Skip to main content

A Pluralist Framework for the Philosophy of Social Neuroscience

  • Chapter
  • First Online:
Neuroscience and Social Science

Abstract

The philosophy of neuroscience has been a dynamic field of research in the philosophy of science since the turn of the century. As a result of this activity, a new mechanistic philosophy has emerged as the dominant approach to explanation and scientific integration in neuroscience. Rather surprisingly, the philosophy of social neuroscience has remained an almost uncharted territory. In this chapter, we advance a pluralistic framework for that field. Our framework seeks to ground the proliferation of modeling approaches, explanatory styles, and integrative trends within social neuroscience. First, we highlight the plurality of modeling approaches pursued by social neuroscientists by reviewing the distinctive features of mechanistic models, dynamical models, computational models, and optimality models. Second, we reject unitary explanatory perspectives and emphasize the plurality of explanatory styles that can emerge from those modeling approaches, considering their contents and vehicles. As regards their content, we present two kinds of information a model may provide, namely, causal/compositional or noncausal/structural information. As regards their vehicles, we examine and illustrate different guiding representational ideals (e.g., precision, generality, and simplicity). Third, we turn to integrative trends in social neuroscience, assessing the prospects of inter-theoretical reduction, mechanistic mosaic unity, and multilevel integrative analysis. We contend that the pluralist framework we develop is an adequate approach to scientific modeling, explanation, and integration in social neuroscience. We additionally address how this pluralistic perspective may shed light on the intersection between the neural and the social realms, in a context of greater interdisciplinary collaboration between neuroscientists and social scientists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    It can be pointed out that Craver [31] draws a distinction, not between phenomenological and theoretical models but between phenomenological and explanatory models. Theoretical enrichment, Craver would suggest, isn’t necessary nor sufficient for a model to be explanatory. Similarly, a phenomenological model may theoretically enrich the description of the explanandum, as can be the case of LISP-based computational models.

  2. 2.

    It should be noted that Weiskopf [33] understands cognitive models as a subtype of functional models. For reasons of clarity and considering the present context, we preferred to conflate both concepts.

  3. 3.

    We thank Warren TenHouten for bringing this issue to our attention.

  4. 4.

    We thank Warren Tenhouten for drawing our attention to these concerns.

References

  1. Cacioppo JT, Berntson GG. Social psychological contributions to the decade of the brain. Doctrine of multilevel analysis. Am Psychol. 1992;47(8):1019–28.

    Article  PubMed  Google Scholar 

  2. Dunbar RIM. Neocortex size and group size in primates: a test of the hypothesis. J Hum Evol. 1995;28(3):287–96.

    Article  Google Scholar 

  3. Dunbar RIM. The social brain hypothesis. Evol Anthropol Issues News Rev. 1998;6(5):178–90.

    Article  Google Scholar 

  4. Bailer-Jones DM. Scientific models in philosophy of science. Pittsburgh, PA: University of Pittsburgh Press; 2009.

    Book  Google Scholar 

  5. Morrison M. Where have all the theories gone? Philos Sci. 2007;74(2):195–228.

    Article  Google Scholar 

  6. Cartwright N, Shomar T, Suárez M. The tool box of science: tools for the building of models with a superconductivity example. Poznan Stud Philos Sci Humanit. 1995;44:137–49.

    Google Scholar 

  7. Harre R. Cognitive science: a philosophical introduction: SAGE Publications; 2002. p. 344.

    Google Scholar 

  8. Morgan MS, Morrison M. Models as mediators: perspectives on natural and social science. Cambridge: Cambridge University Press; 1999. p. 420.

    Book  Google Scholar 

  9. Venturelli N. Un abordaje epistemológico de la integración neurocientífica. In: Rodriguez V, Velasco M, editors. Epistemología y prácticas científicas. Córdoba: Editorial Universitaria; 2015. p. 41–71.

    Google Scholar 

  10. Churchland PS, Sejnowski TJ. The computational brain. Cambridge, MA: MIT Press; 1994. p. 564.

    Google Scholar 

  11. Hardcastle VG, Stewart CM. What do brain data really show? Philos Sci. 2002;69(3):572–82.

    Google Scholar 

  12. Hardcastle VG. The theoretical and methodological foundations of cognitive neuroscience. Philos Psychol Cogn Sci. 2007:295–311.

