Skip to main content

Fungal Nanotechnology: A Pandora to Agricultural Science and Engineering

  • Chapter
  • First Online:
Fungal Nanotechnology

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

This chapter highlights the current status and the awaiting panorama of fungal nanotechnology in the compass of agricultural science and engineering. The existent advances, potential applications, and challenges of myconanotechnology in agri-food sector have been discussed. It summarizes some of the most promising applications of mycogenic nanomaterials in agriculture that involves nanoformulations for increased crop yield, smart field systems with precision farming, and early disease detection measures along with crop improvement through mycomimetic models. Another aspect captivates their use in food packaging materials that possess extremely high gas barriers and antimicrobial properties and nanosensors which can detect microorganisms. There are tremendous potentials of myconanotechnology in agriculture wherein most of the research projects are in their nascent stage, and it will surely bang all doors of agri-food sector with strong intents and purposes. It conclusively focuses on possible benefits of employing myco-fabricated nano-products and their novel application potentialities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel Rahim K, Sabry Younis Mahmoud SY, Ali AM (2017) Extracellular biosynthesis of silver nanoparticles using Rhizopus stolonifer. Saudi J Biol Sci 24:208–216

    Article  CAS  Google Scholar 

  • Abou El-Nour KMM, Eftaiha A, Al-Warthan A, Ammar RAA (2010) Synthesis and applications of silver nanoparticles. Arab J Chem 3:135–140

    Article  CAS  Google Scholar 

  • Aguilar-Méndez MA, Martín-Martínez ES, Ortega-Arroyo L, Cobián-Portillo G, Sánchez-Espíndola E (2010) Synthesis and characterization of silver nanoparticles: effect on phytopathogen Colletotrichum gloeosporioides. J Nanopart Res 13:2525–2532

    Article  CAS  Google Scholar 

  • Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI, Kumar R, Sastry M (2002) Enzyme-mediated extracellular biosynthesis of CdS nanoparticles by the fungus Fusarium oxysporum. J Am Chem Soc 124:12108–12109

    Article  CAS  PubMed  Google Scholar 

  • Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B: Biointerfaces 4:313–318

    Article  CAS  Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2005) Extra-/intracellular biosynthesis of gold nanoparticles by an alkalotolerant fungus Trichothecium sp. J Biomed Nanotechnol 1:47–53

    Article  CAS  Google Scholar 

  • Ahmed S, Ullah S, Ahmad M, Swami BL, Ikram S (2016) Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J Radiat Res Appl Sci 9:1–7

    Article  CAS  Google Scholar 

  • Alani F, Moo-Young M, Anderson W (2012) Biosynthesis of silver nanoparticles by a new strain of Streptomyces sp. compared with Aspergillus fumigatus. World J Microbiol Biotechnol 28:1081–1086

    Article  CAS  PubMed  Google Scholar 

  • Alocilja EC, Zhang D, Shi C (2013) AuNP-DNA biosensor for rapid detection of Salmonella enterica serovar Enteritidis. Chapter. doi:https://doi.org/10.1021/bk-2013-1143.ch003. ACS Symposium Series, vol. 1143

  • Ammar HA, El-Desouky TA (2016) Green synthesis of nanosilver particles by Aspergillus terreus HA1N and Penicillium expansum HA2N and its antifungal activity against mycotoxigenic fungi. J Appl Microbiol 1:89–100

    Article  CAS  Google Scholar 

  • An J, Zhanga M, Wangc S, Tangc J (2008) Physical, chemical and microbiological changes in stored green asparagus spears as affected by coating of silver nanoparticles-PVP. LWT 41:1100–1107

    Article  CAS  Google Scholar 

  • Anitha TS, Palanivelu P (2011) Synthesis and structural characterization of polydisperse silver and multishaped gold nanoparticles using Fusarium oxysporum MTCC 284. Dig J Nanomater Biostruc 6:1587–1595

    Google Scholar 

  • Antunes P, Mourão J, Campos J, Peixe L (2016) Salmonellosis: the role of poultry meat. Clin Microbiol Infect 22:110–121

    Article  CAS  PubMed  Google Scholar 

  • Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612. https://doi.org/10.1021/acs.langmuir.5b03081

    Article  CAS  PubMed  Google Scholar 

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. https://doi.org/10.3389/fmicb.2016.01984

    Article  PubMed  PubMed Central  Google Scholar 

  • Balaji DS, Basavaraja S, Deshpande R, Mahesh DB, Prabhakar BK, Venkataraman A (2009) Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surf B: Biointerfaces 1:88–92

    Article  CAS  Google Scholar 

  • Balakumaran MD, Ramachandran R, Kalaichelvan PT (2015) Exploitation of endophytic fungus, Guignardia mangiferae for extracellular synthesis of silver nanoparticles and their in vitro biological activities. Microbiol Res 178:9–17

    Article  CAS  PubMed  Google Scholar 

  • Balakumaran MD, Ramachandran R, Balashanmugam P, Mukeshkumar DJ, Kalaichelvan PT (2016) Mycosynthesis of silver and gold nanoparticles: optimization, characterization and antimicrobial activity against human pathogens. Microbiol Res 182:8–20

    Article  CAS  PubMed  Google Scholar 

  • Bansal V, Rautray D, Ahmad A, Sastry M (2004) Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J Mater Chem 14:3303–3305

    Article  CAS  Google Scholar 

  • Bansal V, Rautaray D, Bhadre A, Ahire K, Sanyal A, Ahmad A, Sastry M (2005) Fungus-mediated biosynthesis of silica and titania particles. J Mater Chem 15:2583–2589

    Article  CAS  Google Scholar 

  • Barabadi H, Honary S, Ali Mohammadi M, Ahmadpour E, Rahimi MT, Alizadeh A, Naghibi F, Saravanan M (2017) Green chemical synthesis of gold nanoparticles by using Penicillium aculeatum and their scolicidal activity against hydatid cyst protoscolices of Echinococcus granulosus. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-016-8291-8

  • Barik TK, Sahu B, Swain V (2008) Nanosilica-from medicine to pest control. Parasitol Res 103:253–258

    Article  CAS  PubMed  Google Scholar 

  • Basavaraja S, Balaji SD, Legashetty A, Rasab AH, Venkatraman A (2008) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater Res Bull 5:1164–1170

    Article  CAS  Google Scholar 

  • Behari J (2010) Principles of nanoscience: an overview. Indian J Exp Biotechnol 10:1008–1019

    Google Scholar 

  • Bhainsa KC, D’souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B: Biointerfaces 1:160–164

    Article  CAS  Google Scholar 

  • Bharde A, Rautaray D, Bansal V, Ahmad A, Sarkar I, Yusuf SM, Sanyal M, Sastry M (2006) Extracellular biosynthesis of magnetite using fungi. Small 2:135–141

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R (2016a) Nano-biofungicides: emerging trend in insect pest control. In: Prasad R (ed) Advances and applications through fungal nanobiotechnology. Springer International Publishing, Switzerland, pp 307–319

