta through solid state fermentation (SSF). Appl Biochem Biotechnol 151:618–628

    Article  CAS  PubMed  Google Scholar 

  • Robinson T, Chandran B, Nigam P (2001a) Studies on the decolourisation of an artificial effluent through lignolytic enzyme production by white-rot fungi in N-rich and N-limited media. Appl Microbiol Biotechnol 57:810–813

    Article  CAS  PubMed  Google Scholar 

  • Robinson T, Chandran B, Nigam P (2001b) Studies on the production of enzymes by white-rot fungi for the decolourisation of textile dyes. Enzym Microb Technol 29:575–579

    Article  CAS  Google Scholar 

  • Rodríguez-Carmona E, Villaverde A (2010) Nanostructured bacterial materials for innovative medicines. Trends Microbiol 18(9):423–430

    Article  PubMed  CAS  Google Scholar 

  • Sanghi R, Verma P (2009) A facile green extracellular biosynthesis of CdS nanoparticles by immobilized fungus. Chem Eng J 155(3):886–891

    Article  CAS  Google Scholar 

  • Sani JK, Saini R, Tewari L (2015) Lignocellulosic agriculture wastes as biomass feedstock for second-generation bioethanol production: concepts and recent developments. 3 Biotech 5(4):337–353

    Google Scholar 

  • Sanyal A, Rautaray D, Bansal V, Ahmad A, Sastry M (2005) Heavy-metal remediation by a fungus as a means of production of lead and cadmium carbonate crystals. Langmuir 21(16):7220–7224

    Article  CAS  PubMed  Google Scholar 

  • Sawle BD, Salimath B, Deshpande R, Bedre MD, Prabhakar BK, Venkataraman A (2008) Biosynthesis and stabilization of Au and Au-Ag alloy nanoparticles by fungus,Fusarium semitectum. Sci Technol Adv Mater 9(3):1–6

    Google Scholar 

  • Senapati S, Manda D, Ahmad A (2004) Fungus mediated synthesis of silver nanoparticles: a novel biological approach. Indian J Phys A 78(1):101–105

    Google Scholar 

  • Senapati S, Ahmad A, Khan MI, Sastry M, Kumar R (2005) Extracellular biosynthesis of bimetallic Au-Ag alloy nanoparticles. Small 1(5):517–520

    Article  CAS  PubMed  Google Scholar 

  • Shan G, Xing J, Zhang H, Liu H (2005) Biodesulfurization of dibenzothiophene by microbial cells coated with magnetite nanoparticles. Appl Environ Microbiol 71(8):4497–4502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen Z, Li Y, Kohama K, Oneill B, Bi J (2011) Improved drug targeting of cancer cells by utilizing actively targetable folic acid-conjugated albumin nanospheres. Pharmacol Res 63(1):51–58

    Article  CAS  PubMed  Google Scholar 

  • Shimoshige H, Nakajima Y, Kobayashi H, Yanagisawa K, Nagaoka Y, Shimamura S, Mizuki T, Inoue A, Maekawa T (2017) Formation of core-shell nanoparticles composed of magnetite and samarium oxide inmagnetospirillum magnetium strain RSS-1. PLoS One 12(1):e0170932

    Article  PubMed  PubMed Central  Google Scholar 

  • Shinkai M, Yanase M, Suzuki M (1999) Intracellular hyperthermia for cancer using magnetite cationic liposomes. J Magn Magn Mater 194(1):176–184

    Article  CAS  Google Scholar 

  • Singaravelu G, Arockiamary JS, Kumar VG, Govindaraju K (2007) A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga,Sargassum wightii Greville. Colloids Sur B 57(1):97–101

    Article  CAS  Google Scholar 

  • Singh D, Dahiya JS, Nigam P (1995) Simultaneous raw starch hydrolysis and ethanol fermentation by glucoamylase fromRhizoctonia solani andSaccharomyces cerevisiae. J Basic Microbiol 35:117–121

    Article  CAS  PubMed  Google Scholar 

  • Sinha A, Khare SK (2011) Mercury bioaccumulation and simultaneous nanoparticle synthesis byEnterobacter sp. cells. Bioresour Technol 102:4281–4284

    Article  CAS  PubMed  Google Scholar 

  • Sivaramakrishnan S, Gangadharan D, Nampoothiri KM, Soccol CR, Pandey A (2006) α-amylases from microbial sources–an overview on recent developments. Food Technol Biotechnol 44:173–184

    CAS  Google Scholar 

  • Sneha K, Sathishkumar M, Mao J, Kwak IS, Yun YS (2010) Corynebacterium glutamicum-mediated crystallization of silver ions through sorption and reduction processes. Chem Eng J 162(3):989–996