    Google Scholar 

  13. Tononi G, Sporns O, Edelman GM. A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc Natl Acad Sci U S A. 1994;91(11):5033–7.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Newlands SD, Perachio AA. Compensation of horizontal canal related activity in the medial vestibular nucleus following unilateral labyrinth ablation in the decerebrate gerbil. II. Type II neurons. Exp Brain Res. 1990;82(2):373–83.

    Article  PubMed  Google Scholar 

  15. Lee TS, Mumford D. Hierarchical bayesian inference in the visual cortex. J Opt Soc Am A Opt Image Sci Vis. 2003;20(7):1434–48.

    Article  PubMed  Google Scholar 

  16. Bogen JE, DeZure R, Tenhouten WD, Marsh JF. The other side of the brain. IV. The A-P ratio. Bull Los Angel Neurol Soc. 1972;37(2):49–61.

    Google Scholar 

  17. TenHouten WD. Neurosociology. J Soc Evol Syst. 1997;20(1):7–37.

    Article  Google Scholar 

  18. TenHouten WD. Explorations in neurosociological theory: from the spectrum of affect to time consciousness. Soc Perspect Emot. 1999;5:41–80.

    Google Scholar 

  19. TenHouten WD. A general theory of emotions and social life. New York: Routledge; 2006.

    Google Scholar 

  20. Plutchik R. A general psychoevolutionary theory of emotion. In: Emotion: theory, research, and experience, Theories of emotion, vol. 1. New York: Academic; 1980. p. 3–33.

    Chapter  Google Scholar 

  21. Fiske AP. The four elementary forms of sociality: framework for a unified theory of social relations. Psychol Rev. 1992;99(4):689–723.

    Article  PubMed  Google Scholar 

  22. Franks DD. The neuroscience of emotions. In: Stets JE, Turner JH, editors. Handbook of the sociology of emotions, Handbooks of sociology and social research. New York: Springer; 2006. p. 38–62. Available from: http://link.springer.com/chapter/10.1007/978-0-387-30715-2_3.

    Chapter  Google Scholar 

  23. Preston SD, de Waal FBM. Empathy: its ultimate and proximate bases. Behav Brain Sci. 2002;25(1):1–20.

    PubMed  Google Scholar 

  24. Eickhoff SB, Laird AR, Fox PT, Bzdok D, Hensel L. Functional segregation of the human dorsomedial prefrontal cortex. Cereb Cortex. 2016;26(1):304–21.

    Article  PubMed  Google Scholar 

  25. Marder E, Kopell N, Sigvardt K. How computation aids in understanding biological networks. In: PSG S, Grillner S, Selverston AI, Stuart DG, editors. Neurons, networks, and motor behavior. Cambridge, MA: MIT Press; 1997.

    Google Scholar 

  26. Stevens CF. Models are common; good theories are scarce. Nat Neurosci. 2000;3:1177.

    Article  Google Scholar 

  27. Forstmann BU, Wagenmakers E-J, Eichele T, Brown S, Serences JT. Reciprocal relations between cognitive neuroscience and formal cognitive models: opposites attract? Trends Cogn Sci. 2011;15(6):272–9.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Palmeri TJ, Love BC, Turner BM. Model-based cognitive neuroscience. J Math Psychol. 2017;76:59–64.

    Article  Google Scholar 

  29. Dayan P, Abbott LF. Theoretical neuroscience: computational and mathematical modeling of neural systems. Cambridge, MA: MIT Press; 2001. p. 576.

    Google Scholar 

  30. Frigg R, Hartmann S. Scientific models. In: Sarkar S, Pfeifer J, editors. The philosophy of science: an encyclopedia. New York: Routledge; 2006. p. 740–9.

    Google Scholar 

  31. Craver CF. When mechanistic models explain. Synthese. 2006;153(3):355–76.

    Article  Google Scholar 

  32. Kronhaus DM, Eglen SJ. The role of simplifying models in neuroscience: modelling structure and function. In: Bio-inspired computing and communication. Berlin, Heidelberg: Springer; 2008. p. 33–44.

    Chapter  Google Scholar 

  33. Weiskopf DA. Models and mechanisms in psychological explanation. Synthese. 2011;183(3):313.

    Article  Google Scholar 

  34. Marr D. Vision: a computational investigation into the human representation and processing of visual information. San Francisco: W. H. Freeman and company; 1982. p. 432.