    Chapter  Google Scholar 

  • Bhattacharyya A, Prasad R, Buhroo AA, Duraisamy P, Yousuf I, Umadevi M, Bindhu MR, Govindarajan M, Khanday AL (2016b) One-pot fabrication and characterization of silver nanoparticles using Solanum lycopersicum: an eco-friendly and potent control tool against Rose Aphid, Macrosiphum rosae. J Nanosci. Article ID 4679410, 7 pages, 2016. https://doi.org/10.1155/2016/4679410

  • Binupriya AR, Sathishkumar M, Vijayaraghavan K, Yun S-I (2010a) Bioreduction of trivalent aurum to nano-crystalline gold particles by active and inactive cells and cell-free extract of Aspergillus oryzae var. viridis. J Hazard Mater 177:539–545

    Article  CAS  PubMed  Google Scholar 

  • Binupriya AR, Sathishkumar M, Yun S-I (2010b) Biocrystallization of silver and gold ions by inactive cell filtrates of Rhizopus stolonifer. Colloids Surf B: Biointerfaces 79:531–534

    Article  CAS  PubMed  Google Scholar 

  • Birla SS, Tiwari VV, Gade AK, Ingle AP, Yadav AP, Rai MK (2009) Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli Pseudomonas aeruginosa and Staphylococcus aureus. Lett Appl Microbiol 48:173–179

    Article  CAS  PubMed  Google Scholar 

  • Bullerman LB, Bianchini A (2007) Stability of mycotoxins during food processing. Int J Food Microbiol 119:140–146

    Article  CAS  PubMed  Google Scholar 

  • Castro-Longoria E, Vilchis-Nestor AR, Avalos-Borja M (2011) Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids Surf B: Biointerfaces 83:42–48

    Article  CAS  PubMed  Google Scholar 

  • Chakravarty I, Pradeepam RJ, Kundu K, Singh PK, Kundu S (2015) Mycofabrication of gold nanoparticles and evaluation of their antioxidant activities. Curr Pharm Biotechnol 8:747–755

    Article  CAS  Google Scholar 

  • Chen YH, Yeh CS (2002) Laser ablation method: use of surfactants to form the dispersed Ag nanoparticles. Colloid Surf A Physicochem Eng Asp 197:133–139

    Article  CAS  Google Scholar 

  • Chen JC, Lin ZH, Ma XX (2003) Evidence of the production of silver nanoparticles via pretreatment of Phoma sp.3.2883 with silver nitrate. Lett Appl Microbiol 2:105–108

    Article  Google Scholar 

  • Chen G, Yi B, Zeng G, Niu Q, Yan M, Chen A, Du J, Huang J, Zhang Q (2014) Facile green extracellular biosynthesis of CdS quantum dots by white rot fungus Phanerochaete chrysosporium. Colloids Surf B: Biointerfaces 117:199–205

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury S, Basu A, Kundu S (2014) Green synthesis of protein capped silver nanoparticles from phytopathogenic fungus Macrophomina phaseolina (Tassi) goid with antimicrobial properties against multidrug-resistant bacteria. Nanoscale Res Lett 9:365. 11 pages

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cioffi N, Torsi L, Ditaranto N, Sabbatini L, Zambonin PG (2004) Antifungal activity of polymer-based copper nanocomposite coatings. Appl Phys Lett 85:2417–2419

    Article  CAS  Google Scholar 

  • Cogan TA, Humphrey TJ (2003) The rise and fall of Salmonella Enteritidis in the UK. J Appl Microbiol 94:114S–119S

    Article  PubMed  Google Scholar 

  • Das SK, Marsili (2010) A green chemical approach for the synthesis of gold nanoparticles: characterization and mechanistic aspect. Rev Environ Sci Biotechnol 9:199–204

    Article  CAS  Google Scholar 

  • Das SK, Das AR, Guha AK (2009) Gold nanoparticles: microbial synthesis and application in water hygiene management. Langmuir 25:8192–8199

    Article  CAS  PubMed  Google Scholar 

  • Ding X, Richter DL, Matuana LM, Heiden PA (2011) Efficient one – pot synthesis and loading of self-assembled amphiphilic chitosan nanoparticles for low – leaching wood preservation. Carbohydr Polym 86:58–64

    Article  CAS  Google Scholar 

  • Domeron CT, Smith BR, Winge DR (1989) Glutathione-coated cadmium-sulphide crystallites in Candida glabrata. J Biol Chem 264:17355–17360

    Google Scholar 

  • Du L, Xian L, Feng JX (2011) Rapid extra-/intracellular biosynthesis of gold nanoparticles by the fungus Penicillium sp. J Nanopart Res 13:921–930

    Article  CAS  Google Scholar 

  • Duncan TV (2011) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci 363:1–24

    Article  CAS  PubMed  Google Scholar 

  • Durán N, Marcato PD (2013) Nanobiotechnology perspectives. Role of nanotechnology in the food industry: a review. Int J Food Sci Technol 48:1127–1134

    Article  CAS  Google Scholar 

  • Durán A, Nombela C (2004) Fungal cell wall biogenesis: building a dynamic interface with the environment. Microbiology 150:3099–3103

    Article  PubMed  CAS  Google Scholar 

  • Durán N, Seabra AB (2012) Metallic oxide nanoparticles: state of the art in biogenic syntheses and their mechanisms. Appl Microbiol Biotechnol 95:275–288

    Article  PubMed  CAS  Google Scholar 

  • Durán N, Marcato PD, Alves OL, Desouza G, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3:8–14

    Article  Google Scholar 

  • Duran N, Marcato PD, Durán M (2011) Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi and plants. Appl Microbiol Biotechnol 90:1609–1624

    Article  CAS  PubMed  Google Scholar 

  • El-Baz AF, El-Batal AI, Abomosalam FM, Tayel AA, Shetaia YM, Yang ST (2016) Extracellular biosynthesis of anti-Candida silver nanoparticles using Monascus purpureus. J Basic Microbiol 5:531–540

    Article  CAS  Google Scholar 

  • El-Rafie MH, Shaheen THI, Mohamed AA, Hebeish A (2012) Bio-synthesis and applications of silver nanoparticles onto cotton fabrics. Cotton Polym 90:915–920

    CAS  Google Scholar 

  • Emamifar A, Kadivar M, Shahedi M, Soleimanian-Zad S (2010) Evaluation of nanocomposite packaging containing Ag and ZnO on shelf life of fresh orange juice. Innovative Food Sci Emerg Technol 11:742–748

    Article  CAS  Google Scholar 

  • Esteban-Tejeda L, Malpartida F, Esteban-Cubillo A, Pecharromán C, Moya JS (2009) Antibacterial and antifungal activity of a soda-lime glass containing copper nanoparticles. Nanotechnology 20:505701

