Skip to main content

Myconanotechnology in Agriculture

  • Chapter
  • First Online:
Fungal Nanotechnology

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Nanotechnology is a fast-growing field of science that involves synthesis and development of various nanomaterials, production, manipulation and use of materials ranging in size from less than a micron to that of individual atoms. Formation of nanoparticles employing fungi and their application in medicine, agriculture and other areas is known as myconanotechnology. Fungal nanoparticles could be used in various fields including agriculture, industry and medicine. In the present chapter, the status of research carried out on fungal nanoparticles in the area of agriculture is consolidated and presented. Myconanotechnology has emerged as one of the key eco-friendly technologies, and its use in management of bacterial and fungal diseases, pest control, preserved foods and beverages is constantly being explored. Thus, myconanotechnology provides a greener alternative to chemically synthesized nanoparticles. Mycosynthesized nanoparticles found their vast application in pathogen detection and control, wound healing, food preservation, textile fabrics and many more. The present chapter provides an appraisal on the application of myconanotechnology in agriculture and looks into the future prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2005) Extra-/Intracellular biosynthesis of gold nanoparticles by an Alkalotolerant fungus, Trichothecium sp. J Biomed Nanotechnol 1(7):47–53

    Article  CAS  Google Scholar 

  • Alghuthaymi MA, Almoammar H, Rai M, Said-Galiev E, Abd-Elsalame KA (2015) Myconanoparticles: synthesis and their role in phytopathogens management. Biotechnol Biotechnol Equip 29(2):221–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armendariz V, Herrera I, Peralta-Videa JR (2004) Size controlled gold nanoparticle formation by Avena sativa biomass: use of plants in nanobiotechnology. J Nanopart Res 6(4):377–382

    Article  CAS  Google Scholar 

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. https://doi.org/10.3389/fmicb.2016.01984

    Article  PubMed  PubMed Central  Google Scholar 

  • Baer DR (2011) Surface characterization of nanoparticles: critical needs and significant challenges. J Surf Anal 17(3):163–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baskar G, Chandhuru J, Fahad KS, Praveen AS (2013) Mycological synthesis, characterization and antifungal activity of zinc oxide nanoparticles. Asian J Pharm 3(4):142–146

    Google Scholar 

  • Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R (2016) Nano-biofungicides: emerging trend in insect pest control. In: Prasad R (ed) Advances and applications through fungal nanobiotechnology. Springer International Publishing, Cham, pp 307–319

    Chapter  Google Scholar 

  • Birla SS, Gaikwad SC, Gade AK, Rai MK (2013) Rapid Synthesis of Silver Nanoparticles from by Optimizing Physicocultural Conditions. The Scientific World Journal 2013:1–12

    Article  Google Scholar 

  • Bramhanwade K, Shende S, Bonde S, Gade A, Rai M (2016) Fungicidal activity of Cu nanoparticles against Fusarium causing crop diseases. Environ Chem Lett 14(2):229–235

    Article  CAS  Google Scholar 

  • Darroudi M, Ahmad MB, Zamiri R, Zak AK, Abdullah AH, Ibrahim NA (2011) Time-dependent effect in green synthesis of silver nanoparticles. Int J Nanomedicine 6(1):677–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dasgupta N, Ranjan S, Mundekkad D (2015) Nanotechnology in agro-food: from field to plate. Food Res Int 69:381–400

    Article  Google Scholar 

  • Dhillon GS, Brar SK, Kaur S, Verma M (2012) Green approach for nanoparticle biosynthesis by fungi: current trends and applications. Crit Rev Biotechnol 32:49–73

    Article  CAS  PubMed  Google Scholar 

  • Du L, Xian L, Feng J-X (2011) Rapid extra-/intracellular biosynthesis of gold nanoparticles by the fungus Penicillium sp. J Nanopart Res 13(3):921–930

    Article  CAS  Google Scholar 

  • Fatima F, Verma SR, Pathak N, Bajpai P (2016) Extracellular mycosynthesis of silver nanoparticles and their microbicidal activity. J Glob Antimicrob Resist 7:88–92

    Article  PubMed  Google Scholar 

  • Fayaz MA, Balaji K, Kalaichelvan PT, Venkatesan R (2009) Fungal based synthesis of silver nanoparticles-an effect of temperature on the size of particles. Colloids Surf B: Biointerfaces 74(1):123–126

    Article  Google Scholar 

  • Gardea-Torresdey JL, Tiemann KJ, Gamez G, Dokken K, Pingitore NE (1999) Recovery of gold (III) by alfalfa biomass and binding characterization using X-ray microfluorescence. Adv Environ 3(1):83–93

    Google Scholar 

  • He L, Liu Y, Mustapha A, Lin M (2011) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166:207–215

    Article  CAS  PubMed  Google Scholar 

  • Ingle A, Rai M, Gade A, Bawaskar M (2009) Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles. J Nanopart Res 11:2079–2085

    Article  CAS  Google Scholar 

  • Kashyap PL, Kumar S, Srivastava AK, Sharma AK (2013) Myconanotechnology in agriculture: a perspective. World J Microbiol Biotechnol 29(2):191–207

    Article  CAS  PubMed  Google Scholar 

  • Khan NT, Jameel N, Rehman SUA (2016) Optimizing Physioculture conditions for the synthesis of silver nanoparticles from Aspergillus niger. J Nanomed Nanotechnol 7:5

    Google Scholar 

  • Kim SW, Jung JH, Lamsal K, Kim YS, Min JS, Lee YS (2012) Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology 40(1):53–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuber C, Bhainsa SF, Souza D (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B: Biointerfaces 47:160–164