    Google Scholar 

  35. Bruce V, Young A. Understanding face recognition. Br J Psychol Lond Engl. 1986;77(Pt 3):305–27.

    Article  Google Scholar 

  36. Decety J. A social cognitive neuroscience model of human empathy. In: Harmon-Jones E, Winkielman P, editors. Social neuroscience: integrating biological and psychological explanations of social behavior. New York: Guilford Press; 2007.

    Google Scholar 

  37. Chirimuuta M. Minimal models and canonical neural computations: the distinctness of computational explanation in neuroscience. Synthese. 2014;191(2):127–53.

    Article  Google Scholar 

  38. Behrens TEJ, Hunt LT, Rushworth MFS. The computation of social behavior. Science. 2009;324(5931):1160–4.

    Article  PubMed  Google Scholar 

  39. Insel TR, Young LJ. The neurobiology of attachment. Nat Rev. Neurosci. 2001;2(2):129–36.

    Article  PubMed  Google Scholar 

  40. Di Paolo E, De Jaegher H. The interactive brain hypothesis. Front Hum Neurosci. 2012;6:163.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Craver CF. Explaining the brain: mechanisms and the mosaic unity of neuroscience. Oxford: Oxford University Press; 2007. p. 328.

    Book  Google Scholar 

  42. Bechtel W. Mental mechanisms: philosophical perspectives on cognitive neuroscience. New York: Psychology Press; 2008. p. 322.

    Google Scholar 

  43. Hempel C. Aspects of scientific explanation and other essays in the philosophy of science. New York: The Free Press; 1965.

    Google Scholar 

  44. Wright CD, Bechtel W. Mechanisms and psychological explanation. In: Thagard P, editor. Philosophy of psychology and cognitive science. Amsterdam: Elsevier; 2007.

    Google Scholar 

  45. Kaplan DM, Craver CF. The explanatory force of dynamical and mathematical models in neuroscience: a mechanistic perspective. Philos Sci. 2011;78(4):601–27.

    Article  Google Scholar 

  46. Hempel CG, Oppenheim P. Studies in the logic of explanation. Philos Sci. 1948;15(2):135–75.

    Article  Google Scholar 

  47. Salmon WC. Four decades of scientific explanation. 1st ed. Pittsburgh: University of Pittsburgh Press; 1984. p. 240.

    Google Scholar 

  48. Cummins R. “How does it work” versus “what are the laws?”: two conceptions of psychological explanation. In: Keil F, Wilson RA, editors. Explanation and cognition. Cambridge, MA: MIT Press; 2000. p. 117–45.

    Google Scholar 

  49. Bechtel W, Abrahamsen A. Explanation: a mechanist alternative. Stud Hist Phil Biol Biomed Sci. 2005;36(2):421–41.

    Article  Google Scholar 

  50. Craver CF. Levels [Internet]. In: Open MIND. Frankfurt am Main: MIND Group; 2015. [cited 25 Dec 2016]. Available from: http://open-mind.net/papers/levels/getAbstract.

    Google Scholar 

  51. Illari PM, Williamson J. Mechanisms are real and local. New York: Oxford University Press; 2011.

    Book  Google Scholar 

  52. Woodward J. Making things happen. New York: Oxford University Press; 2003.

    Google Scholar 

  53. Wouters AG. Design explanation: determining the constraints on what can be alive. Erkenntnis. 2007;67(1):65–80.

    Article  Google Scholar 

  54. Irvine E. Models, robustness, and non-causal explanation: a foray into cognitive science and biology. Synthese. 2014:1–17.

    Google Scholar 

  55. Ross LN. Dynamical models and explanation in neuroscience. Philos Sci. 2015;81(1):32–54.

    Article  Google Scholar 

  56. Weisberg M. Simulation and similarity: using models to understand the world. New York: Oxford University Press; 2013. p. 211.

    Book  Google Scholar 

  57. Levins R. The strategy of model building in population biology. Am Sci. 1966;54(4):421–31.

    Google Scholar 

  58. Barberis SD. Functional analyses, mechanistic explanations and explanatory tradeoffs. J Cogn Sci. 2013;14(3):229–51.

    Article  Google Scholar 

  59. Nolen S. In defense of dynamical explanation. Philosophical Theses [Internet]. 2013. Available from: http://scholarworks.gsu.edu/philosophy_theses/143.