    Article  CAS  PubMed  Google Scholar 

  • FAO/WHO (2010) Expert meeting on the application of nanotechnologies in the food and agriculture sectors: potential food safety implications. Food and Agriculture Organization of the United Nations and World Health Organization, Rome, Italy

    Google Scholar 

  • Fayaz AM, Balaji K, Girilal M, Kalaichelvan PT, Venkatesan R (2009) Mycobased synthesis of silver nanoparticles and their incorporation into sodium alginate films for vegetable and fruit preservation. J Agric Food Chem 57:6246–6252

    Article  CAS  Google Scholar 

  • Fayaz AM, Tiwary CS, Kalaichelvan PT, Venkatesan R (2010) Blue orange light emission from biogenic synthesized silver nanoparticles using Trichoderma viride. Colloids Surf B: Biointerfaces. 2010 75:175–178

    Article  CAS  PubMed  Google Scholar 

  • Fernández A, Picouet P, Lloret E (2010a) Reduction of the spoilage-related microflora in absorbent pads by silver nanotechnology during modified atmosphere packaging of beef meat. J Food Prot 73:2263–2269

    Article  PubMed  Google Scholar 

  • Fernández A, Picouet P, Lloret E (2010b) Cellulose-silver nanoparticle hybrid materials to control spoilage-related microflora in absorbent pads located in trays of fresh-cut melon. Int J Food Microbiol 142:222–228

    Article  PubMed  CAS  Google Scholar 

  • Fernández-Baldo MA, Bertolino FA, Fernández G, Messina GA, Sanz MI, Raba J (2011) Determination of Ochratoxin A in apples contaminated with Aspergillus ochraceus by using a microfluidic competitive immunosensor with magnetic nanoparticles. Analyst 136:2756–2762

    Article  PubMed  CAS  Google Scholar 

  • Gade AK, Bonde P, Ingle AP, Marcato PD, Duran N, Rai MK (2008) Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobaased Mater Bioenergy 2:243–247

    Article  Google Scholar 

  • Gade A, Ingle A, Whiteley C, Rai M (2010) Mycogenic metal nanoparticles: progress and applications. Biotechnol Lett 32:593–600

    Article  CAS  PubMed  Google Scholar 

  • Gade A, Rai M, Kulkarni S (2011) Phoma sorghina, a phytopathogen mediated synthesis of unique silver rods. Int J Green Nanotechnol 3:153–159

    Article  CAS  Google Scholar 

  • Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomed Nanotechnol Biol Med 5:382–386

    Article  CAS  Google Scholar 

  • Gericke M, Pinches A (2006) Biological synthesis of metal nanoparticles. Hydrometallurgy 83:132–140

    Article  CAS  Google Scholar 

  • Gholami-Shabani M, Akbarzadeh A, Norouzian D, Amini A, Gholami-Shabani Z, Imani A, Chiani M, Riazi G, Shams-Ghahfarokhi M (2014) Antimicrobial activity and physical characterization of silver nanoparticles green synthesized using nitrate reductase from Fusarium oxysporum. Appl Biochem Biotechnol 8:4084–4098

    Article  CAS  Google Scholar 

  • Gopinath V, Velusamy P (2013) Extracellular biosynthesis of silver nanoparticles using Bacillus sp. GP-23 and evaluation of their antifungal activity towards Fusarium oxysporum. Spectrochim Acta A Mol Biomol Spectr 106:170–174

    Article  CAS  Google Scholar 

  • Goswami A, Roy I, Sengupta S, Debnath N (2010) Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin Solid Films 519:1252–1257

    Article  CAS  Google Scholar 

  • Gupta S, Bector S (2013) Biosynthesis of extracellular and intracellular gold nanoparticles by Aspergillus fumigatus and A. flavus. Antonie Van Leeuwenhoek 103:1113–1123

    Article  CAS  PubMed  Google Scholar 

  • Hamedi S, Shojaosadati SA, Shokrollahzadeh S, Hashemi-Najafabadi S (2014) Extracellular biosynthesis of silver nanoparticles using a novel and non-pathogenic fungus, Neurospora intermedia: controlled synthesis and antibacterial activity. World J Microbiol Biotechnol 30:693–704

    Article  CAS  PubMed  Google Scholar 

  • Hemanth NKS, Kumar G, Karthik L, Bhaskara Rao KV (2010) Extracellular biosynthesis of silver nanoparticles using the filamentous fungus Penicillium sp. Arch Appl Sci Res 2:161–167

    Google Scholar 

  • Hobbs PR, Sayre K, Gupta R (2008) The role of conservation agriculture in sustainable agriculture. Philos Trans R Soc Lond Ser B Biol Sci 363:543–555

    Article  Google Scholar 

  • Honary S, Barabadi H, Gharaei-Fathabad E, Naghibi F (2013a) Green synthesis of silver nanoparticles induced by the fungus Penicillium citrinum. Trop J Pharm Res 1:7–11

    Google Scholar 

  • Honary S, Gharaei-Fathabad E, Barabadi H, Naghibi F (2013b) Fungus-mediated synthesis of gold nanoparticles: a novel biological approach to nanoparticle synthesis. J Nanosci Nanotechnol 13:1427–1430

    Article  CAS  PubMed  Google Scholar 

  • Ingle A, Gade A, Pierrat S, Sonnichsen C, Rai MK (2008) Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci 4:141–144

    Article  CAS  Google Scholar 

  • Ingle A, Gade A, Bawaskar M, Rai M (2009) Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles. J Nanopart Res 11:2079–2085

    Article  CAS  Google Scholar 

  • Jaidev LR, Narasimha G (2010) Fungal mediated biosynthesis of silver nanoparticles, characterization and antimicrobial activity. Colloids Surf B: Biointerfaces 2:430–433

    Article  CAS  Google Scholar 

  • Jain N, Bhargava A, Majumdar S, Tarafdar JC, Panwar J (2010) Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective. Nanoscale 3:635–641

    Article  PubMed  Google Scholar 

  • Jain N, Bhargava A, Tarafdar JC, Singh SK, Panwar J (2012) A biomimetic approach towards synthesis of zinc oxide nanoparticles. Appl Microbiol Biotechnol 97:859–869

    Article  PubMed  CAS  Google Scholar 

  • Jayaseelan C, Rahuman AA, Rajakumar G, Kirthi AV, Santoshkumar T, Marimuthu S, Bagavan A, Kamaraj C, Zahir AA, Elango G (2011) Synthesis of pediculocidal and larvicidal silver nanoparticles by leaf extract from heartleaf moonseed plant, Tinospora cordifolia Miers. Parasitol Res 109:185–194

    Article  PubMed  Google Scholar 

  • Jha AK, Prasad K (2010) Understanding biosynthesis of metallic/oxide nanoparticles: a biochemical perspective. In: Kumar SA, Thiagarajan S, Wang S-F (eds) Biocompatible nanomaterials synthesis, characterization and applications. NOVA Sci Publ, New York