    Article  CAS  Google Scholar 

  • Sony IS, Potty VP (2017) Screening of protease produced by bacterial isolates of bakery industry. Int Res J Biol Sci 6(2):36–41

    Google Scholar 

  • Southam G, Beveridge TJ (1996) The occurrence of sulfur and phosphorus within bacterially derived crystalline and pseudocrystalline octahedral gold formed in vitro. Geochim Cosmochim Acta 60(22):4369–4376

    Article  CAS  Google Scholar 

  • Spring S, Schleifer KH (1995) Diversity of magnetotactic bacteria. Syst Appl Microbiol 18(2):147–153

    Article  Google Scholar 

  • Srinivasan MC, Rele MV (1995) Cellulase free xylanase from microorganisms and their applications to pulp and paper biotechnology: an overview. Indian J Microbiol 35:93–101

    Google Scholar 

  • Srivastava P, Kowshik M (2017) Fluorescent lead (IV) sulfide nanoparticles synthesized byIdiomarina sp. strain PR58-8 for bioimaging applications. Appl Environ Microbiol 83(7):e03091–e03016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun JB, Duan JH, Dai SL (2007) In vitro and in vivo antitumor effects of doxorubicin loaded with bacterial magnetosomes (DBMs) on H22 cells: the magnetic bionanoparticles as drug carriers. Cancer Lett 258(1):109–117

    Article  CAS  PubMed  Google Scholar 

  • Sun JB, Wang ZL, Duan JH (2009) Targeted distribution of bacterial magnetosomes isolated from magnetospirillum gryphiswaldense MSR-1 in healthy sprague-dawley rats. J Nanosci Nanotechnol 9(3):1881–1885

    Article  CAS  PubMed  Google Scholar 

  • Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y (2014) Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem 53(46):12320–12364

    CAS  Google Scholar 

  • Suresh AK, Pelletier DA, Wang W (2011) Biofabrication of discrete spherical gold nanoparticles using the metal reducing bacteriumShewanella oneidensis. Acta Biomater 7(5):2148–2152

    Article  CAS  PubMed  Google Scholar 

  • Sweeney RY, Mao C, Gao X (2004) Bacterial biosynthesis of cadmium sulfide nanocrystals. Chem Biol 11(11):1553–1559

    Article  CAS  PubMed  Google Scholar 

  • Tanaka T, Takeda H, Ueki F (2004) Rapid and sensitive detection of 17β-estradiol in environmental water using automated immunoassay system with bacterial magnetic particles. J Biotechnol 108(2):153–159

    Article  CAS  PubMed  Google Scholar 

  • Tang H, Yan M, Zhang H, Xia M, Yang D (2005) Preparation and characterization of water-soluble CdS nanocrystals by surface modification of ethylene diamine. Mater Lett 59(8–9):1024–1027

    Article  CAS  Google Scholar 

  • Thornhill RH, Burgess JG, Matsunaga T (1995) PCR for direct detection of indigenous uncultured magnetic cocci in sediment and phylogenetic analysis of amplified 16S ribosomal DNA. Appl Environ Microbiol 61(2):495–500

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tian F, Prina-Mello A, Estrada G (2008) A novel assay for the quantification of internalized nanoparticles in macrophages. Nanotoxicology 2(4):232–242

    Article  Google Scholar 

  • Tripathi RM, Gupta RK, Bhadwal AS, Singh P, Shrivastav A, Shrivastav BR (2015) Fungal biomolecules assisted biosynthesis of Au-Ag alloy nanoparticles and evaluation of their catalytic property. IET Nanobiotechnol 9(4):178–183

    Article  PubMed  Google Scholar 

  • Uthandi S, Saad B, Humbard MA, Maupin-Furlow JA (2010) LccA an archaeal laccase secreted as a highly stable glycoprotein into the extracellular medium byHaloferax volcanii. Appl Environ Microbiol 76:733–743

    Article  CAS  PubMed  Google Scholar 

  • Vaidyanathan R, Kalishwaralal R, Gopalram S, Gurunathan S (2009) Nanosilver the burgeoning therapeutic molecule and its green synthesis. Biotechnol Adv 27(6):924–937

    Article  CAS  PubMed  Google Scholar 

  • Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH (2006) Biomimetics of silver nanoparticles by white rot fungus,Phaenerochaete chrysosporium. Colloids Surf B: Biointerfaces 53(1):55–59

    Article  CAS  PubMed  Google Scholar 

  • Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH (2007) Biological synthesis of silver nanoparticles using the fungusAspergillus flavus. Mater Lett 61(6):1413–1418