  60. Boone W, Piccinini G. The cognitive neuroscience revolution. Synthese. 2016;193(5):1509–34.

    Article  Google Scholar 

  61. Levy A, Bechtel W. Abstraction and the organization of mechanisms. Philos Sci. 2013;80(2):241–61.

    Article  Google Scholar 

  62. Mitchell SD. Why integrative pluralism? ECO Spec Double Issue. 2004;6(1–2):81–91.

    Google Scholar 

  63. Mantzavinos C. Explanatory pluralism. Cambridge: Cambridge University Press; 2016. p. 237.

    Book  Google Scholar 

  64. Bickle J. Reducing mind to molecular pathways: explicating the reductionism implicit in current cellular and molecular neuroscience. Synthese. 2006;151(3):411–34.

    Article  Google Scholar 

  65. Abney DH, Dale R, Yoshimi J, Kello CT, Tylén K, Fusaroli R. Joint perceptual decision-making: a case study in explanatory pluralism. Front Psychol. 2014;5:330.

    PubMed  PubMed Central  Google Scholar 

  66. Bouwel JV. Pluralists about pluralism? Different versions of explanatory pluralism in psychiatry. In: Galavotti MC, Dieks D, Gonzalez WJ, Hartmann S, Uebel T, Weber M, editors. New directions in the philosophy of science, The philosophy of science in a european perspective. Berlin: Springer; 2014. p. 105–19.

    Google Scholar 

  67. Gijsbers V. Explanatory pluralism and the (dis)unity of science: the argument from incompatible counterfactual consequences. Front Psych. 2016;7:32.

    Google Scholar 

  68. McCauley RN, Bechtel W. Explanatory pluralism and heuristic identity theory. Theory Psychol. 2001;11(6):736–60.

    Article  Google Scholar 

  69. Salmon WC. Scientific explanation: causation and unification. Critica. 1990;22(66):3–23.

    Google Scholar 

  70. Venturelli AN. A cautionary contribution to the philosophy of explanation in the cognitive neurosciences. Mind Mach. 2016;26(3):259–85.

    Article  Google Scholar 

  71. Cartwright N. The dappled world: a study of the boundaries of science. Cambridge: Cambridge University Press; 1999. p. 264.

    Book  Google Scholar 

  72. Cacioppo JT, Berntson GG. Social neuroscience. In: Cacioppo JT, Berntson GG, Adolph R, Carter CS, Davidson RJ, McClintock MK, et al., editors. Foundations in social neuroscience. Cambridge, MA: MIT Press; 2002. p. 3–7.

    Google Scholar 

  73. Harmon-Jones E, Winkielman P, editors. A social cognitive neuroscience model of human empathy. New York: Guilford Press; 2007.

    Google Scholar 

  74. Bechtel W, Hamilton A. Reduction, integration, and the unity of science: natural, behavioral, and social sciences and the humanities. In: Kuipers T, editor. Philosophy of science: focal issues, Handbook of the philosophy of science, vol. 1. Amsterdam: Elsevier; 2007.

    Google Scholar 

  75. Cacioppo JT, Decety J. Social neuroscience: challenges and opportunities in the study of complex behavior. Ann N Y Acad Sci. 2011;1224:162–73.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Levy A. The unity of neuroscience: a flat view. Synthese. 2016;193(12):3843–63.

    Article  Google Scholar 

  77. Bickle J. Philosophy and neuroscience: a ruthlessly reductive account. Dordrecht: Springer; 2003. p. 235.

    Book  Google Scholar 

  78. Bickle J. Ruthless reductionism and social cognition. J Physiol Paris. 2007;101(4–6):230–5.

    Article  PubMed  Google Scholar 

  79. Kogan JH, Frankland PW, Silva AJ. Long-term memory underlying hippocampus-dependent social recognition in mice. Hippocampus. 2000;10(1):47–56.

    Article  PubMed  Google Scholar 

  80. Thor D, Holloway W. Social memory of the male laboratory rat. J Comp Physiol Psychol. 1982;96(6):1000–6.

    Article  Google Scholar 

  81. Ferguson JN, Young LJ, Insel TR. The neuroendocrine basis of social recognition. Front Neuroendocrinol. 2002;23(2):200–24.

    Article  PubMed  Google Scholar 

  82. Sullivan JA. The multiplicity of experimental protocols: a challenge to reductionist and non-reductionist models of the unity of neuroscience. Synthese. 2009;167(3):511–39.