    Google Scholar 

  • Jha AK, Prasad K (2016) Understanding mechanism of fungus mediated nanosynthesis: a molecular approach. In: Prasad R (ed) Adv app through fungal nanobiotechnol. Chap 1. p 1–23. doi:https://doi.org/10.1007/978-3-319-42990-8_1

  • Jha AK, Prasad K, Kulkarni AR (2008) Yeast mediated synthesis of silver nanoparticles. Int J Nanosci Nanotechnol 4:17–21

    Google Scholar 

  • Jha AK, Prasad K, Kulkarni AR (2009a) Synthesis of TiO2 nanoparticles using microorganisms. Colloids Surf B: Biointerfaces 71:226–229

    Article  CAS  PubMed  Google Scholar 

  • Jha AK, Prasad K, Kumar V, Prasad K (2009b) Biosynthesis of silver nanoparticles using Eclipta leaf. Biotechnol Prog 25:1476–1479

    Article  CAS  PubMed  Google Scholar 

  • Jha AK, Prasad K, Kulkarni AR (2010) Synthesis of Gd2O3 nanoparticles using Lactobacillus sp.: a novel green approach. Int J Green Nanotechnol Phys Chem 2:31–38

    Article  Google Scholar 

  • Jo YK, Kim BH, Jung GH (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93:1037–1043

    Article  CAS  Google Scholar 

  • Kaler A, Jain S, Banerjee UC (2013) Green and rapid synthesis of anticancerous silver nanoparticles by Saccharomyces boulardii and insight into mechanism of nanoparticle synthesis. Biol Med Res Int 2013.: Article ID 872940:8. https://doi.org/10.1155/2013/872940

    Google Scholar 

  • Kar PK, Murmu S, Saha S, Tandon V, Acharya K (2014) Anthelmintic efficacy of gold nanoparticles derived from a phytopathogenic fungus, Nigrospora oryzae. PLoS One 9:e84693. 9 pages

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kashyap PL, Kumar S, Srivastava AK, Sharma AK (2012) Myconanotechnology in agriculture: a perspective. World J Microbiol Biotechnol 29:191–207

    Article  PubMed  CAS  Google Scholar 

  • Kathiresan K, Manivannan S, Nabeel AM, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surf B: Biointerfaces 71:133–137

    Article  CAS  PubMed  Google Scholar 

  • Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, Biris AS (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3:3221–3227

    Article  CAS  PubMed  Google Scholar 

  • Kim SW, Kim KS, Lamsal K, Kim YJ, Kim SB, Jung M, Sim SJ, Kim HS, Chang SJ, Kim JK, Lee YS (2009) An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. J Microbiol Biotechnol 19:760–764

    PubMed  Google Scholar 

  • Kirchmann H, Thorvaldsson G (2000) Challenging targets for future agriculture. Eur J Agron 12:145–161

    Article  Google Scholar 

  • Kitching M, Ramani M, Marsili E (2015) Fungal biosynthesis of gold nanoparticles: mechanism and scale up. Microb Biotech 8:907–917

    Article  CAS  Google Scholar 

  • Kitching M, Choudhary P, Inguva S, Guo Y, Ramani M, Das SK, Marsili E (2016) Fungal surface protein mediated one-pot synthesis of stable and hemocompatible gold nanoparticles. Enzym Microb Technol 95:76–84

    Article  CAS  Google Scholar 

  • Korbekandi H, Jouneghani RM, Mohseni S, Pourhossein M, Iravani S (2014) Synthesis of silver nanoparticles using biotransformations by Saccharomyces boulardii. Green Process Synth 3:271–277

    CAS  Google Scholar 

  • Korbekandi H, Mohseni S, Jouneghani RM, Pourhossein M, Iravani S (2016) Biosynthesis of silver nanoparticles using Saccharomyces cerevisiae. Artif Cells Nanomed Biotechnol 44:235–239

    Article  CAS  PubMed  Google Scholar 

  • Kottegoda N, Munaweera I, Madusanka N, Karunaratne V (2011) A green slow-release fertilizer composition based on urea-modified hydroxyapetite nanoparticles encapsulated wood. Curr Sci 101:73–78

    CAS  Google Scholar 

  • Kowshik M, Deshmukh N, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2002) Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnol Bioeng 78:583–588

    Article  CAS  PubMed  Google Scholar 

  • Kowshik M, Ashtaputre S, Kharrazi S, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2003) Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology 14:95–100

    Article  CAS  Google Scholar 

  • Krumov N, Oder S, Perner-Nochta I, Angelov A, Posten C (2007) Accumulation of CdS nanoparticles by yeasts in a fed-batch bioprocess. J Biotechnol 132:481–486

    Article  CAS  PubMed  Google Scholar 

  • Kumar SA, Abyaneh MK, Gosavi SW, Kulkarni SK, Pasricha R, Ahmad A, Khan MI (2007) Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett 29:439–445

    Article  CAS  Google Scholar 

  • Kumar SA, Peter YA, Nadaeu JL (2008) Facile biosynthesis, separation, conjugation of gold nanoparticles to doxorubicin. Nanotechnology 19:495101

    Article  PubMed  CAS  Google Scholar 

  • Lamsal K, Kim SW, Jung JH, Kim YS, Kim KS, Lee YS (2011) Inhibition effects of silver nanoparticles against powdery mildews on cucumber and pumpkin. Mycobiology 39:26–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KJ, Park SH, Govarthanan M, Hwang PH, Seo YS, Cho M, Lee WH, Lee JY, Kannan SK, Oh BT (2013) Synthesis of silver nanoparticles using cow milk and their antifungal activity against phytopathogens. Mater Lett 105:128–131

    Article  CAS  Google Scholar 

  • Li ZZ, Chen JF, Liu F, Liu AQ, Wang Q, Sun HY, Wen LX (2007) Study of UV-shielding properties of novel porous hollow silica nanoparticles carriers for avermectin. Pest Manag Sci 63:241–246

    Article  CAS  PubMed  Google Scholar 

  • Li H, Li F, Wang L, Sheng J, Xin Z, Zhao L, Xiao H, Zheng Y, Hu Q (2009) Effect of nanopacking on preservation quality of Chinese jujube (Ziziphusjujuba Mill. var. inermis (Bunge) Rehd). Food Chem 114:547–552

    Article  CAS  Google Scholar 

  • Li X, Li W, Jiang Y, Ding Y, Yun J, Tang Y, Zhang P (2011) Effect of nano-ZnO-coated active packaging on quality of fresh-cut ‘Fuji’ apple. Int J Food Sci Technol 46:1947–1955

    Article  CAS  Google Scholar 

  • Li G, He D, Qian Y, Guan B, Gao S, Cui Y, Yokoyama K, Wang L (2012) Fungus-mediated green synthesis of silver nanoparticles using Aspergillus terreus. Int J Mol Sci 13:466–476

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Wen LX, Li ZZ, Yu W, Sun HY, Chen JF (2006) Porous hollow silica nanoparticles as controlled delivery system for water soluble pesticide. Mater Res Bull 41:2268–2275