    Article  Google Scholar 

  • Lamsal K, Kim SW, Jung JH, Kim YS, Kim KS, Lee YS (2011) Application of silver nanoparticles for the control of Colletotrichum species in Vitro and pepper anthracnose disease in field. Mycobiology 39(3):194–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lengke MF, Sanpawanitchakit C, Southam G (2011) Biosynthesis of gold nanoparticles: a review. In: Rai MK, Duran N (eds) Metal nanoparticles in microbiology. Springer, New York, pp 37–74

    Chapter  Google Scholar 

  • Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514:131–139

    Article  CAS  PubMed  Google Scholar 

  • Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69:485–492

    Article  CAS  PubMed  Google Scholar 

  • Moghaddam KM (2010) An introduction to microbial metal nanoparticle preparation method. J Young Investig 19:1–7

    Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2007) Biosynthesis of nanoparticles, technological concepts and future applications. J Nanopart Res 7:9275–9280

    Google Scholar 

  • Nanda A, Majeed S (2014) Enhanced antibacterial efficacy of biosynthesized AgNPs from Penicillium glabrum (MTCC1985) pooled with different drugs. Int J Pharm Tech Res 6:217–223

    CAS  Google Scholar 

  • Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci 156:1–13

    Article  CAS  PubMed  Google Scholar 

  • Pandey AC, Sanjay SS, Yadav RS (2010) Application of ZnO nanoparticles in influencing the growth rate of Cicer arietinum. J Exp Nanosci 5(6):488–497

    Article  CAS  Google Scholar 

  • Park HT, Kim SH, Kim HJ, Choi SH (2006) A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol J 22(3):295–302

    Article  Google Scholar 

  • Prasad K, Jha AK (2010) Biosynthesis of CdS nanoparticles: an improved green and rapid procedure. J Colloid Interface Sci 342(1):68–72

    Article  CAS  PubMed  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014

    Article  PubMed  PubMed Central  Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Article  CAS  Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomedicine Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363

    Article  Google Scholar 

  • Priyadarshini E, Pradhan N, Sukla LB, Panda PK (2014) Controlled synthesis of gold nanoparticles using Aspergillus terreus IF0 and its antibacterial potential against Gram negative pathogenic bacteria. J Nanotechnol 2014:1–9. http://dx.doi.org/10.1155/2014/653198.

  • Rajakumara G, Rahumana AA, Roopanb SM, Khannac VG, Elangoa G, Kamaraja C, Zahira AA, Velayuthama K (2012) Fungus-mediated biosynthesis and characterization of TiO2 nanoparticles and their activity against pathogenic bacteria. Spectrochim Acta A Mol Biomol Spectrosc 91:23–29

    Article  Google Scholar 

  • Sanghi R, Verma P (2009a) Biomimetic synthesis and characterisation of protein capped silver nanoparticles. Bioresour Technol 100:501–504

    Article  CAS  PubMed  Google Scholar 

  • Sanghi R, Verma PA (2009b) A facile green extracellular biosynthesis of CdS nanoparticles by immobilized fungus. Chem Eng J 155:886–891

    Article  CAS  Google Scholar 

  • Sarkar J, Dey P, Saha S, Acharya K (2011) Mycosynthesis of selenium nanoparticles. IET Micro Nano Lett 6(8):599–602

    Article  CAS  Google Scholar 

  • Saxena J, Sharma MM, Gupta S, Singh A (2014) Emerging role of fungi in nanoparticle synthesis and their applications. World J Pharm Pharm Sci 3(9):1586–1613

    Google Scholar 

  • Shelar GB, Chavan AM (2014) Extracellular biological synthesis, characterization and stability of gold nanoparticles using the fungus Helminthosporium tetramera. Int J Pure App Biosci 2(3):281–285

    Google Scholar 

  • Singhal U, Khanuja M, Prasad R, Varma A (2017) Impact of synergistic association of ZnO-nanorods and symbiotic fungus Piriformospora indica DSM 11827 on Brassica oleracea var. botrytis (Broccoli). Front Microbiol 8:1909. doi:10.3389/fmicb.2017.01909

  • Syed A, Ahmad A (2012) Extracellular biosynthesis of platinum nanoparticles using the fungus F. oxysporum. Colloids Surf B: Biointerfaces 97:27–31

    Article  CAS  PubMed  Google Scholar 

  • Tarafdar JC, Raliya R, Mahawar H, Rathore I (2014) Development of zinc nanofertilizer to enhance crop production in pearl millet (Pennisetum americanum). Agric Res 3(3):257–262

    Article  CAS  Google Scholar 

  • Thakker JN, Dalwadi P, Dhandhukia PC (2013) Biosynthesis of gold nanoparticles using Fusarium oxysporum f. sp. cubense JT1, a plant pathogenic fungus. ISRN Biotechnol 2013:5

    Google Scholar 

  • Tikariha S, Singh SS, Banerjee S, Vidyarthi AS (2012) Biosynthesis of gold nanoparticles, scope and application: a review. Int J Pharm Sci Res 3(6):1603–1615

    CAS  Google Scholar 

  • Yadav A, Kon K, Kratosova G, Duran N, Ingle AP, Rai M (2015) Fungi as an efficient mycosystem for the synthesis of metal nanoparticles: progress and key aspects of research. Biotechnol Lett 37:2099–2120

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Venkateswara Sarma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hnamte, S., Siddhardha, B., Venkateswara Sarma, V. (2017). Myconanotechnology in Agriculture. In: Prasad, R. (eds) Fungal Nanotechnology. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-68424-6_4

Download citation

Publish with us

Policies and ethics