    Article  Google Scholar 

  83. Kuhn TS. The structure of scientific revolutions. Chicago: University of Chicago Press; 1970. p. 228.

    Google Scholar 

  84. Piccinini G, Craver CF. Integrating psychology and neuroscience: functional analyses as mechanism sketches. Synthese. 2011;183(3):283–311.

    Article  Google Scholar 

  85. Young LJ, Wang Z. The neurobiology of pair bonding. Nat Neurosci. 2004;7(10):1048–54.

    Article  PubMed  Google Scholar 

  86. Donaldson ZR, Young LJ. Oxytocin, vasopressin, and the neurogenetics of sociality. Science. 2008;322(5903):900–4.

    Article  PubMed  Google Scholar 

  87. Johnson ZV, Young LJ. Neurobiological mechanisms of social attachment and pair bonding. Curr Opin Behav Sci. 2015;3:38–44.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Insel TR. The challenge of translation in social neuroscience: a review of oxytocin, vasopressin, and affiliative behavior. Neuron. 2010;65(6):768–79.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Carter CS, DeVries AC, Getz LL. Physiological substrates of mammalian monogamy: the prairie vole model. Neurosci Biobehav Rev. 1995;19(2):303–14.

    Article  PubMed  Google Scholar 

  90. Penn DC, Holyoak KJ, Povinelli DJ. Darwin’s Mistake: explaining the discontinuity between human and nonhuman minds. Behav Brain Sci. 2008;31(2):109–30.

    PubMed  Google Scholar 

  91. Sterling P, Laughlin S. Principles of neural design. Cambridge, MA: MIT Press; 2015.

    Book  Google Scholar 

  92. Cherniak C, Mokhtarzada Z, Rodriguez-Esteban R, Changizi K. Global optimization of cerebral cortex layout. Proc Natl Acad Sci U S A. 2004;101(4):1081–6.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Chklovskii DB, Koulakov AA. Maps in the brain: what can we learn from them? Annu Rev. Neurosci. 2004;27:369–92.

    Article  PubMed  Google Scholar 

  94. Aiello LC, Wheeler P. The expensive-tissue hypothesis: the brain and the digestive system in human and primate evolution. Curr Anthropol. 1995;36(2):199–221.

    Article  Google Scholar 

  95. Dunbar RIM. Evolutionary basis of the social brain. In: Oxford handbook of social neuroscience. Oxford: Oxford University Press; 2011. p. 28–38.

    Google Scholar 

  96. Dunbar RIM, Shultz S. Evolution in the social brain. Science. 2007;317(5843):1344–7.

    Article  PubMed  Google Scholar 

  97. Cachel S. Primate and human evolution. Cambridge, UK: Cambridge University Press; 2006. p. 488.

    Google Scholar 

  98. TenHouten WD. Emotion and reason: mind, brain, and the social domains of work and love. New York: Routledge; 2013. p. 279.

    Google Scholar 

  99. Mitchell SD, Dietrich MR. Integration without unification: an argument for pluralism in the biological sciences. Am Nat. 2006;168(Suppl 6):S73–9.

    Article  PubMed  Google Scholar 

  100. Callard F, Fitzgerald D. Rethinking interdisciplinarity across the social sciences and neurosciences. Basingstoke, UK: Palgrave Macmillan; 2015. (Wellcome Trust–Funded Monographs and Book Chapters)

    Book  Google Scholar 

  101. Balcombe JP. Laboratory environments and rodents’ behavioural needs: a review. Lab Anim. 2006;40(3):217–35.

    Article  PubMed  Google Scholar 

  102. Vyssotski AL, Dell’Omo G, Poletaeva II, Vyssotsk DL, Minichiello L, Klein R, et al. Long-term monitoring of hippocampus-dependent behavior in naturalistic settings: mutant mice lacking neurotrophin receptor TrkB in the forebrain show spatial learning but impaired behavioral flexibility. Hippocampus. 2002;12(1):27–38.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Daniel Barberis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barberis, S.D., Itatí Branca, M., Nicolás Venturelli, A. (2017). A Pluralist Framework for the Philosophy of Social Neuroscience. In: Ibáñez, A., Sedeño, L., García, A. (eds) Neuroscience and Social Science. Springer, Cham. https://doi.org/10.1007/978-3-319-68421-5_21

Download citation

Publish with us

Policies and ethics