    Article  CAS  Google Scholar 

  • Liu BH, Tsao ZJ, Wang JJ, Yu FY (2008) Development of a monoclonal antibody against ochratoxin A and its application in enzyme-linked immunosorbent assay and gold nanoparticle immunochromatographic strip. Anal Chem 80:7029–7035

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Chen B, Wang Q, Shi X, Xiao Z, Lin J, Fang X (2009) Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett 9:1007–1010

    Article  CAS  PubMed  Google Scholar 

  • Llorens A, Lloret E, Picouet PA, Trbojevich R, Fernandez (2012) Metallic-based micro and nanocomposites in food contact materials and active food packaging. Trends Food Sci Technol 24:19–29

    Article  CAS  Google Scholar 

  • Lu J, Bowles M (2013) How will nanotechnology affect agricultural supply chains? Int Food Agribusiness Manag Rev 2:21–42

    Google Scholar 

  • Lu CM, Zhang CY, Wen JQ, Wu GR, Tao MX (2002) Research of the effect of nanometer materials on germination and growth enhancement of glycine max and its mechanism. Soybean Sci 21:168–171

    CAS  Google Scholar 

  • Ma Y, Kuang L, He X, Bai W, Ding Y, Zhang Z, Zhao Y, Chai Z (2010) Effects of rare earth oxide nanoparticles on root elongation of plants. Chemosphere 78:59–78

    Article  CAS  Google Scholar 

  • Maliszewska I, Szewczyk K, Waszak K (2009) Biological synthesis of silver nanoparticles. J Phys Conf Ser 146:2025

    Google Scholar 

  • Maliszewska I, Juraszek A, Bielska K (2014) Green synthesis and characterization of silver nanoparticles using ascomycota fungi Penicillium nalgiovense AJ12. J Clust Sci 25:989–1004

    Article  CAS  Google Scholar 

  • Manikandan A, Subramanian KS (2014) Fabrication and characterisation of nanoporous zeolite based N fertilizer. Afr J Agric Res 9:276–284

    Article  CAS  Google Scholar 

  • McLamore ES, Diggs A, Marzal PC, Shi J, Blakeslee JJ, Peer WA, Murphy AS, Porterfield DM (2010) Non-invasive quantification of endogenous root auxin transport using an integrated flux microsensor technique. Plant J 63:1004–1016

    Article  CAS  PubMed  Google Scholar 

  • Mehra RK, Winge DR (1991) Metal ion resistance in fungi: molecular mechanisms and their regulated expression. J Cell Biochem 45:30–40

    Article  CAS  PubMed  Google Scholar 

  • Mishra A, Kumari M, Pandey S, Chaudhry V, Gupta KC, Nautiyal CS (2014) Biocatalytic and antimicrobial activities of gold nanoparticles synthesized by Trichoderma sp. Bioresour Technol 166:235–242

    Article  CAS  PubMed  Google Scholar 

  • Mittal AK, Chisti Y, Banerjee UC (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31:346–356

    Article  CAS  PubMed  Google Scholar 

  • Moaveni P, Karimi K, Valojerdi MZ (2010) The nanoparticles in plants: review paper. J Nanostruct Chem 2:59–78

    Google Scholar 

  • Mohammadian A, Shaojaosadati SA, Rezee MH (2007) Fusarium oxysporum mediates photogeneration of silver nanoparticles. Sci Iran 14:323–326

    CAS  Google Scholar 

  • Mondal A, Basu R, Das S, Nandy P (2011) Beneficial role of carbon nanotubes on mustard plant growth: an agricultural prospect. J Nanopart Res 13:4519–4528

    Article  CAS  Google Scholar 

  • Moon JW, Rawn CJ, Rondinone AJ, Love LJ, Roh Y, Everett SM, Lauf RJ, Phelps TJ (2010) Large-scale production of magnetic nanoparticles using bacterial fermentation. J Ind Microbiol Biotechnol 37:1023–1031

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parishcha R, Ajaykumar PV, Alam M, Kumar R, Sastry M (2001a) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1:515–519

    Article  CAS  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani R, Parischa R, Ajayakumar PV, Alam M, Sastry M, Kumar R (2001b) Bioreduction of AuCl4− ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem 40:3585–3588

    Article  CAS  Google Scholar 

  • Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R, Sastry M (2002) Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. Chem Biol Chem 3:461–463

    Article  CAS  Google Scholar 

  • Mukherjee P, Roy M, Mandal BP, Dey GK, Mukherjee PK, Ghatak J, Tyagi AK, Kale SP (2008) Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology 19:075103

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay SS (2014) Nanotechnology in agriculture: prospects and constraints. Nanotechnol Sci Appl 7:63–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nadi E, Aynehband A, Mojaddam M (2013) Effect of nano-iron chelate fertilizer on grain yield, protein percent and chlorophyll content of Faba bean (Vicia faba L.) Int J Biosci 3:267–272

    Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163

    Article  CAS  Google Scholar 

  • Narayanan KB, Sakthivel N (2011) Facile green synthesis of gold nanostructures by NADPH-dependent enzyme from the extract of Sclerotium rolfsii. Colloid Surf A Physicochem Eng Asp 380:156–161

    Article  CAS  Google Scholar 

  • Narayanan KB, Sakthivel N (2013) Mycocrystallization of gold ions by the fungus Cylindrocladium floridanum. World J Microbiol Biotechnol 29:2207–2211

    Article  CAS  PubMed  Google Scholar 

  • Narayanan KB, Park HH, Sakthivel N (2013) Extracellular synthesis of mycogenic silver nanoparticles by Cylindrocladium floridanum and its homogeneous catalytic degradation of 4-nitrophenol. Spectrochim Acta A Mol Biomol Spectr 116:485–490

    Article  CAS  Google Scholar 

  • Navazi ZR, Pazouki M, Halek FS (2010) Investigation of culture conditions for biosynthesis of silver nanoparticles using Aspergillus fumigatus. Iran J Biotechnol 8:56–61

    CAS  Google Scholar 

  • Neethirajan S, Jayas DS, Sadistap S (2009) Carbon dioxide (CO2) sensors for the agri-food industry-a review. Food Bioprocess Technol 2:115–121

    Article  CAS  Google Scholar 

  • Nithya R, Ragunathan R (2009) Synthesis of silver nanoparticle using pleurotus Pleurotus sajor-caju and its antimicrobial study. Dig J Nanomater Biosci 4:623–629

    Google Scholar 

  • Pandiarajan G, Govindaraj R, Kumar M, Ganesan V (2010) Biosynthesis of silver nanoparticles using silver nitrate through biotransformation. J Ecobiotechnol 2:13–18

    Google Scholar 

  • Park HJ, Kim SH, Kim HJ, Choi SH (2006) A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol J 22:295–302

    Article  Google Scholar 

  • Patel V, Berthold D, Puranik P, Gantar (2015) Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles. Biotechnol Rep 5:112–119