    Article  CAS  Google Scholar 

  • Vijayalakshmi S, Kumar S, Thankamani V (2011) Optimization and cultural characterization of bacillus RV.B2.90 producing alkalophilic thermophilic protease. Res J Biotechnol 6:26–32

    CAS  Google Scholar 

  • Wang T, Yang L, Zhang B, Liu J (2010) Extracellular biosynthesis and transformation of selenium nanoparticles and application in H2O2 biosensor. Colloids Surf B 80(1):94–102

    Article  CAS  Google Scholar 

  • Wang X, Li D, Watanabe T, Shigemori Y, Mikawa T, Okajima T, Mao LQ, Ohsaka T (2012) A glucose/o-2 biofuel cell using recombinant thermophilic enzymes. Int J Electrochem Sci 7:1071–1078

    CAS  Google Scholar 

  • Wati L, Dhamija SS, Singh D, Nigam P, Marchant R (1996) Characterisation of genetic control of thermotolerance in mutants ofSaccharomyces cerevisiae. Genet Eng Biotechnol 16:19–26

    Google Scholar 

  • Watson JHP, Ellwood DC, Soper AK, Charnock J (1999) Nanosized strongly-magnetic bacterially-produced iron sulfide materials. J Magn Magn Mater 203(1–3):69–72

    Article  CAS  Google Scholar 

  • Weissleder R, Elizondo G, Wittenberg J, Rabito CA, Bengele HH, Josephson L (1990) Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology 175(2):489–493

    Article  CAS  PubMed  Google Scholar 

  • Xiang L, Bin W, Huali J (2007b) Bacterial magnetic particles (BMPs)-PEI as a novel and efficient non-viral gene delivery system. J Gene Med 9(8):679–690

    Article  PubMed  CAS  Google Scholar 

  • Xiang L, Wei J, Jianbo S, Guili W, Feng G, Ying L (2007a) Purified and sterilized magnetosomes from Magnetospirillum gryphiswaldense MSR-1 were not toxic to mouse fibroblasts in vitro. Lett Appl Microbiol 45(1):75–81

    Article  CAS  PubMed  Google Scholar 

  • Xie J, Chen K, Chen X (2009) Production, modification and bio-applications of magnetic nanoparticles gestated by magnetotactic bacteria. Nano Res 2(4):261–2782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue Y, Wang X, Chen X, Hu J, Gao MT, Li J (2017) Effect of different cellulases on the release of phenolic acids from rice straw during saccharification. Bioresour Technol 234:208–2016

    Article  CAS  PubMed  Google Scholar 

  • Yan S, He W, Sun C (2009) The biomimetic synthesis of zinc phosphate nanoparticles. Dyes Pigments 80(2):254–258

    Article  CAS  Google Scholar 

  • Yang H, Santra S, Holloway PH (2005) Syntheses and applications of Mn-doped II-VI semiconductor nanocrystals. J Nanosci Nanotechnol 5(9):1364–1375

    Article  CAS  PubMed  Google Scholar 

  • Yong P, Rowson NA, Farr JPG, Harris IR, Macaskie LE (2002) Bioreduction and biocrystallization of palladium byDesulfovibrio desulfuricans NCIMB 8307. Biotechnol Bioeng 80(4):369–379

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zhu Y, Cao Y, Li D, Zhang Z, Wang K, Ding F, Wang X, Meng D, Fan L, Wu J (2016) Size and morphology-controlled synthesis of Ni3C nanoparticles in a TEG solution and their magnetic properties.https://doi.org/10.1039/C6RA11916F

  • Zheng D, Hu C, Gan T, Dang X, Hu S (2010a) Preparation and application of a novel vanillin sensor based on biosynthesis of Au-Ag alloy nanoparticles. Sens Actuators B Chem 148(1):247–252

    Article  CAS  Google Scholar 

  • Zheng B, Qian L, Yuan H (2010b) Preparation of gold nanoparticles on eggshell membrane and their biosensing application. Talanta 82(1):177–183

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, He W, Zhong S (2009) Biosynthesis and magnetic properties of mesoporous Fe3O4 composites. J Magn Magn Mater 321(8):1025–1028

    Article  CAS  Google Scholar 

  • Zhu K, Pan H, Li J (2010) Isolation and characterization of a marine magnetotacticSpirillum axenic culture QH-2 from an intertidal zone of the China Sea. Res Microbiol 161(4):276–283

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emad Abada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abada, E., Al-Faifi, Z., Osman, M. (2017). Enzymes and Nanoparticles Produced by Microorganisms and Their Applications in Biotechnology. In: Prasad, R. (eds) Fungal Nanotechnology. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-68424-6_7

Download citation

Publish with us

Policies and ethics