    Article  Google Scholar 

  • Pereira L, Dias N, Carvalho J, Fernandes S, Santos C, Lima N (2014) Synthesis, characterization and antifungal activity of chemically and fungal-produced silver nanoparticles against Trichophyton rubrum. J Appl Microbiol 16:1601–1613

    Article  CAS  Google Scholar 

  • Pérez-de-Luque A, Rubiales D (2009) Nanotechnology for parasitic plant control. Pest Manag Sci 65:540–545

    Article  PubMed  CAS  Google Scholar 

  • Philip D (2009) Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract. Spectrochim Acta A 73:374–381

    Article  CAS  Google Scholar 

  • Pimprikar PS, Joshi SS, Kumar AR, Zinjardea SS, Kulkarni SK (2009) Influence of biomass and gold salt concentration on nanoparticle synthesis by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Colloids Surf B: Biointerfaces 74:309–316

    Article  CAS  PubMed  Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanopart. Article ID 963961, https://doi.org/10.1155/2014/963961

  • Prasad R (2016) Advances and applications through fungal nanobiotechnology. Springer, International Publishing Cham (ISBN: 978-3-319-42989-2)

    Google Scholar 

  • Prasad K, Jha AK (2010) Biosynthesis of CdS nanoparticles: an improved green and rapid procedure. J Colloid Interface Sci 342:68–72

    Article  CAS  PubMed  Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13:705–713

    Article  CAS  Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330

    Article  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014

    Article  PubMed  PubMed Central  Google Scholar 

  • Qian Y, Yu H, He D, Yang H, Wang W, Wan X, Wang L (2013) Biosynthesis of silver nanoparticles by the endophytic fungus Epicoccum nigrum and their activity against pathogenic fungi. Bioprocess Biosyst Eng 36:1613–1619

    Article  CAS  PubMed  Google Scholar 

  • Quester K, Avalos-Borja M, Castro-Longoria E (2013) Biosynthesis and microscopic study of metallic nanoparticles. Micron 54–55:1–27

    Article  PubMed  CAS  Google Scholar 

  • Raheman F, Deshmukh S, Ingle A, Gade A, Rai M (2011) Silver nanoparticles: novel antimicrobial agent synthesized from an endophytic fungus Pestalotia sp. isolated from leaves of Syzygium cumini (L). Nano Biomed Eng 3:174–178

    Article  CAS  Google Scholar 

  • Rai M, Yadav A, Bridge PD, Gade A (2009) Myconanotechnology: a new and emerging science. In: Rai M, Bridge PD (eds) Appl mycology. Chapter 14. p 258. doi:https://doi.org/10.1079/9781845935344.0258

  • Rai M, Gade A, Yadav A (2011) Biogenic nanoparticles: an introduction to what they are, how they are synthesized and their applications. In: Rai M, Durán N (eds) Metal nanoparticles microbiology. Springer, Berlin. https://doi.org/10.1007/978-3-642-18312-6_1

    Chapter  Google Scholar 

  • Rai M, Jogee PS, Ingle AP (2015) Emerging nanotechnology for detection of mycotoxins in food and feed. Int J Food Sci Nutr 1-8. DOI: 10.3109/09637486.2015.1034251

  • Rajakumar G, Rahumana AA, Roopan SM, Khanna VG, Elangoa G, Kamaraj C, Zahir AA, Velayutham K (2012) Fungus-mediated biosynthesis and characterization of TiO2 nanoparticles and their activity against pathogenic bacteria. Spectrochim Acta A Mol Biomol 91:23–29

    Article  CAS  Google Scholar 

  • Raliya R, Tarafdar JC (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in clusterbean (Cyamopsis tetragonoloba L.) Agric Res 2:48–57

    Article  CAS  Google Scholar 

  • Raliya R, Tarafdar JC, Choudhary K, Mal P, Raturi A, Gautam R, Singh SK (2014a) Synthesis of MgO nanoparticles using Aspergillus Tubingensis TFR-3. J Bionanosci 8:34–38

    Article  CAS  Google Scholar 

  • Raliya R, Tarafdar JC, Singh SK, Gautam R, Choudhary K, Maurino VG, Saharan V (2014b) MgO nanoparticles biosynthesis and its effect on chlorophyll contents in the leaves of Clusterbean (Cyamopsis tetragonoloba L.) Adv Sci Eng Med 6:538–545

    Article  CAS  Google Scholar 

  • Raliya R, Biswas P, Tarafdar JC (2015a) TiO2 nanoparticle biosynthesis and its physiological effect on mung bean (Vigna radiata L.) Biotechnol Rep 5:22–26

    Article  Google Scholar 

  • Raliya R, Nair R, Chavalmane S, Wang WN, Biswas P (2015b) Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics 7:158494

    Article  CAS  Google Scholar 

  • Raliya R, Franke C, Chavalmane S, Nair R, Reed N, Biswas P (2016a) Quantitative understanding of nanoparticles uptake in watermelon plants. Front Plant Sci 7:1288. https://doi.org/10.3389/fpls.2016.01288

    Article  PubMed  PubMed Central  Google Scholar 

  • Raliya R, Tarafdar JC, Biswas P (2016b) Enhancing the mobilization of native phosphorous in mung bean rhizosphere using ZnO nanoparticles synthesized by soil fungi. J Agric Food Chem 64:3111–3118

    Article  CAS  PubMed  Google Scholar 

  • Rao KJ, Paria S (2013) Use of sulfur nanoparticles as a green pesticide on Fusarium solani and Venturia inaequalis phytopathogens. RSC Adv 3:10471–10478

    Article  CAS  Google Scholar 

  • Ray PC, Khan SA, Fan Z, Senapati D (2013) Gold nanotechnology for targeted detection and killing of multiple drug resistant bacteria from food samples. doi:https://doi.org/10.1021/bk-2013-1143.ch001. ACS Symposium Series, vol. 1143

  • Raza MA, Kanwal Z, Rauf A, Sabri AN, Riaz S, Naseem S (2016) Size- and shape-dependent antibacterial studies of silver nanoparticles synthesized by wet chemical routes. Nano 6:74. https://doi.org/10.3390/nano6040074

    Google Scholar 

  • Rehman A, Majeed MI, Ihsan A, Hussain SZ, Rehman S, Ghauri MA, Khalid ZM, Hussain I (2011) Living fungal hyphae-templated porous gold microwires using nanoparticles as building blocks. J Nanopart Res 13:6747–6754

    Article  CAS  Google Scholar 

  • Sadowski Z, Maliszewska IH, Grochowalska B, Polowczyk I, Koźlecki T (2008) Synthesis of silver nanoparticles using microorganisms. Mater Sci Pol 26:419–424

    CAS  Google Scholar 

  • Saha S, Sarkar J, Chattopadhyay D, Patra S, Chakraborty A, Acharya K (2010) Production of silver nanoparticles by a phytopathogenic fungus Bipolaris nodulosa and its antimicrobial activity. Dig J Nanomater Bios 5:887–895

    Google Scholar 

  • Saha S, Chattopadhyay D, Acharya K (2011) Preparation of silver nanoparticles by bio-reduction using Nigrospora oryzae culture filtrate and its antimicrobial activity. Dig J Nanomater Bios 6:1519–1528

    Google Scholar 

  • Salaheldin TA, Husseiny SM, Al-Enizi AM, Elzatahry A, Cowley AH (2016) Evaluation of the cytotoxic behavior of fungal extracellular synthesized Ag nanoparticles using confocal laser scanning microscope. Int J Mol Sci 3:329

    Article  CAS  Google Scholar 

  • Salunkhe RB, Patil SV, Salunke BK, Patil CD, Sonawane AM (2011) Studies on silver accumulation and nanoparticle synthesis by Cochliobolus lunatus. Appl Biochem Biotechnol 165:221–234

    Article  CAS  PubMed  Google Scholar 

  • Sanghi R, Verma P (2009) Biomimetic synthesis and characterization of protein capped silver nanoparticles. Bioresour Technol 100:501–504

    Article  CAS  PubMed  Google Scholar 

  • Sanghi R, Verma P (2010) pH dependant fungal proteins in the ‘green’ synthesis of gold nanoparticles. Adv Mater Lett 1:193–199

    Article  Google Scholar 

  • Sanghi R, Verma P, Puri S (2011) Enzymatic formation of gold nanoparticles using Phanerochaete chrysosporium. Adv Chem Eng Sci 1:154–162

    Article  CAS  Google Scholar 

  • Saravanan M (2010) Biosynthesis and in vitro studies of silver bionanoparticles synthesized from Aspergillus species and its antimicrobial activity against multi drug resistant clinical isolates. World Acad Sci Eng Technol 68:728–731

    Google Scholar 

  • Saravanan M, Nanda A (2010) Extracellular synthesis of silver bionanoparticles from Aspergillus clavatus and its antimicrobial activity against MRSA and MRSE. Colloids Surf B: Biointerfaces 77:214–218

    Article  CAS  PubMed  Google Scholar 

  • Sarkar J, Ray S, Chattopadhyay D, Laskar A, Acharya K (2012) Mycogenesis of gold nanoparticles using a phytopathogen Alternaria alternata. Bioprocess Biosyst Eng 35:637–643

    Article  CAS  PubMed  Google Scholar 

  • Sarkar J, Ghosh M, Mukherjee A, Chattopadhyay D, Acharya K (2014) Biosynthesis and safety evaluation of ZnO nanoparticles. Bioprocess Biosyst Eng 37:165–171

    Article  CAS  PubMed  Google Scholar 

  • Sawle BD, Salimath B, Deshpande R, Bedre MD, Prabhakar BK, Venkataraman A (2008) Biosynthesis and stabilization of Au and Au-Ag alloy nanoparticles by fungus, Fusarium semitectum. Sci Technol Adv Mater 9:1–6

    Google Scholar 

  • Scott N, Chen H (2003) Nanoscale science and engineering for agriculture and food systems. Report: Cooperative State Research, Education and Extension Service, United States Department of Agriculture, Natl. Planning Workshop, November 18–19, 2002 Washington, DC

    Google Scholar 

  • Scott N, Chen H (2013) Nanoscale science and engineering for agriculture and food systems. Ind Biotechnol 9:17–18

    Article  Google Scholar 

  • Sekhon BP (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7:31–53

    Article  PubMed  PubMed Central  Google Scholar 

  • Senapati S, Mandal D, Ahmad A, Khan MI, Sastry M, Kumar R (2004) Fungus mediated synthesis of silver nanoparticles: a novel biological approach. Indian J Phys A 78:101–105

    Google Scholar 

  • Shaligram NS, Bule M, Bhambure R, Singhal RS, Singh SK, Szakac SG, Pandey A (2009) Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochem 44:939–943

    Article  CAS  Google Scholar 

  • Shamsuzzaman, Mashrai A, Khanam H, Aljawfi RN (2013) Biological synthesis of ZnO nanoparticles using C. albicans and studying their catalytic performance in the synthesis of steroidal pyrazolines. Arab J Chem. https://doi.org/10.1016/j.arabjc.2013.05.004

  • Shankar SS, Ahmad A, Pasricha R, Sastry M (2003) Bioreduction of chloroaurate ions by Geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 13:1822–1826

    Article  CAS  Google Scholar 

  • Shankar SS, Rai A, Ankamwar B, Singh A, Ahmad A, Sastry M (2004) Biological synthesis of triangular gold nanoprisms. Nat Mater 3:482–488

    Article  CAS  PubMed  Google Scholar 

  • Sharon M, Choudhary AK, Kumar R (2010) Nanotechnology in agricultural diseases and food safety. J Phytol 2:83–92

    Google Scholar 

  • Sheikhloo Z, Salouti M (2011) Intracellular biosynthesis of gold nanoparticles by the fungus Penicillium Chrysogenum. Int J Nanosci Nanotechnol 7:102–105

    Google Scholar 

  • Singhal U, Khanuja M, Prasad R, Varma A (2017) Impact of synergistic association of ZnO-nanorods and symbiotic fungus Piriformospora indica DSM 11827 on Brassica oleracea var. botrytis (Broccoli). Front Microbiol 8:1909. doi: 10.3389/fmicb.2017.01909

  • Soni N, Prakash S (2012) Efficacy of fungus mediated silver and gold nanoparticles against Aedes aegypti larvae. Parasitol Res 110:175–184

    Article  PubMed  Google Scholar 

  • Sowani H, Mohite P, Munot H, Shouche Y, Bapat T, Kumar AR, Kulkarni M (2015) Green synthesis of gold and silver nanoparticles by an actinomycete Gordonia amicalis HS-11: mechanistic aspects and biological application. Process Biochem 51:374–383

    Article  CAS  Google Scholar 

  • Spasova M, Manolova N, Naydenov M, Kuzmanova J, Rashkov I (2011) Electrospun biohybrid materials for plant biocontrol containing chitosan and Trichoderma viride spores. J Bioact Compat Polym 26:48–55

    Article  CAS  Google Scholar 

  • Stadler T, Buteler M, Weaver DK (2010) Novel use of nano-structured alumina as an insecticide. Pest Manag Sci 66:577–579

    CAS  PubMed  Google Scholar 

  • Sugunan A, Melin P, Schnürer J, Hilborn JG, Dutta J (2007) Nutrition-driven assembly of colloidal nanoparticles: growing fungi assemble gold nanoparticles as microwires. Adv Mater 19:77–81

    Article  CAS  Google Scholar 

  • Sundaravadivelan C, Padmanabhan MN (2014) Effect of mycosynthesized silver nanoparticles from filtrate of Trichoderma harzianum against larvae and pupa of dengue vector Aedes aegypti L. Environ Sci Pollut Res Int 6:4624–4633

    Article  CAS  Google Scholar 

  • Tarafdar JC, Raliya R (2013) Rapid, low-cost, and ecofriendly approach for iron nanoparticle synthesis using Aspergillus oryzae TFR9. J Nanopart 2013. Article ID 141274, 4

    Google Scholar 

  • Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomed Nanotechnol Biol Med 6:257–262

    Article  CAS  Google Scholar 

  • Thirumurugan G, Shaheedha SM, Dhanaraju MD (2009) In vitro evaluation of anti-bacterial activity of silver nanoparticles synthesised by using Phytophthora infestans. Int J Chem Tech R 1:714–716

    CAS  Google Scholar 

  • Tidke PR, Gupta I, Gade A, Rai M (2014) Fungus- mediated synthesis of gold nanoparticles and standardization of parameters for its biosynthesis. IEEE Trans Nanobioscience 13:397–402

    Article  PubMed  Google Scholar 

  • Tiwari DK, Schubert ND, Cendejas LMV, Villegas J, Montoya LC, García SEB (2014) Interfacing carbon nanotubes (CNT) with plants: enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nanoagriculture. Appl Nanosci 4:577–591

    Article  CAS  Google Scholar 

  • Torney F, Trewyn BG, Lin VS-Y, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300

    Article  CAS  PubMed  Google Scholar 

  • Tripathi S, Sonkar SK, Sarkar S (2011) Growth stimulation of gram (Cicer arietinum) plant by water soluble carbon nanotubes. Nanoscale 3:1176–1181

    Article  CAS  PubMed  Google Scholar 

  • Vahabi K, Ali Mansoori G, Karimi S (2011) Biosynthesis of silver nanoparticles by fungus Trichoderma reesei (a route for large scale production of AgNPs). Insci J 1:65–79

    Article  CAS  Google Scholar 

  • Velmurugan P, Lee SM, Iydroose M, Lee KJ, Oh BT (2013) Pine cone-mediated green synthesis of silver nanoparticles and their antibacterial activity against agricultural pathogens. Appl Microbiol Biotechnol 97:361–368

    Article  CAS  PubMed  Google Scholar 

  • Verma VC, Kharwar RN, Gange AC (2010) Biosynthesis of antimicrobial silver nanoparticles by the endophytic fungus Aspergillus clavatus. Nanomedicine 5:33–40

    Article  CAS  PubMed  Google Scholar 

  • Verma VC, Singh SK, Solanki R, Prakash S (2011) Biofabrication of anisotropic gold nanotriangles using extract of endophytic Aspergillus clavatus as a dual functional reductant and stabilizer. Nanoscale Res Lett 6:16–22

    Article  PubMed  Google Scholar 

  • Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH (2006) Biomimetics of silver nanoparticles by white rot fungus, Phanerochaete chrysosporium. Colloids Surf B: Biointerfaces 53:55–59

    Article  CAS  PubMed  Google Scholar 

  • Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH (2007a) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett 61:1413–1418

    Article  CAS  Google Scholar 

  • Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH (2007b) Silver-protein (Core-Shell) nanoparticle production using spent mushroom substrate. Langmuir 23:7113–7117

    Article  CAS  PubMed  Google Scholar 

  • Villagarcia H, Dervishi E, Silva K, Biris AS, Khodakovskaya MV (2012) Surface chemistry of carbon nanotubes impacts the growth and expression of water channel protein in tomato plants. Small 8:2328–2334

    Article  CAS  PubMed  Google Scholar 

  • Wang WN, Tarafdar JC, Biswas P (2013) Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake. J Nanopart Res 15:1417

    Article  CAS  Google Scholar 

  • Wanga H, Qiaoa X, Chena J, Ding S (2005) Preparation of silver nanoparticles by chemical reduction method. Colloid Surf A Physicochem Eng Asp 256:111–115

    Article  CAS  Google Scholar 

  • Williams P, Keshavarz-Moore E, Dunnill P (1996) Production of cadmium sulphide microcrystallites in batch cultivation by Schizosaccharomyces pombe. J Biotechnol 48:25967

    Article  Google Scholar 

  • Wu X, Chen J, Park B, Huang YW, Zhao Y (2013) The use of silver nanorod array-based surface-enhanced raman scattering sensor for food safety applications. Chapter. doi:https://doi.org/10.1021/bk-2013-1143.ch005. ACS Symp Series, vol. 1143

  • Xie J, Lee JY, Ting YP (2007) High-yield synthesis of complex gold nanostructures in a fungal system. J Phys Chem C111:16858–16865

    Google Scholar 

  • Yadav A, Kon K, Kratosova G, Duran N, Ingle AP, Rai M (2015) Fungi as an efficient mycosystem for the synthesis of metal nanoparticles: progress and key aspects of research. Biotechnol Lett 37:2099–2120

    Article  CAS  PubMed  Google Scholar 

  • Yang FL, Li XG, Zhu F, Lei CL (2009) Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J Agric Food Chem 57:10156–10162

    Article  CAS  PubMed  Google Scholar 

  • Yao KS, Li SJ, Tzeng KC, Cheng TC, Chang CY, Chiu CY, Liao CY, Hsu JJ, Lin ZP (2009) Fluorescence silica nanoprobe as a biomarker for rapid detection of plant pathogens. Adv Mater Res 79–82:513–516

    Article  CAS  Google Scholar 

  • Yin XD, Zhang ZY (2010) Preparation, properties and characteristics of azadirachtin/carboxymethyl chitosan/ phosphorylation chitosan nanoparticles. Acta Agric Jiangxi 01:69–73

    Google Scholar 

  • Youtie J, Shapira P, Porter AL (2008) Nanotechnology publications and citations by leading countries and blocs. J Nanopart Res 10:981–986

    Article  CAS  Google Scholar 

  • Zhang X, Guo Q, Cui D (2009a) Recent advances in nanotechnology applied to biosensors. Sensors 9:1033–1053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, He X, Wang K, Wang Y, Li H, Tan W (2009b) Biosynthesis of size-controlled gold nanoparticles using fungus, Penicillium sp. J Nanosci Nanotechnol 9:5738–5744

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Yan S, Tyagi RD, Surampalli RY (2011) Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere 82:489–494

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Li F, Chen G, Fang Y, An X, Zheng Y, Xin Z, Zhang M, Yang Y, Hu Q (2012) Effect of nanocomposite-based packaging on preservation quality of green tea. Int J Food Sci Technol 47:572–557

    Article  CAS  Google Scholar 

  • Zheng J, Birktoft JJ, Chen Y, Wang T, Sha R, Constantinou PE, Ginell SL, Mao C, Seman NC (2009) From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nat Lett 461:74–77

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal Prasad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rao, M., Jha, B., Jha, A.K., Prasad, K. (2017). Fungal Nanotechnology: A Pandora to Agricultural Science and Engineering. In: Prasad, R. (eds) Fungal Nanotechnology. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-68424-6_1

Download citation

Publish with us

Policies and ethics